Параллельные прямые, признаки и условия параллельности прямых. Прямая на плоскости – необходимые сведения

Кстати, последнее неравенство как раз и говорит о непараллельности их нормальных векторов.

Если прямые параллельны, то система решения не имеет. Аналитически это будет выглядеть так:

Но если все три дроби равны, то прямые совпадают друг с другом, и поэтому система имеет бесконечное множество решений.

Угол между двумя прямыми можно найти по двум формулам.

Если прямые заданы общими уравнениями, то угол между ними совпадает с углом между их нормальными векторами. Его вычисляют по формуле (6.9) из предыдущей лекции. Для нашего случая она будет иметь вид:

. (7.7)

Условие параллельности прямых:

;

Условие перпендикулярности:

.

Если прямые заданы уравнениями с угловыми коэффициентами вида:

и ,

то тангенс угла между ними определится по формуле:

. (7.8)

Условие параллельности:

Условие перпендикулярности:

.

Пример 7.4 . Найти точку пересечения прямых и и угол между ними.

Решени е. Найдем точку пересечения прямых, решив систему уравнений методом Крамера:

, , ,

Угол между прямыми определим, как угол между их нормальными векторами (2, 5) и (5, –2). По формуле (7.7) имеем:

.

О чем говорит этот ответ? Прямые перпендикулярны, т.к. .

Пример 7.5 . При каком значении параметров a и b прямые и : а ) пересекаются, б ) параллельны, в ) совпадают?

Решени е. Две прямые пересекаются, если выполняется условие . В нашем случае

.

Прямые параллельны, если , т.е.

.

И, последнее, две прямые совпадают при условии, что , т.е. если .

Пример 7.6 . Дана точка и прямая . Написать уравнения прямых L 1 и L 2 , проходящих через точку A , причем и .

Решени е. Сделаем схематичный рисунок.

Рис. 7.6

Угловой коэффициент исходной прямой L равен k = –2. По условию , следовательно . По формуле (7.4) находим уравнение прямой L 1:

, или .

Поскольку , то . Тогда уравнение прямой L 2 будет иметь вид:

, или .

7.4. Определение кривой второго порядка

Определение 7.1. Кривой второго порядка называется линия, определяемая уравнением второй степени относительно текущих координат. В общем случае это уравнение имеет вид:

где все числа А , В , С , и т.д. – действительные числа, и, кроме того, по крайней мере одно из чисел А , В , С – отлично от нуля.

До введения декартовой системы координат все кривые описывались словесно, исходя из геометрических свойств рассматриваемой кривой. Так, определение окружности читалось так:

Определение 7.2. Окружность это геометрическое место точек на плоскости, равноудаленных от данной точки, называемой центром.

Уравнение окружности , с центром в точке (а, b ) и радиусом R в декартовой системе координат, полученное вами в школе, выглядит так:

Если раскрыть скобки, то получим уравнение, схожее с уравнением (7.9), в котором отсутствует член, содержащий произведение текущих координат, и коэффициенты при старших степенях равны между собой.

Вывод всех уравнений второго порядка аналогичен выводу уравнений прямой и проходит по тому же алгоритму.

Выведем уравнение параболы, исходя из ее определения.

7.5. Каноническое уравнение параболы

Определение 7.3. Параболой называется геометрическое место точек плоскости, равноудаленных от данной точки F , называемой фокусом , и данной прямой, называемой директрисой.

Обозначим расстояние от фокуса до директрисы через p . Эта величина называется параметром параболы.

1. Расположим ось абсцисс так, чтобы она проходила через фокус, перпендикулярно директрисе и имела положительное направление от директрисы к фокусу.

2. Начало координат поместим в середину этого перпендикуляра. Тогда координаты точки будут F (p /2, 0), а уравнение директрисы: .

3. Возьмем текущую точку на параболе М (х, у ).

4. По определению параболы, расстояние М N от точки М до директрисы равно ее расстоянию М F от фокуса: MF = MN . Как видно из чертежа (рис. 7.7), координаты точки N (–p /2, y ). Найдем эти расстояния по формуле расстояния между двумя точками из п. 1 предыдущей лекции.

