Платоновы тела схема. Использование бомб и понимание основной модели творения

Суворов Михаил, ученик 10 класс

Данная работа посвящена описанию взглядов древнегреческого философа Платона на строение Вселенной, через использование правильных многоугольников, таких как тетраэдр, октаэдр, гексаэдр (куб), додекаэдр и икосаэдр. В современной математике эти тела получили название Платоновых.

Также в работе находит отражение вопрос о том, как используются в современных естественнонаучных теориях Платоновы тела.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Исследовательская работа по геометрии. Тема: «Платоновы тела» Подготовили презентацию: суворовец Суворов Михаил Преподаватель математики Харькова Марина Валерьевна

Платон (427–347 до н.э.) – великий древнегреческий философ, ученик Сократа, основатель Академии. Главная заслуга Платона в истории математики заключается в том, что он признавал, что знание математики необходимо каждому образованному человеку. Вклад Платона в математику незначителен. Однако его идеи относительно структуры и методов математики чрезвычайно ценны. Он ввел традицию давать безукоризненные определения и определять, какие положения в математических соображениях можно принимать без доказательства. Платон первым обосновал метод доказательства от противного, который теперь широко применяется в геометрии. В школе Платона особое внимание уделялось решению задач на построение. Благодарю этому в ней сформировалось понятие о геометрическом месте точек, а также была разработана методика решения задач на построение. Выпуклые правильные многогранники - тетраэдр, октаэдр, гексаэдр (куб), додекаэдр и икосаэдр - принято называть Платоновыми телами.

Определение: ПЛАТОНОВЫ ТЕЛА- от греч. Platon 427-347 гг. до н.э. – совокупность всех правильных многогранников [ т. е. объёмных тел, ограниченных равными правильными многоугольниками ] трёхмерного Мира, впервые описанных Платоном.

Правильным многоугольником называется: ограниченная прямыми плоская фигура с равными сторонами и равными внутренними углами. Аналогом правильного многоугольника в трехмерном пространстве служит правильный многогранник: пространственная фигура с одинаковыми гранями, имеющими форму правильных многоугольников, и одинаковыми многогранными углами при вершинах. Существует лишь пять правильных выпуклых многогранников: правильный тетраэдр, куб, октаэдр, додекаэдр и икосаэдр.

История создания Платоновых тел. Четыре многогранника олицетворяли в ней четыре сущности или «стихии». Тетраэдр символизировал Огонь, так как его вершина устремлена вверх; Икосаэдр - Воду, так как он самый «обтекаемый» многогранник; Куб - Землю, как самый «устойчивый» многогранник; Октаэдр - Воздух, как самый «воздушный» многогранник. Пятый многогранник, Додекаэдр, воплощал в себе «все сущее»

Тетраэдр Древние греки дали многограннику имя по числу граней. «Тетра» означает четыре, « хедра » - означает грань (тетраэдр – четырехгранник).Многогранник относится к правильным многогранникам и является одним из пяти платоновых тел. Тетраэдр имеет следующие характеристики: Тип грани – правильный треугольник; Число сторон у грани – 3; Общее число граней – 4; Число рёбер примыкающих к вершине – 3; Общее число вершин – 4; Общее число рёбер – 6 ; Правильный тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180°. Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.

Гексаэдр (более привычное название - куб) Древние греки дали многограннику имя по числу граней. « Гексо » означает шесть, « хедра » - означает грань (Гексаэдр – шестигранник).Многогранник относится к правильным многогранникам и является одним из пяти платоновых тел. Гексаэдр имеет следующие характеристики: Число сторон у грани – 4; Общее число граней – 6; Число рёбер примыкающих к вершине – 3; Общее число вершин – 8; Общее число рёбер – 12 ; Гексаэдр составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270°. Гексаэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.

Икосаэдр Древние греки дали многограннику имя по числу граней. « Икоси » означает двадцать, « хедра » - означает грань (Икосаэдр – двадцатигранник). Многогранник относится к правильным многогранникам и является одним из пяти платоновых тел. Икосаэдр имеет следующие характеристики: Тип грани – правильный треугольник; Число сторон у грани – 3; Общее число граней – 20; Число рёбер примыкающих к вершине – 5; Общее число вершин – 12; Общее число рёбер – 30 ; Правильный икосаэдр составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 270°. Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Октаэдр Древние греки дали многограннику имя по числу граней. «Окто» означает восемь, « хедра » - означает грань (октаэдр – восьмигранник).Многогранник относится к правильным многогранникам и является одним из пяти платоновых тел. Октаэдр имеет следующие характеристики: Тип грани – правильный треугольник; Число сторон у грани – 3; Общее число граней – 8; Число рёбер примыкающих к вершине – 4; Общее число вершин – 6; Общее число рёбер – 12 ; Правильный октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 240°. Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.

Додекаэдр Древние греки дали многограннику имя по числу граней. « Додека » означает двенадцать, « хедра » - означает грань (додекаэдр – двенадцатигранник). Многогранник относится к правильным многогранникам и является одним из пяти платоновых тел. Додекаэдр имеет следующие характеристики: Тип грани – правильный пятиугольник; Число сторон у грани – 5; Общее число граней – 12; Число рёбер примыкающих к вершине – 3; Общее число вершин – 20; Общее число рёбер – 30 ; Правильный додекаэдр составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324°. Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Применение платоновых тел в науке Иоганн Кеплер (1571-1630 г.) – немецкий астроном. Открыл законы движения планет. В 1596 Кеплер предположил правило, по которому вокруг сферы Земли описывается додекаэдр, а в нее вписывается икосаэдр. Р асстояние между орбитами планет можно получить на основании Платоновых тел, вложенных друг в друга. Расстояния вычисленные при помощи этой модели, были достаточно близки к истинным.

В. Макаров и В. Морозов считают что ядро Земли имеет форму и свойства растущего кристалла оказывающего развитие всех природных взаимодействий и процессов идущих на планете. Силовое поле этого растущего кристалла обуславливает икосаэдро - додекаэдрическую структуру Земли (ИДСЗ). Эти многогранники вписаны друг в друга. Все природные аномалии, а также очаги развития цивилизаций соответствуют вершинам и рёбрам этих фигур.

Примеры: Некоторые из правильных многогранников встречаются в природе в виде кристаллических вирусов. Вирус полиомиелита имеет форму додекаэдра. Он может жить и размножаться только в клетках человека или примата. На микроскопическом уровне додекаэдр и икосаэдр является относительными параметрами ДНК, по которым построена вся жизнь. Можно увидеть, что молекула ДНК представляет собой вращающийся в куб.