, .

Приравняв правые части этих выражений и возведя обе части равенства в квадрат, получим:

,

или после сокращений

. (7.11)

Уравнение (7.11) называется каноническим уравнением параболы . Ему будут удовлетворять только точки, лежащие на кривой, а остальные – не будут. Исследуем форму ее графика по каноническому уравнению.

Поскольку y входит в четной степени, то ось ОХ будет являться осью симметрии, т.е. одному значению Х будет соответствовать два значения Y – положительное и отрицательное. Т.к. правая часть неотрицательна у , то и левая – тоже. Так как р – расстояние между фокусом и директрисой, всегда больше нуля, то и х . Если х =0, то у =0, т.е. парабола проходит через начало координат. При неограниченном возрастании x абсолютная величина у также будет неограниченно возрастать.

График параболы, определяемой уравнением (7.11) приведен на рис. 7.7.


Рис. 7.7 рис. 7.8

Ось симметрии параболы называется фокальной осью, т.к. на ней лежит фокус. Если фокальную ось параболы принять за ось ординат, то ее уравнение примет вид:

.

Ее чертеж показан на рис. 7.8. В этом случае фокус будет находиться в точке F (0, p /2), а уравнение директрисы будет иметь вид у = –р /2.

Таким образом, мы рассмотрели параболу, нашли ее уравнение и показали возможные расположения относительно начала координат.

Если вершина параболы смещена в точку , то каноническое уравнение будет выглядеть так:

.

Выводом остальных кривых второго порядка мы заниматься не будем. Желающие могут найти все выкладки в рекомендуемой литературе.

Ограничимся их определениями и уравнениями.


В этой статье мы подробно остановимся на одном из первичных понятий геометрии – на понятии прямой линии на плоскости. Сначала определимся с основными терминами и обозначениями. Далее обсудим взаимное расположение прямой и точки, а также двух прямых на плоскости, приведем необходимые аксиомы. В заключении, рассмотрим способы задания прямой на плоскости и приведем графические иллюстрации.

Навигация по странице.

Прямая на плоскости - понятие.

Прежде чем дать понятие прямой на плоскости, следует четко представлять себе что же представляет собой плоскость. Представление о плоскости позволяет получить, к примеру, ровная поверхность стола или стены дома. Следует, однако, иметь в виду, что размеры стола ограничены, а плоскость простирается и за пределы этих границ в бесконечность (как будто у нас сколь угодно большой стол).

Если взять хорошо заточенный карандаш и дотронуться его стержнем до поверхности «стола», то мы получим изображение точки. Так мы получаем представление о точке на плоскости .

Теперь можно переходить и к понятию прямой линии на плоскости .

Положим на поверхность стола (на плоскость) лист чистой бумаги. Для того чтобы изобразить прямую линию, нам необходимо взять линейку и провести карандашом линию на сколько это позволяют сделать размеры используемой линейки и листа бумаги. Следует отметить, что таким способом мы получим лишь часть прямой. Прямую линию целиком, простирающуюся в бесконечность, мы можем только вообразить.

Взаимное расположение прямой и точки.

Начать следует с аксиомы: на каждой прямой и в каждой плоскости имеются точки.

Точки принято обозначать большими латинскими буквами, например, точки А и F . В свою очередь прямые линии обозначают малыми латинскими буквами, к примеру, прямые a и d .

Возможны два варианта взаимного расположения прямой и точки на плоскости : либо точка лежит на прямой (в этом случае также говорят, что прямая проходит через точку), либо точка не лежит на прямой (также говорят, что точка не принадлежит прямой или прямая не проходит через точку).

Для обозначения принадлежности точки некоторой прямой используют символ «». К примеру, если точка А лежит на прямой а , то можно записать . Если точка А не принадлежит прямой а , то записывают .

Справедливо следующее утверждение: через любые две точки проходит единственная прямая.

Это утверждение является аксиомой и его следует принять как факт. К тому же, это достаточно очевидно: отмечаем две точки на бумаге, прикладываем к ним линейку и проводим прямую линию. Прямую, проходящую через две заданные точки (например, через точки А и В ), можно обозначать двумя этими буквами (в нашем случае прямая АВ или ВА ).

Следует понимать, что на прямой, заданной на плоскости, лежит бесконечно много различных точек, причем все эти точки лежат в одной плоскости. Это утверждение устанавливается аксиомой: если две точки прямой лежат в некоторой плоскости, то все точки этой прямой лежат в этой плоскости.

Множество всех точек, расположенных между двумя заданными на прямой точками, вместе с этими точками называют отрезком прямой или просто отрезком . Точки, ограничивающие отрезок, называются концами отрезка. Отрезок обозначают двумя буквами, соответствующими точкам концов отрезка. К примеру, пусть точки А и В являются концами отрезка, тогда этот отрезок можно обозначить АВ или ВА . Обратите внимание, что такое обозначение отрезка совпадает с обозначением прямой. Чтобы избежать путаницы, рекомендуем к обозначению добавлять слово «отрезок» или «прямая».

Для краткой записи принадлежности и не принадлежности некоторой точки некоторому отрезку используют все те же символы и . Чтобы показать, что некоторый отрезок лежит или не лежит на прямой пользуются символами и соответственно. К примеру, если отрезок АВ принадлежит прямой а , можно кратко записать .

Следует также остановиться на случае, когда три различных точки принадлежат одной прямой. В этом случае одна, и только одна точка, лежит между двумя другими. Это утверждение является очередной аксиомой. Пусть точки А , В и С лежат на одной прямой, причем точка В лежит между точками А и С . Тогда можно говорить, что точки А и С находятся по разные стороны от точки В . Также можно сказать, что точки В и С лежат по одну сторону то точки А , а точки А и В лежат по одну сторону от точки С .

Для полноты картины заметим, что любая точка прямой делит эту прямую на две части – два луча . Для этого случая дается аксиома: произвольная точка О , принадлежащая прямой, делит эту прямую на два луча, причем две любые точки одного луча лежат по одну сторону от точки О , а две любые точки разных лучей – по разные стороны от точки О .

Взаимное расположение прямых на плоскости.

Сейчас ответим на вопрос: «Как могут располагаться две прямые на плоскости относительно друг друга»?

Во-первых, две прямые на плоскости могут совпадать .

Это возможно в том случае, когда прямые имеют по крайней мере две общие точки. Действительно, в силу аксиомы, озвученной в предыдущем пункте, через две точки проходит единственная прямая. Иными словами, если через две заданные точки проходят две прямые, то они совпадают.

Во-вторых, две прямые на плоскости могут пересекаться .

В этом случае прямые имеют одну общую точку, которую называют точкой пересечения прямых. Пересечение прямых обозначают символом «», к примеру, запись означает, что прямые а и b пересекаются в точке М . Пересекающиеся прямые приводят нас к понятию угла между пересекающимися прямыми . Отдельно стоит рассмотреть расположение прямых на плоскости, когда угол между ними равен девяноста градусам. В этом случае прямые называются перпендикулярными (рекомендуем статью перпендикулярные прямые, перпендикулярность прямых). Если прямая a перпендикулярна прямой b , то можно использовать краткую запись .

В-третьих, две прямые на плоскости могут быть параллельными.

Прямую линию на плоскости с практической точки зрения удобно рассматривать вместе с векторами. Особое значение имеют ненулевые векторы, лежащие на данной прямой или на любой из параллельных прямых, их называют направляющими векторами прямой . В статье направляющий вектор прямой на плоскости даны примеры направляющих векторов и показаны варианты их использования при решении задач.

Также следует обратить внимание на ненулевые векторы, лежащие на любой из прямых, перпендикулярных данной. Такие векторы называют нормальными векторами прямой . О применении нормальных векторов прямой рассказано в статье нормальный вектор прямой на плоскости .