Применение в кристаллографии Тела Платона нашли широкое применение в кристаллографии, так как многие кристаллы имеют форму правильных многогранников. Например, куб - монокристалл поваренной соли (NaCl), октаэдр - монокристалл алюмокалиевых квасцов, одна из форм кристаллов алмаза – октаэдр.

http:// www.trinitas.ru/rus/doc/0232/004a/02320031.htm http:// www.mnogogranniki.ru/stati/129-svojstva-platonovyh-tel.html stepanov.lk.net http://www.goldenmuseum.com/0213Solids_rus.html

Платону принадлежит разработка некоторых важных методологических проблем математического познания: аксиоматическое построение математики, исследование отношений между математическими методами и диалектикой, анализ основных форм математического знания. Так, процесс доказательства необходимо связывает набор доказанных положений в систему, в основе которой лежат некоторые недоказуемые положения. Тот факт, что начала математических наук "суть предположения", может вызвать сомнение в истинности всех последующих построений. Платон считал такое сомнение необоснованным. Согласно его объяснению, хотя сами математические науки, "пользуясь предположениями, оставляют их в неподвижности и не могут дать для них основания", предположения находят основания посредством диалектики. Платон высказал и ряд других положений, оказавшихся плодотворными для развития математики. Так, в диалоге "Пир" выдвигается понятие предела; идея выступает здесь как предел становления вещи.

ТЕЛА ПЛАТОНА.

Тела Платона-это выпуклые многогранники, все грани которых правильные многоугольники. Все многогранные углы правильного многогранника конгруэнтны. Как это следует уже из подсчета суммы плоских углов при вершине, выпуклых правильных многогранников не больше пяти. Указанным ниже путем можно доказать, что существует именно пять правильных многогранников (это доказал Евклид). Они - правильный тетраэдр, куб, октаэдр, додекаэдр и икосаэдр.

ТАБЛИЦА№1

ТАБЛИЦА№2

Название: Радиус описанной сферы Радиус вписанной сферы Объем
Тетраэдр а\/6 4 a\/6 12 a3\/2 12
Куб а\/3 2 a 2 a3
Октаэдр а\/2 2 a\/6 6 a3\/2 12
Додекаэдр a 4 \/18+6\/5 1 2 25+11\/5 10 a3 4 (15+7\/5)
Икосаэдр a 12(3+\/5)\/3 5 12 a3(3+\/5)

Тетраэдр-четырехгранник, все грани которого треугольники, т.е. треугольная пирамида; правильный тетраэдр ограничен четырьмя равносторонними треугольниками; один из пяти правильных многоугольников. (рис.1).

Куб или правильный гексаэдр - правильная четырехугольная призма с равными ребрами, ограниченная шестью квадратами. (рис.2).

Октаэдр-восьмигранник; тело, ограниченное восемью треугольниками; правильный октаэдр ограничен восемью равносторонними треугольниками; один из пяти правильных многогранников. (рис.3).

Додекаэдр-двенадцатигранник, тело, ограниченное двенадцатью многоугольниками; правильный пятиугольник; один из пяти правильных многогранников. (рис.4).

Икосаэдр-двадцатигранник, тело, ограниченное двадцатью многоугольниками; правильный икосаэдр ограничен двадцатью равносторонними треугольниками; один из пяти правильных многогранников. (рис.5).

Куб и октаэдр дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением «крыш» на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен- ведь правильных многоугольников на плоскости бесконечно много!

Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, XII книга знаменитых начал Евклида. Эти многогранники часто называют также платоновыми телами в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном. Четыре из них олицетворяли четыре стихии: тетраэдр-огонь, куб-землю, икосаэдр-воду и октаэдр-воздух; пятый же многогранник, додекаэдр, символизировал все мироздание его по латыни стали называть quintaessentia («пятая сущность»). Придумать правильный тетраэдр, куб, октаэдр, по-видимому, было не трудно, тем более что эти формы имеют природные кристаллы, например: куб-монокристалл поваренной соли (NaCl), октаэдр-монокристалл алюмокалиевых квасцов ((KalSO4)2*12H2O). Существует предположение, что форму додекаэдра древние греки получили, рассматривая кристаллы пирита (сернистого колчедана FeS). Имея же додекаэдр нетрудно построить и икосаэдр: его вершинами будут центры двенадцати граней додекаэдра.


Список литературы

1.«Советская Энциклопедия» Москва 1979г.

2.Математический энциклопедический словарь/ «Советская Энциклопедия», 1988г.

3.Математика: Школьная энциклопедия /Гл. ред. М 34 С.М. Никольский. - М.: Научное издательство «Большая Российская энциклопедия», 1996,-527 С.: ил

ПЛАТОНОВЫ ТЕЛА С ПОДРОБНЫМ ИХ ОПИСАНИЕМ

ПЛАТОНОВЫ ТЕЛА [П. - от греч. Platon (427–347 гг. до н. э. / Т. - происх. см. ТЕЛО), совокупность всех правильных многогранников [т. е. объемных (трехмерных) тел, ограниченных равными правильными многоугольниками] трехмерного Мира, впервые описанных Платоном (им также посвящена заключительная, XIII-я книга «Начал» Платонова ученика Евклида); // при всём бесконечном многообразии правильных многоугольников (двумерных геометрических фигур, ограниченных равными сторонами, смежные пары которых попарно образуют равные между собой углы), существует всего пять объемных П.т. (см. Табл. 6), в соответствие которым со времен Платона ставятся пять стихий Мироздания; любопытна связь, существующая между гексаэдром и октаэдром, а также между додекаэдром и икосаэдром: геометрические центры граней каждого первого являются вершинами каждого второго.

Человек проявляет интерес к многогранникам на протяжении всей своей сознательной деятельности - от двухлетнего ребенка, играющего деревянными кубиками, до зрелого математика. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие - в виде вирусов, которые можно рассмотреть с помощью электронного микроскопа. Что же такое многогранник? Для ответа на этот вопрос напомним, что собственно геометрию определяют иногда как науку о пространстве и пространственных фигурах - двумерных и трехмерных. Двумерную фигуру можно определить как множество отрезков прямых, ограничивающих часть плоскости. Такая плоская фигура называется многоугольником. Из этого следует, что многогранник можно определить как множество многоугольников, ограничивающих часть трехмерного пространства. Многоугольники, образующие многогранник, называются его гранями.