Когда на плоскости даны три и более прямых линии, то возникает множество различных вариантов их взаимного расположения. Все прямые могут быть параллельными, в противном случае некоторые или все из них пересекаются. При этом все прямые могут пересекаться в единственной точке (смотрите статью пучок прямых), а могут иметь различные точки пересечения.

Не будем подробно останавливаться на этом, а приведем без доказательства несколько примечательных и очень часто используемых фактов:

  • если две прямые параллельны третьей прямой, то они параллельны между собой;
  • если две прямые перпендикулярны третьей прямой, то они параллельны между собой;
  • если на плоскости некоторая прямая пересекает одну из двух параллельных прямых, то она пересекает и вторую прямую.

Способы задания прямой на плоскости.

Сейчас мы перечислим основные способы, которыми можно задать конкретную прямую на плоскости. Это знание очень полезно с практической точки зрения, так как на нем основывается решение очень многих примеров и задач.

Во-первых, прямую можно задать, указав две точки на плоскости.

Действительно, из аксиомы, рассмотренной в первом пункте этой статьи, мы знаем, что через две точки проходит прямая, и притом только одна.

Если в прямоугольной системе координат на плоскости указаны координаты двух несовпадающих точек, то есть возможность записать уравнение прямой, проходящей через две заданные точки .


Во-вторых, прямую можно задать, указав точку, через которую она проходит, и прямую, которой она параллельна. Этот способ справедлив, так как через данную точку плоскости проходит единственная прямая, параллельная заданной прямой. Доказательство этого факта проводилось на уроках геометрии в средней школе.

Если прямую на плоскости задать таким способом относительно введенной прямоугольной декартовой системы координат, то есть возможность составить ее уравнение. Об этом написано в статье уравнение прямой, проходящей через заданную точку параллельно заданной прямой .


В-третьих, прямую можно задать, если указать точку, через которую она проходит, и ее направляющий вектор.

Если прямая линия задана в прямоугольной системе координат таким способом, то легко составить ее каноническое уравнение прямой на плоскости и параметрические уравнения прямой на плоскости .


Четвертый способ задания прямой заключается в том, что следует указать точку, через которую она проходит, и прямую, которой она перпендикулярна. Действительно, через заданную точку плоскости проходит единственная прямая, перпендикулярная данной прямой. Оставим этот факт без доказательства.


Наконец, прямую на плоскости можно задать, указав точку, через которую она проходит, и нормальный вектор прямой.

Если известны координаты точки, лежащей на заданной прямой, и координаты нормального вектора прямой, то есть возможность записать общее уравнение прямой .


Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Copyright by cleverstudents

Все права защищены.
Охраняется законом об авторском праве. Ни одну часть сайта www.сайт, включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

Если две прямые l 1 и l 2 лежат на плоскости, то возможны три различных случая их взаимного расположения: 1)пересекаются (т.е. имеют одну общую точку); 2) параллельны и не совпадают; 3) совпадают.

Выясним, как узнать, какой из этих случаев имеет место, если эти прямые заданы своими уравнениями в общем виде:

Если прямые l 1 и l 2 пересекаются в некоторой точке М(х,у), то координаты этой точки должны удовлетворять обоим уравнениям системы (12).

Следовательно, чтобы найти координаты точки пересечения прямых l 1 и l 2 , надо решить систему уравнений (12):
1) если система (12) имеет единственное решение, то прямые l 1 и l 2 пересекаются;
2) если система (12) не имеет решения, то прямые l 1 и l 2 параллельны;
3) если система (12) имеет множество решений, то прямые l 1 и l 2 совпадают.

Условием совпадения двух прямых является пропорциональность соответствующих коэффициентов их уравнений.

Пример 10. Пересекаются ли прямые 3х+4у-1=0 и 2х+3у-1=0 ?

Решение: Решим систему уравнений: система имеет единственное решение, следовательно прямые пересекаются. Точка пересечения прямых имеет координаты (-1;1).

Пример 11. Параллельны, ли прямые 2х-у+2=0 и 4х-2у-1=0?

Решение: Решим систему уравнений
Эта система не имеет решений, следовательно прямые параллельны.

Пример 12. Совпадают ли прямые х+у+1=0 и 3х+3у+3=0?

Решение: Совпадают, так как коэффициенты пропорциональны.

Пример 13. Составить уравнение прямой линии, проходящей через точку пересечения прямых х+у-1=0, х-у+2=0 и через точку (2,1).

Решение: Находим координаты точки пересечения двух данных прямых линий. Для этого решаем данные уравнения совместно. Складывая, находим: 2х+1=0, откуда
Вычитая из первого уравнения второе, получаем: 2у-3=0, откуда . Далее, остается составить уравнение прямой линии по двум точками () и (2;1)
Искомое уравнение будет , или или откуда или x+5y-7=0

Углом между двумя прямыми на плоскости называется угол между их направляющими векторами. По этому определению получаются не один угол, а два смежных угла, дополняющих друг друга до . В элементарной геометрии из двух смежных углов, как правило, выбирается меньший, т.е. величина угла между двумя прямыми удовлетворяет условию .

Если и направляющие векторы прямых и соответственно (рис.3.23,а), то величина угла между этими прямыми вычисляется по формуле:

Угол между прямыми (3.19) можно вычислить как угол между их нормалями и :

(3.22)

Чтобы получить величину острого угла между прямыми, нужно правую часть взять по абсолютной величине:

Необходимым и достаточным условием перпендикулярности прямых (3.19) является условие ортогональности их нормалей, т.е. равенства нулю скалярного произведения их нормалей :

По формуле (3.22) получаем острый угол между прямыми (3.19), если (рис.3.23,а), и тупой в противном случае: (рис.3.23,6). Другими словами, по формуле (3.22) находится тот угол между прямыми, в котором лежат точки, принадлежащие разноименным полуплоскостям, опреляемым данными прямыми . На рис.3.23 положительные и отрицательные полуплоскости отмечены знаками плюс "+" или минус "–" соответственно.

Для двух прямых в пространстве возможны четыре случая:

Прямые совпадают;

Прямые параллельны (но не совпадают);

Прямые пересекаются;

Прямые скрещиваются, т.е. не имеют общих точек и непараллельны.

Рассмотрим два способа описания прямых: каноническими уравнениями и общими уравнениями . Пусть прямые L 1 и L 2 заданы каноническими уравнениями:

L 1: (x - x 1)/l 1 = (y - y 1)/m 1 = (z - z 1)/n 1 , L 2: (x - x 2)/l 2 = (y - y 2)/m 2 = (z - z 2)/n 2 (6.9)

Для каждой прямой из ее канонических уравнений сразу определяем точку на ней M 1 (x 1 ; y 1 ; z 1) ∈ L 1 , M 2 (x 2 ; y 2 ; z 2) ∈ L 2 и координаты направляющих векторов s 1 = {l 1 ; m 1 ; n 1 } для L 1 , s 2 = {l 2 ; m 2 ; n 2 } для L 2 .

Если прямые совпадают или параллельны, то их направляющие векторы s 1 и s 2 коллинеарны, что равносильно равенству отношений координат этих векторов:

l 1 /l 2 = m 1 /m 2 = n 1 /n 2 . (6.10)

Если прямые совпадают, то направляющим векторам коллинеарен и вектор M 1 M 2 :

(x 2 - x 1)/l 1 = (y 2 - y 1)/m 1 = (z 2 - z 1)/n 1 . (6.11)

Это двойное равенство также означает, что точка М 2 принадлежит прямой L 1 . Следовательно, условием совпадения прямых является выполнение равенств (6.10) и (6.11) одновременно.

Если прямые пересекаются или скрещиваются, то их направляющие векторы неколлинеарны, т.е. условие (6.10) нарушается. Пересекающиеся прямые лежат в одной плоскости и, следовательно, векторы s 1 , s 2 и M 1 M 2 являются компланарными определителя третьего порядка , составленного из их координат (см. 3.2):

Условие (6.12) выполняется в трех случаях из четырех, поскольку при Δ ≠ 0 прямые не принадлежат одной плоскости и потому скрещиваются.