Издавна ученые интересовались "идеальными" или правильными многоугольниками, то есть многоугольниками, имеющими равные стороны и равные углы. Простейшим правильным многоугольником можно считать равносторонний треугольник, поскольку он имеет наименьшее число сторон, которое может ограничить часть плоскости. Общую картину интересующих нас правильных многоугольников наряду с равносторонним треугольником составляют: квадрат (четыре стороны), пентагон (пять сторон), гексагон (шесть сторон), октагон (восемь сторон), декагон (десять сторон) и т.д. Очевидно, что теоретически нет каких-либо ограничений на число сторон правильного многоугольника, то есть число правильных многоугольников бесконечно.

Что же такое правильный многогранник? Правильным называется такой многогранник, все грани которого равны (или конгруэнтны) между собой и при этом являются правильными многоугольниками. Сколько же существует правильных многогранников? На первый взгляд ответ на этот вопрос очень простой - столько же, сколько существует правильных многоугольников. Однако это не так. В "Началах Евклида" мы находим строгое доказательство того, что существует только пять правильных многогранников, а их гранями могут быть только три типа правильных многоугольников: треугольники, квадраты и пентагоны.

Наименование Кол-во граней Стихия
Тетраэдр 4 Огонь
Гексаэдр/Куб 6 Земля
Октаэдр 8 Воздух
Икосаэдр 10 Вода
Додекаэдр 12 Эфир

Мир звездчатых многогранников

Мир наш исполнен симметрии. С древнейших времен с ней связаны наши представления о красоте. Наверное, этим объясняется непреходящий интерес человека к удивительным символам симметрии, привлекавшим внимание множества выдающихся мыслителей, от Платона и Евклида до Эйлера и Коши.

Впрочем, многогранники отнюдь не только объект научных исследований. Их формы – завершенные и причудливые, широко используются в декоративном искусстве.

Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений. Применяются они и в архитектуре. Многие формы звездчатых многогранников подсказывает сама природа. Снежинки - это звездчатые многогранники. С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок.

Звездчатый додекаэдр

Большой звездчатый додекаэдр принадлежит к семейству тел Кеплера-Пуансо, то есть правильных невыпуклых многогранников. Грани большого звездчатого додекаэдра – пентаграммы, как и у малого звездчатого додекаэдра. У каждой вершины соединяются три грани. Вершины большого звездчатого додекаэдра совпадают с вершинами описанного додекаэдра.

Большой звездчатый додекаэдр был впервые описан Кеплером в 1619 г. Это последняя звездчатая форма правильного додекаэдра.

Додекаэдр

Древние мудрецы говорили: "Чтобы познать невидимое, смотри внимательно на видимое". В плане сакральных сил додекаэдр самый мощный многогранник. Не зря Сальвадор Дали для своей "Тайной вечере" выбрал эту фигуру. В ней от двенадацати пятиугольников - тоже сильной фигуре, силы концентрируются в одной точке - на Иисусе Христе.

Додекаэдр (от греческого dodeka – двенадцать и hedra – грань) это правильный многогранник, составленный из двенадцати равносторонних пятиугольников.

Додекаэдр имеет 20 вершин и 30 ребер.
Вершина додекаэдра является вершиной трех пятиугольников, таким образом, сумма плоских углов при каждой вершине равна 324°.
Сумма длин всех ребер 30а.
Додекаэдр имеет центр симметрии и 15 осей симметрии.

Каждая из осей проходит через середины противолежащих параллельных ребер. Додекаэдр имеет 15 плоскостей симметрии. Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра.

Правильные многогранники привлекают совершенством своих форм, полной симметричностью. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие - в виде вирусов, простейших микроорганизмов.
Кристаллы - тела, имеющие многогранную форму. Вот один из примеров таких тел: кристалл пирита (сернистый колчедан FeS) - природная модель додекаэдра.
Вирус полиомиелита имеет форму додекаэдра. Он может жить и размножаться только в клетках человека и приматов. Это, в частности, означает, что заразиться полиомиелитом можно только от людей. Кроме того, многие вирусы передаются через переносчиков, роль которых нередко выполняют членистоногие (например, клещи). Такие вирусы могут иметь широкий спектр хозяев, включающий как позвоночных, так и беспозвоночных животных.

Водоросль вольвокс - один из простейших многоклеточных организмов - представляет собой сферическую оболочку, сложенную в основном семиугольными, шестиугольными и пятиугольными клетками (то есть клетками, имеющими семь, шесть или пять соседних; в каждой «вершине» сходятся три клетки).

Бывают экземпляры, у которых есть и четырехугольные, и восьмиугольные клетки, но биологи заметили, что если таких «нестандартных» клеток (менее, чем с пятью и более, чем с семью) сторонами нет, то пятиугольных клеток всегда ровно на двенадцать больше, чем семиугольных (всего клеток может быть несколько сотен и даже тысяч). Это утверждение следует из известной формулы Эйлера.
Фуллерены – одна из форм углерода. Они были открыты при попытке моделировать процессы, происходящие в космосе. Позже ученым в земных лабораториях удалось синтезировать и исследовать многочисленные производные этих шарообразных молекул. Возникла химия фуллеренов. Некоторые соединения включения в кристаллическую решетку фуллерена С60 оказались «горячими сверхпроводниками» с критической температурой до 117 К.
Ведутся попытки создать на основе фуллеренов материалы для зарождающейся молекулярной электроники. Все это интересно и важно. Но фуллерены, как выяснилось, есть и в земных породах. Сейчас с наличием в шунгитах фуллеренов некоторые энтузиасты связывают целебное действие открытых в 1714 г. марциальных вод, которыми лечился Петр Великий. А последние открытия геохимиков заставляют вернуться к проблеме происхождения фуллеренов. Возможно, что новые химические исследования земных фуллеренов приоткроют другие страницы богатой истории планеты Земля!
В алхимии обычно говорится только об этих элементах: огонь, земля, воздух и вода; редко упоминается эфир,потому что это настолько священно. В Пифагорейской школе, стоило бы вам только лишь упомянуть за стенами школы слово «додекаэдр», как вас убили бы на месте. Настолько священной считалась эта фигура. О ней даже не говорили. Спустя двести лет, при жизни Платона, о ней говорили, но только очень осторожно. Почему? Потому, что додекаэдр расположен у внешнего края вашего энергетического поля и является высшей формой сознания. Когда вы достигаете 55-футового предела своего энергетического поля, то оно будет иметь форму сферы. Но самая близкая к сфере внутренняя фигура – это додекаэдр (в действительности, додекаэдро-икосаэдральная взаимосвязь). Вдобавок к этому, мы живём внутри большого додекаэдра, который содержит в себе вселенную. Когда ваш ум достигает предела пространства космоса – а предел тут есть – то он натыкается на додекаэдр, замкнутый в сфере. Додекаэдр есть завершающая фигура геометрии и она очень важна.
На микроскопическом уровне, додекаэдр и икосаэдр являются относительными параметрами ДНК, по которым построена вся жизнь. Можно увидеть также, что молекула ДНК представляет собой вращающийся куб. При повороте куба последовательно на 72 градуса по определённой модели, получается икосаэдр, который, в свою очередь, составляет пару додекаэдру.
Таким образом, двойная нить спирали ДНК построена по принципу двухстороннего соответствия: за икосаэдром следует додекаэдр, затем опять икосаэдр, и так далее. Это вращение через куб создаёт молекулу ДНК.
В основе структуры ДНК лежит священная геометрия, хотя, могут обнаружиться ещё и другие скрытые взаимосвязи.
В книге Дана Уинтера «Математика Сердца» (Dan Winter, Heartmath) показано, что молекула ДНК составлена из взаимоотношений двойственности додекаэдров и икосаэдров.

Аннотация

Выдающийся русский философ Алексей Лосев, исследователь эстетики античности и эпохи Возрождения, в следующих словах сформулировал «золотую» парадигму древних греков: «С точки зрения Платона, да и вообще с точки зрения всей античной космологии мир представляет собой некое пропорциональное целое, подчиняющееся закону гармонического деления - золотого сечения». Новейшие открытия современной науки, основанные на Платоновых телах, золотом сечении, числах Фибоначчи: фуллерены, Нобелевская Премия - 1996; квазикристаллы, Нобелевская Премия - 2011; экспериментальное доказательство существования гармонии «золотого сечения» в квантовом мире; обнаружение фибоначчиевой закономерности в таблице Менделеева; «гипотеза Прокла» и новый взгляд на «Начала» Евклида и историю развития математики, начиная с Евклида; гиперболические фунции Фибоначчи и новая геометрическая теория филлотаксиса; треугольник Паскаля и обобщенные числа Фибоначчи; обобщенные золотые пропорции и закон структурной гармонии систем; лямбда-числа Фибоначчи как новый класс целочисленных последовательностей, обладающих уникальными математическими свойствами; «металлические пропорции» и общая теория гармонических гиперболических функций; решение четвертой проблемы Гильберта и поиск гармонических гиперболических миров Природы; "золотые" матрицы, преобразования Фибоначчи-Лоренца и «золотая» интерпретация специальной теории относительности; «золотые» геноматрицы; алгоритмическая теории измерений, коды и компьютеры Фибоначчи; системы счисления с иррациональными основаниями, троичная зеркально-симметричная арифметика и "золотая" теория чисел как новое направление в теории чисел; обобщенные матрицы Фибоначчи и новая теория кодирования; наконец, «математика гармонии» как новое междисциплинарное направление, восходящее к «Началам» Евклида, - все это «лики божественной пропорции» в современной науке, которые создают общую картину ее движения к "Золотой" Научной Революции, что в совокупности отражает одну из важнейших тенденций в развитии современной науки - возврат к Пифагору, Платону и Евклиду.

Часть III

«Математика владеет не только истиной, но и высокой красотой - красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства».

Бертран Рассел

Предисловие

Каждому из нас не раз приходилось задумываться над тем, почему Природа способна создавать такие удивительные эстетические структуры, которые восхищают и радуют глаз. Почему художники, поэты, композиторы, архитекторы создают восхитительные произведения искусства из столетия в столетие? В чем же секрет и какие законы лежат в основе этих гармоничных созданий? Что такое «гармония»? И имеет ли она математическое выражение? Для моделирования «мира гармонии» в античном мире, прежде всего в Древней Греции, была создана математика гармонии, элементы которой возрождены в современной науке во многих книгах , включая книгу Alexey Stakhov The Mathematics of Harmony . From Euclid to Contemporary Mathematics and Computer Science , опубликованной в 2009 г. одним из наиболее престижных научных издательств мира “World Scientific” .

Цель настоящей публикации, предназначенной для широкой аудитории, состоит в том, чтобы популярно объяснить понятие «гармонии», которое было введено в науку на заре развития человеческой цивилизации, рассказать об истории этого направления в античный период, эпоху средневековья, эпоху Возрождения, в 19 и 20 веках, а также ввести в круг идей и приложений современной «математики гармонии», автивно развивающейся в 21 в. . Конечно, «математика гармонии» - это раздел математики; поэтому полностю избежать математических формул в статье, посвященной этой математической дисциплине, авторам не удалось. Однако, «математика гармонии» - это достаточно простая (можно сказать, «элементарная») математика, в которой используются математические формулы, доступные школьникам старших классов. И авторы надеются на снисхождение наших читателей.

Статья состоит из 4-х частей:

Часть III. Платоновы тела, «гипотеза Прокла», новый взгляд на «Начала» Евклида, фуллерены и квазикристаллы

Часть IV. Роль «математики гармонии» в развитии современной науки

Часть III . Платоновы тела, «гипотеза Прокла», новый взгляд на «Начала» Евклида, фуллерены и квазикристаллы

7. Платоновы тела

Правильные многоугольники и многогранники

Человек проявляет интерес к правильным многоугольникам и многогранникам на протяжении всей своей сознательной деятельности - от двухлетнего ребенка, играющего деревянными кубиками, до зрелого математика. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие - в виде вирусов, которые можно рассмотреть с помощью электронного микроскопа.

Что же такое многоугольник и многогранник? Для ответа на этот вопрос напомним, что собственно геометрию определяют иногда как науку о пространстве и пространственных фигурах - двумерных и трехмерных. Двумерную фигуру можно определить как множество отрезков прямых, ограничивающих часть плоскости. Такая плоская фигура называется многоугольником . Из этого следует, что многогранник можно определить как множество многоугольников, ограничивающих часть трехмерного пространства. Многоугольники, образующие многогранник, называются его гранями.

Издавна ученые интересовались идеальными или правильными многоугольниками, то есть, многоугольниками, имеющими равные стороны и равные углы. Простейшим правильным многоугольником можно считать равносторонний треугольник , поскольку он имеет наименьшее число сторон, которое может ограничить часть плоскости. Общую картину интересующих нас правильных многоугольников наряду с равносторонним треугольником составляют: квадрат (четыре стороны), пентагон (пять сторон), гексагон (шесть сторон), октагон (восемь сторон), декагон (десять сторон) и т.д. Очевидно, что теоретически нет каких-либо ограничений на число сторон правильного многоугольника, то есть, число правильных многоугольников бесконечно.