Сведем все условия воедино:


Взаимное расположение прямых характеризуется количеством решений у системы (6.13). Если прямые совпадают, то система имеет бесконечно много решений. Если прямые пересекаются, то эта система имеет единственное решение. В случае параллельных или скрещивающихся прямых решений нет. Последние два случая можно разделить, если найти направляющие векторы прямых. Для этого достаточно вычислить два векторных произведения n 1 × n 2 и n 3 × n 4 , где n i = {A i ; B i ; C i }, i = 1, 2, 3,4. Если полученные векторы коллинеарны, то данные прямые параллельны. Иначе они скрещивающиеся.

Пример 6.4.


Направляющий вектор s 1 прямой L 1 находим по каноническим уравнениям этой прямой: s 1 = {1; 3; -2}. Направляющий вектор s 2 прямой L 2 вычисляем с помощью векторного произведения нормальных векторов плоскостей, пересечением которых она является:

Поскольку s 1 = -s 2 , то прямые параллельны или совпадают. Выясним, какая из этих ситуаций реализуется для данных прямых. Для этого подставим координаты точки M 0 (1; 2; -1) ∈ L 1 в общие уравнения прямой L 2 . Для первого из них получаем 1 = 0. Следовательно, точка М 0 не принадлежит прямой L 2 и рассматриваемые прямые параллельны.

Угол между прямыми . Угол между двумя прямыми можно найти, используя направляющие векторы прямых. Острый угол между прямыми равен углу между их направляющими векторами (рис. 6.5) или является дополнительным к нему, если угол между направляющими векторами тупой. Таким образом, если для прямых L 1 и L 2 известны их направляющие векторы s x и s 2 , то острый угол φ между этими прямыми определяется через скалярное произведение:

cosφ = |S 1 S 2 |/|S 1 ||S 2 |

Например, пусть s i = {l i ; m i ; n i }, i = 1, 2. Используя формулы (2.9) и (2.14) для вычисления длины вектора и скалярного произведения в координатах, получаем

Пусть теперь даны два уравнения:

Посмотрим, когда прямые d и d, определяемые этими уравнениями, параллельны в широком смысле, когда они совпадают, когда параллельны в собственном смысле (т. е. не имеют ни одной общей точки).

Ответ на первый вопрос получается сразу: прямые d и d тогда и только тогда параллельны в широком смысле, когда их направляющие векторы коллинеарны, т. е. когда имеет место пропорция , а следовательно, и пропорция

Если эта пропорция может быть продолжена до пропорции

то прямые совпадают: в этом случае все коэффициенты одного из двух уравнений (1), (Г) получаются из коэффициентов другого умножением на некоторое и, значит, уравнения (1) и эквивалентны (всякая точка удовлетворяющая одному Уравнению, удовлетворяет и другому).

Обратно, если две прямые совпадают, то имеет место пропорция (3).

Докажем это сначала в случае, когда наши прямые параллельны оси ординат. Тогда , и нам нужно доказать только равенство .

Но последнее равенство (в котором вытекает из того, что обе (совпадающие) прямые пересекают ось абсцисс в одной и той же точке с абсциссой .

Пусть теперь совпадающие примые не параллельны оси ординат. Тогда они пересекают ее в одной и той же точке Q с ординатой и мы имеем пропорцию , которая вместе с пропорцией (2) (выражающей параллельность прямых в широком смысле) и дает нам искомую пропорцию (3).

Параллельность в собственном смысле означает, что имеет место параллельность в широком смысле (т. е. выполнено условие (2)), но нет совпадения (т. е. не выполнено ). Это означает, что пропорция

имеет место, тогда как

Совокупность двух соотношений (2) и (4) обычно записывают в виде одной формулы:

Подведем итог всему доказанному.

Теорема 1. Всякая прямая d на плоскости, снабженной аффинной системой координат, определяется некоторым уравнением первой степени между координатами ее точек. Обратно, всякое уравнение первой степени

является уравнением некоторой (единственной) прямой d; при этом все векторы , коллинеарные этой прямой, и только они удовлетворяют однородному уравнению



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...