Что же такое правильный многогранник ? Правильным называется такой многогранник, все грани которого равны (или конгруэнтны) между собой и при этом являются правильными многоугольниками. Сколько же существует правильных многогранников? На первый взгляд ответ на этот вопрос очень простой - столько же, сколько существует правильных многоугольников. Однако это не так. В «Началах Евклида» мы находим строгое доказательство того, что существует только пять выпуклых правильных многогранников, а их гранями могут быть только три типа правильных многоугольников: треугольники, квадраты и пентагоны.

Правильные многогранники в «Началах» Евклида

Теории многогранников посвящено много книг. Одной из наиболее известных является книга английского математика М. Веннинджера «Модели многогранников» . Книга начинается с описания так называемых правильных многогранников , то есть, многогранников, образованных простейшими правильными многоугольниками одного типа. Эти многогранники принято называть Платоновыми телами , названными так в честь древнегреческого философа Платона, который использовал правильные многогранники в своей космологии. Мы начнем наше рассмотрение с правильных многогранников, гранями которых являются равносторонние треугольники (Рис.21).

Рис.21 . Платоновы тела: тетраэдр (tetrahedron), октаэдр (octahedron), куб (cube) додекаэдр (dodecaedron), икосаэдр (icosahedron)

Первым (и простейшим) среди правильных многогранников является тетраэдр (tetrahedron) . В тетраэдре три равносторонних треугольника встречаются в одной вершине; при этом их основания образуют новый равносторонний треугольник. Тетраэдр имеет наименьшее число граней среди Платоновых тел и является трехмерным аналогом плоского правильного треугольника, который имеет наименьшее число сторон среди правильных многоугольников.

Следующее тело, которое образуется равносторонними треугольниками, называется октаэдром (octahedron) . В октаэдре в одной вершине встречаются четыре треугольника; в результате получается пирамида с четырехугольным основанием. Если соединить две такие пирамиды основаниями, то получится симметричное тело с восемью треугольными гранями - октаэдр (octahedron) .

Теперь можно попробовать соединить в одной точке пять равносторонних треугольников. В результате получится фигура с 20 треугольными гранями - икосаэдр (icosahedron) .

Следующая правильная форма многоугольника - квадрат . Если соединить три квадрата в одной точке и затем добавить еще три, мы получим совершенную форму с шестью гранями, называемую гексаэдром или кубом (cube) .

Наконец, существует еще одна возможность построения правильного многогранника, основанная на использовании следующего правильного многоугольника - пентагона . Если собрать 12 пентагонов таким образом, чтобы в каждой точке встречалось три пентагона, то получим еще одно Платоново тело, называемое додекаэдром (dodecahedron) .

Следующим правильным многоугольником является шестиугольник . Однако если соединить три шестиугольника в одной точке, то мы получим плоскость, то есть, из шестиугольников нельзя построить объемную фигуру. Любые другие правильные многоугольники выше шестиугольника не могут образовывать тел вообще. По существу мы повторили рассуждения, которые провел Евклид в Книге XIII своих «Начал». Именно эта книга посвящена изложению завершенной геометрической теории Платоновых тел. И именно из этих рассуждений вытекает, что существует только пять выпуклых правильных многогранников, гранями которых могут быть только равносторонние треугольники, квадраты и пентагоны.

Числовые характеристики Платоновых тел. Основными числовыми характеристиками Платоновых тел является число сторон грани m, число граней n, сходящихся в каждой вершине, число граней Г , число вершин В , число ребер Р и число плоских углов У на поверхности многогранника Эйлер открыл и доказал знаменитую формулу:

В - Р + Г = 2 ,

Связывающую число вершин, ребер и граней любого выпуклого многогранника. Указанные выше числовые характеристики приведены в Табл.2.

Таблица 2 . Числовые характеристики Платоновых тел


Уместно обратить внимание на свойство дуальности, которое связывет Платоноваы тела. Из Табл.2 вытекает, что для гексаэдра (куба) и октаэдра число ребер Р=12 и число плоских углов на поверхности У=24 совпадают. Но число граней Г=6 куба совпадает с числом вершин В=6 октаэдра, а число вершин куба В=8 совпадает с числом граней Г=8 октаэдра. Кроме того, число сторон грани куба m = 4 совпадает с числом граней октаэдра, сходяшимся в вершине, n =4, при этом число граней куба, сходящимся в n =3, совпадает с числом сторон грани октаэдра m = 3. Подобная же сиуация наблюдается и в случае икосаэдра и додкаэдра. В таких случаях говорят о дуальности соответствующих Платновых тепл, то есть, куб дуален октаэдру, а икосаэдр дуален додекаэдру. Заметим, что в свойстве дуальности отражена «скрытая» гармония Платоновых тел.

Золотое сечение в додекаэдре и икосаэдре . Додекаэдр (dodecahedron) и дуальный ему икосаэдр (icosahedron) занимают особое место среди Платоновых тел. Прежде всего, необходимо подчеркнуть, что геометрия додекаэдра и икосаэдра непосредственно связана с золотым сечением. Действительно, гранями додекаэдра являются пентагоны, то есть, правильные пятиугольники, основанные на золотом сечении. Если внимательно посмотреть на икосаэдр, то можно увидеть, что в каждой его вершине сходится пять треугольников, внешние стороны которых образуют пентагон. Уже этих фактов достаточно, чтобы убедиться в том, что золотое сечение играет определяющую роль в конструкции этих двух Платоновых тел.

Но существуют более глубокие подтверждения глубокой математической связи золотого сечения с икосаэдром и додекаэдром. И эта связь приводит к тому, что додекаэдр и икосаэдр выражают в «скрытой» форме гармонию золотого сечения.

9. Гипотеза Прокла: новый взгляд на «Начала» Евклида и историю развития математики

С какой целью Евклид написал свои «Начала»?

На первый взгляд, кажется, что ответ на этот вопрос очень простой: главная цель Евклида состояла в том, чтобы изложить основные достижения греческой математики за 300 лет, предшествующих Евклиду, используя «аксиоматический метод» изложения материала. Действительно, «Начала» Евклида являются главным трудом греческой науки, посвященным аксиоматическому построению геометрии и математики. Такой взгляд на «Начала» наиболее распространен в современной математике.

Однако, кроме «аксиоматической» точки зрения существует и другая точка зрения на мотивы, которыми руководствовался Евклид при написании «Начал». Эта точка зрения высказана греческим философом и математиком Проклом Диадохом (412-485), одним из первых комментаторов «Начал».

Прежде всего, несколько слов о Прокле. Прокл родился в Византии в семье богатого адвоката из Ликии. Намереваясь пойти по стопам отца, подростком уехал в Александрию, где учился сначала риторике, затем заинтересовался философией и стал учеником александрийского неоплатоника Олимпиодора Младшего. Именно у него Прокл начал изучать логические трактаты Аристотеля. В возрасте 20 лет Прокл переезжает в Афины, где Платоновскую Академию в то время возглавлял Плутарх Афинский. Уже к 28-летнему возрасту Прокл написал одну из своих главнейших работ, комментарий на платоновского «Тимея». Около 450 г. Прокл становится главой Платоновской Академии.

Среди математических сочинений Прокла наиболее известным является его «Комментарий к первой книге «Начал» Евклида». В этом Комментарии он выдвигает следующую необычную гипотезу, которую называют “гипотезой Прокла”. Суть ее состоит в следующем. Как известно, XIII-я, то есть, заключительная книга «Начал», посвящена изложению теории пяти правильных многогранников, которые играли главенствующую роль в «Космологии Платона» и в современной науке известны под названием Платоновых тел. Именно на это обстоятельство и обращает внимание Прокл. Как подчеркивает Эдуард Сороко , по мнению Прокла, Евклид «создавал «Начала» якобы не с целью изложения геометрии как таковой, а чтобы дать полную систематизированную теорию построения пяти «Платоновых тел», попутно осветив некоторые новейшие достижения математики».

Значение гипотезы Прокла для развития математики . Главный вывод из «гипотезы Прокла» состоит в том, что «Начала» Евклида, величайшее греческое математическое сочинение, было написано Евклидом под непосредственным влиянием греческой «идеи Гармонии», которая была связана с Платоновыми телами. Таким образом, «гипотеза Прокла» позволяет высказать предположение, что хорошо известные в античной науке "Пифагорейская доктрина о числовой гармонии Мироздания» и «Космология Платона», основанная на правильных многогранниках, были воплощены в величайшем математическом сочинении греческой математики, “Началах” Евклида. С этой точки зрения мы можем рассматривать “Начала” Евклида как первую попытку создать «Математическую теорию гармонии мироздания», которая ассоциировалась в античной науке с Платоновыми телами. И это было главной идеей греческой науки! Это и есть главная тайна «Начал» Евклида, которая приводит к пересмотру истории возникновения математики, начиная с Евклида.

К сожалению, оригинальная гипотеза Прокла, касающаяся истинных целей, которые преследовал Евклид при написании Начал, проигнорирована многими современными историками математики, что привело к искаженному взгляду на структуру математики и всего математического образования. И это является одной из главных «стратегических ошибок» в развитии математики.

«Гипотеза Прокла» и «ключевые» проблемы античной математики . Как известно, академик Колмогоров в книге выделил две главные, то есть, «ключевые» проблемы, которые стимулировали развитие математики на этапе ее зарождения - проблему счета и проблему измерения . Однако, из «гипотезы Прокла» вытекает еще одна «ключевая» проблема - проблема гармонии , которая была связана с «Платоновыми телами» и «золотым сечением» - одним из важнейших математических открытий античной математики (Предложение II.11 «Начал» Евклида). Именно эта проблема была положена Евклидом в основу «Начал», главной целью которых было создание геометрической теории «Платоновых тел», которые в «космологии Платона» выражали гармонию Мироздания. Эта идея приводит к новому взгляду на историю математики, представленному на Рис.22.


Рис. 22 . «Ключевые» проблемы античной математики и новые направления в математике, теоретической физике и информатике

Подход, демонстрируемый с помощью Рис.22, впервые был изложен в работе . Он основан на следующих рассуждениях. Уже на этапе зарождения математики было сделано ряд важных математических открытий, которые фундаментально повлияли на развитие математики и всей науки в целом. Важнейшими из них являются:

1. Позиционный принцип представления чисел , сделанный вавилонскими математиками во 2-м тысячелетии до н.э. и воплощенный ими в Вавилонской 60-ричной системе счисления. Это важное математическое открытие лежит в основе всех последующих позиционных систем счисления, в частности, десятичной системы и двоичной системы - основы современных компьютеров. Это открытие, в конечном итоге, привело к формированию понятия натурального числа - важнейшего понятия, лежащего в основе математики.

2. Доказательство существования несоизмеримых отрезков . Это открытие, сделанное в научной школе Пифагора, привело к переосмысливанию ранней пифагорейской математики, в основе которой лежал «принцип соизмеримости величин», и к введению иррациональных чисел - второго (после натуральных чисел) фундаментального понятия математики. В конечном итоге, эти два понятия (натуральные и иррациональные числа) и были положены в основу «Классической Математики».

3. Деление отрезка в крайнем и среднем отношении («золотое сечение») . Описание этого математического открытия дано в «Началах» Евклида (Предложение II.11). Это предложение было введена Евклидом с целью создания полной геометрической теории «Платоновых тел» (в частности, додекаэдра), изложению которых посвящена заключительная (XIII-я) книга «Начал» Евклида.

Сформулированный выше подход (Рис.22) приводит к выводу, который может оказаться неожиданным для многих математиков. Оказывается, что параллельно с «Классической Математикой» в науке, начиная с древних греков, начало развиваться еще одно математическое направление - «Математика Гармонии», которая, как и классическая математика, восходит к «Началам» Евклида, но акцентирует свое внимание не на «аксиоматическом подходе», а на геометрической «задаче о делении отрезка в крайнем и среднем отношении» (Предложение II.11) и на теории правильных многогранников, изложенной в Книге XIII «Начал» Евклида. В развитии «математики гармонии» в течение нескольких тысячелетий принимали участие выдающиеся мыслители, ученые и математики: Пифагор, Платон, Евклид, Фибоначчи, Пачоли, Кеплер, Кассини, Бине, Люка, Клейн, а в 20-м веке - известные математики Коксетер, Воробьев, Хоггатт и Вайда. И мы никак не можем игнорировать этот исторический факт.

Истоки доктрины

Согласно замечанию комментатора последнего издания сочинений Платона, у него «вся космическая пропорциональность покоится на принципе золотого деления, или гармонической пропорции». Как упоминалось, космология Платона основывается на правильных многогранниках, называемых телами Платона. Представление о «сквозной» гармонии мироздания неизменно ассоциировалось с ее воплощением в этих пяти правильных многогранниках, выражавших идею повсеместного совершенства мира. И то, что главная «космическая» фигура - додекаэдр, символизировавший тело мира и вселенской души, был основан на золотом сечении, придавало последнему особое очарование, смысл главной пропорции мироздания.

Космология Платона стала началом так называемой икосаэдро-додекаэдрической доктрины , которая с античных пор красной нитью проходит через всю человеческую науку. Суть этой доктрины состоит в том, что додекаэдр и икосаэдр есть типичные формы природы во всех ее проявлениях, начиная с космоса и заканчивая микромиром.

Форма Земли

Вопрос о форме Земли постоянно занимал умы ученых античных времен. И когда гипотеза о шарообразной форме Земли получила подтверждение, возникла идея о том, что по своей форме Земля представляет собой додекаэдр. Так, уже Сократ писал:

«Земля, если взглянуть на нее сверху, похожа на мяч, сшитый из 12 кусков кожи».

Эта гипотеза Сократа нашла дальнейшее научное развитие в трудах физиков, математиков и геологов. Так, французский геолог де Бимон и известный математик Пуанкаре считали, что форма Земли представляет собой деформированный додекаэдр.

Российский геолог С. Кислицин, также разделял мнение о додекаэдрической форме Земли. Он высказал гипотезу о том, что 400-500 млн. лет назад геосфера додекаэдрической формы превратилась в гео-икосаэдр. Однако такой переход оказался неполным и незавершенным, в результате чего гео-додекаэдр оказался вписанным в структуру икосаэдра. Более подробная информация об этой гипотезе изложена в книге .

Тайна Египетского календаря

Одним из первых солнечных календарей был египетский , созданный в 4-м тысячелетии до н.э. Первоначально египетский календарный год состоял из 360 дней. Год делился на 12 месяцев ровно по 30 дней в каждом. Однако позже было обнаружено, что такая длительность календарного года не соответствует астрономическим данным. И тогда египтяне добавили к календарному году еще 5 дней, которые, однако, не считались днями месяцев. Это были 5 праздничных дней, соединявших соседние календарные годы. Таким образом, египетский календарный год имел следующую структуру: 365=12 х 30+5. Заметим, что именно египетский календарь является прообразом современного календаря.

Возникает вопрос: почему египтяне разделили календарный год на 12 месяцев? Ведь существовали календари с другим количеством месяцев в году. Например, в календаре майя год состоял из 18 месяцев по 20 дней в месяце. Следующий вопрос, касающийся египетского календаря: почему каждый месяц имел ровно 30 дней (точнее суток)? Можно поставить некоторые вопросы и по поводу системы измерения времени, которая, воможно, была сформирована в более поздние времена. В частности, возникает вопрос: почему единица часа была выбрана таким образом, чтобы она ровно 24 раза укладывалась в сутки, то есть, почему 1 сутки = 24 (2 х 12) часа? Далее: почему 1 час = 60 минут, а 1 минута = 60 секунд? Эти же вопросы относятся и к выбору единиц угловых величин, в частности: почему окружность разбита на 360°, то есть, почему 2p=360°=12 х 30°? К этим вопросам добавляются и другие, в частности: почему астрономы признали целесообразным считать, что существует 12 зодиакальных знаков, хотя на самом деле в процессе своего движения по эклиптике Солнце пересекает 13 созвездий? И еще один «странный» вопрос: почему вавилонская система счисления имела весьма необычное основание - число 60?

Анализируя египетский календарь, а также системы измерения времени и угловых величин, мы обнаруживаем, что в них с удивительным постоянством повторяются четыре числа: 12, 30, 60 и производное от них число 360 = 12´30. Возникает вопрос: не существует ли какой-то фундаментальной научной идеи, которая могла бы дать простое и логичное объяснение использованию этих чисел в египетском календаре и системах?

Обратимся к додекаэдру (Рис.21). Из Табл.1 вытекает, что додекаэдр имеет 12 граней, 30 ребер и 60 плоских углов на своей поверхности. Каково же было удивление древних египтян, когда они обнаружили, что этими же числами выражаются циклы Солнечной системы, а именно, 12-летний цикл Юпитера, 30-летний цикл Сатурна и, наконец, 60-летний цикл Солнечной системы. Таким образом, между такой совершенной пространственной фигурой, как додекаэдр , и Солнечной системой, существует глубокая математическая связь! Такой вывод сделали античные ученые. Это и привело к тому, что додекаэдр был принят в качестве «главной фигуры», которая символизировала Гармонию Мироздания . Поскольку по представлению древних движение Солнца по эклиптике имело строго круговой характер, то, выбрав 12 знаков Зодиака, дуговое расстояние между которыми равнялось ровно 30°, египтяне удивительно красиво согласовали годичное движение Солнца по эклиптике со структурой своего календарного года: один месяц соответствовал перемещению Солнца по эклиптике между двумя соседними знаками Зодиака! Более того, перемещение Солнца на один градус соответствовало одному дню в египетском календарном году! При этом эклиптика автоматически получалась разделенной на 360°. Позже эта же научная идея была использована создателями системы измерения времени. Разделение каждой половины суток на 12 частей (12 граней додекаэдра ) привело к введению часа - важнейшей единицы времени. Разделение часа на 60 минут (60 плоских углов на поверхности додекаэдра ) привело к введению минуты - следующей важной единицы времени. Точно также была введена секунда (1 минута = 60 секунд).

Таким образом, выбрав додекаэдр в качестве главной «гармонической» фигуры мироздания, и строго следуя числовым характеристикам додекаэдра 12, 30, 60, ученым удалось построить чрезвычайно стройный календарь, а также системы измерения времени и угловых величин.

Вот такие удивительные выводы вытекают из сопоставления додекаэдра с Солнечной системой. И если наша гипотеза правильна (пусть кто-нибудь попытается ее опровергнуть), то отсюда следует, что вот уже много тысячелетий человечество живет под знаком «золотого сечения» (которое лежит в основе додкаэдра)! И каждый раз, когда мы смотрим на циферблат наших часов, который также построен на использовании числовых характеристик додекаэдра 12, 30 и 60, мы прикасаемся к главной «Тайне Мироздания» - золотому сечению , сами того не подозревая! Видимо, такая гипотеза Египетского календаря касается некоторой «скрытой» тайны Солнечной системы, связнной с «золотым сечением».

Иоганн Кеплер и Феликс Клейн

“Misterium Cosmographiсum”. Свою научную деятельность Иоганн Кеплер начал в небольшом австрийском городе Граце, куда после окончания Тюбингенской академии он был направлен преподавателем математики в гимназию.

Сделаем одно «лирическое отступение». С 15-го по 19-е июля 1996 года в Граце состоялась 7-я Международная конференция по числам Фибоначчи и их приложениям. На этой конференции Алексей Стахов сделал доклад The Golden Section and Modern Harmony Mathematics , с которого, по существу, и началось развитите современной «математики гармонии» как нового междисциплинарного направления современной науки . Доклад вызвал большой интерес математиков-фибоначчистам и был отобран для публикации в сборнике «Applications of Fibonacci Numbers» (1998) . В период пребывания в Граце проф. Алексей Стахов сфотографировался возле памятника Иоганну Кеплеру, установленному в одном из парков Граца.


Алексей Стахов рядом с памятником Иоганну Кеплеру

(Грац, июль 1996)

Первым астрономическим сочинением Кеплера, написанным в Граце, была небольшая книжка со следующим названием: «Предвестник космографических исследований, содержащий тайну мироздания относительно чудесных пропорций между небесными кругами и истинных причин, числа и размеров небесных сфер, а также периодических движений, изложенных с помощью пяти правильных тел Иоганном Кеплером из Вюртемберга, математиком из достославной провинции Штирии». Сам он называл эту книгу, опубликованную в 1597 г., «Misterium Cosmographicum» («Тайна космографии»).

Читая первое сочинение Кеплера «Misterium Cosmographicum» («Тайна космографии»), не устаешь удивляться его фантазии. Глубокое убеждение в существовании гармонии мира наложило отпечаток на все мышление Кеплера. Цель своих исследований, изложенных в «Тайне космографии», Кеплер сформулировал в предисловии:

«Любезный читатель! В этой книжке я вознамерился доказать, что всеблагой и всемогущий Бог при сотворении нашего движущегося мира и при расположении небесных орбит избрал за основу пять правильных тел, которые со времен Пифагора и Платона и до наших дней снискали столь громкую славу, выбрал число и пропорции небесных орбит, а также отношения между движениями выбрал в соответствии с природой правильных тел. Сущность трех вещей - почему они устроены так, а не иначе - особенно интересовали меня, а именно: число, размеры и движения небесных орбит».

Раскрыть тайну мироздания значило, по Кеплеру, ответить на вопрос, который он сам же себе и поставил впервые в истории астрономии. Именно в книжке «Тайна космографии» Кеплеру удалось, как ему казалось, раскрыть эту тайну. Ее сущность, по мнению Кеплера, состоит в следующем:

«Земля (орбита Земли) есть мера всех орбит. Вокруг нее опишем додекаэдр. Описанная вокруг додекаэдра сфера есть сфера Марса. Вокруг сферы Марса опишем тетраэдр. Описанная вокруг тетраэдра сфера есть сфера Юпитера. Вокруг сферы Юпитера опишем куб. Описанная вокруг тетраэдра сфера есть сфера Сатурна. В сферу Земли вложим икосаэдр. Вписанная в него сфера есть сфера Венеры. В сферу Венеры вложим октаэдр. Вписанная в него сфера есть сфера Меркурия».

Vera W. de Spinadel. From the Golden Mean to Chaos. Nueva Libreria, 1998 (second edition, Nobuko, 2004).

Gazale Midhat J. Gnomon. From Pharaohs to Fractals. Princeton, New Jersey: Princeton University Press, 1999 (Русский перевод: Мидхат Газале. Гномон. От фараонов до фракталов. Москва-Ижевск: Институт компьютерных исследований, 2002.)

Татаренко А.А. Золотые T m - гармонии и D m - фракталы — суть солитоно-подобного Тm - cтруктурогенеза мира // «Академия Тринитаризма», М., Эл № 77-6567, публ.12691, 09.12.2005

    Аракелян Грант. Числа и величины в современной физике. Ереван: Изд. АН, 1989.

    Шенягин В.П. «Пифагор, или Каждый создает свой миф» - четырнадцать лет с момента первой публикации о квадратичных мантиссовых s-пропорциях // «Академия Тринитаризма», М., Эл № 77-6567, публ.17031, 27.11.2011

    Falcon Sergio, Plaza Angel. On the Fibonacci k-numbers Chaos, Solitons & Fractals, Volume 32, Issue 5, June 2007: 1615-1624.

    A.P. Stakhov, On the general theory of hyperbolic functions based on the hyperbolic Fibonacci and Lucas functions and on Hilbert’s Fourth Problem. Visual Mathematics, Vol. 15, No.1, 2013. http://www.mi.sanu.ac.rs/vismath/2013stakhov/hyp.pdf

    A. Stakhov, S. Aranson, “Hyperbolic Fibonacci and Lucas Functions, “Golden” Fibonacci Goniometry, Bodnar’s Geometry, and Hilbert’s Fourth Problem.” Applied Mathematics, 2011, No.1 (January), No.2 (February), No.3 (March).

    Стахов, А.П. Формулы Газале, новый класс гиперболических функций Фибоначчи и Люка и усовершенствованный метод «золотой» криптографии // «Академия Тринитаризма», М.,Эл № 77-6567, публ.14098, 21.12.2006

    Стахов А.П., Теория λ -чисел Фибоначчи // «Академия Тринитаризма», М., Эл № 77-6567, публ.17407, 05.04.2012 http://www.trinitas.ru/rus/doc/0232/009a/02321250.htm

    A.P. Stakhov, The Mathematics of Harmony: Clarifying the Origins and Development of Mathematics // Congressus Numerantium, 193, 2008, 5-48.

    Stakhov, “The “golden” matrices and a new kind of cryptography.” Chaos, Solitons & Fractals 2007, Volume 32, Issue 3, 1138-1146.

    A. Stakhov, S. Aranson. “Golden” Fibonacci Goniometry. Fibonacci-Lorentz Transformations, and Hilbert’s Fourth Problem. Congressus Numerantium, 193 (2008), 119-156.

    A.P. Stakhov, “The Golden Section and Modern Harmony Mathematics.” Applications of Fibonacci Numbers, Kluwer Academic Publishing, Volume 7, 1998: 393-399.

    Стахов А. П., Ткаченко И. С. Гиперболическая тригонометрия Фибоначчи // Доклады Академии наук УССР, том 208, № 7, 1993.

    Stakhov A., Rozin B. On a new class of hyperbolic function // Chaos, Solitons & Fractals, 2005, Vol. 23, Issue 2, 379-389.

    Стахов А.П. Обобщенные золотые сечения и новый подход к геометрическому определению числа. // Украинский математический журнал, 2004, Vol. 56, No. 8, 1143-1150.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...