Плоская поверхность.

Команда 3DFACE позволяет создать плоские поверхности из граней, ограниченных тремя или четырьмя ребрами. За один сеанс выполнения команды можно начертить несколько граней, причем каждая может быть ориентирована произвольным образом. Расположение ребер, ограничивающих создаваемую поверхность, указывают с помощью угловых точек. Точки должны располагаться по часовой стрелке или против нее, но не по диагонали, иначе вы получите грань неправильной формы.

Чтобы приступить к созданию грани, выполните команду меню Draw > Mod eling > Meshes > 3D Face (Черчение > Моделирование > Сети > Трехмерная поверхность) или введите с клавиатуры команду 3DFACE . Запустить команду можно с помощью ленты, нажав кнопку 3D Face (Трехмерная поверхность) на вкладке Home (Основная) в группе 3D Modeling (Трехмерное моделирование).

Specify fi rst point or :

Specify second point or :

Specify third point or :

:

После указания координат точки программа предлагает задать следующие точки, определяющие расположение ребер. Последнее ребро создается автоматически путем соединения первой и последней указанных точек.

Если после указания третьей точки, когда появится запрос Specify fourth point or : , нажать клавишу Enter , то будет создана трехсторонняя грань. Чтобы создать четырехстороннюю грань, в ответ на данное приглашение просто укажите расположение четвертой точки. Выполнение команды на этом не завершается, и можно формировать новые грани путем указания новых точек. При этом учтите, что ребро грани, созданное последней парой точек, будет служить первым ребром для вновь создаваемой грани. Поэтому, например, если создаваемая в данный момент грань должна быть четырехсторонней, то для ее формирования необходимо указать всего две точки.

Выполнение команды, как обычно, запускается нажатием клавиши Esc или Enter .

Многоугольная сеть

Рассмотрим, как можно создать сеть произвольной конфигурации. Такую сеть можно построить с помощью команды 3DMESH . Этот объект формируется путем указания массива вершин. Итак, данная команда запускается с помощью ленты: нажмите кнопку 3DMesh (Трехмерная сеть) на вкладке Home (Основная) в группе 3D Modeling (Трехмерное моделирование) или выполнените команду меню Draw > Modeling > Meshes > 3D Mesh (Черчение > Моделирование > Сети > Трехмерная сеть).

Сначала появится приглашение:

Enter size of mesh in M direction:

Задайте количество вершин в одном направлении (M ).

Затем программа попросит указать количество вершин в другом направлении:

Enter size of mesh in N direction:

После этого необходимо будет указать координату каждой точки сети. Например, при размерности сети M ? N равной 4 ? 3 количество точек будет равно 12. При этом первая точка будет называться (0, 0) , а последняя – (3, 2) . Обратите внимание, что нумерация точек начинается с нуля.

Specify location for vertex (0, 0):

Specify location for vertex (0, 1):

Specify location for vertex (3, 2):

Пример многоугольной сети размерностью 4 ? 3 показан на рис. 10.2.

Рис. 10.2. Сеть размерностью 4 ? 3


Замечу, однако, что точки не обязательно задавать в той последовательности, в которой они показаны на рис. 10.2. Вы можете «разбросать» точки в произвольном направлении – в этом случае получится сеть причудливой формы.

Созданная сеть представляет собой единый объект. Однако ее можно расчленить, и тогда каждый отдельный объект будет представлять собой трехмерную грань. При выделении сети во всех вершинах появляются маркеры, с помощью которых можно легко изменить конфигурацию многоугольной сети.

Поверхности вращения

Еще один способ построения поверхностных моделей предоставляет команда REVSURF . С ее помощью поверхности создаются путем вращения какого-либо объекта – определяющей кривой – вокруг заданной оси. Сформированные таким образом модели называются поверхностями вращения.

Чтобы запустить данную команду, необходимо выполнить команду Draw > Modeling > Meshes > Revolved Mesh (Черчение > Моделирование > Сети > Сеть вращения) либо нажать кнопку Revolved Surface (Поверхность вращения) на вкладке Home (Основная) в группе 3D Modeling (Трехмерное моделирование) ленты:

Select object to revolve:

Select object that defi nes the axis of revolution:

За один сеанс выполнения команды можно повернуть только один объект. Вращать можно отрезок, дугу, окружность, эллипс, полилинию или трехмерную полилинию. В качестве оси вращения можно указать отрезок или незамкнутую полилинию, при этом ось вращения будет определяться вектором, проходящим из первой вершины полилинии в последнюю. Если нужно создать вспомогательный объект, определяющий ось вращения, то это следует сделать до начала выполнения команды.

Ось вращения можно указать щелчком кнопки мыши на нужном объекте. При этом имеет значение, ближе к какому концу отрезка или полилинии будет находиться указанная вами точка, так как этот конец отрезка будет воспринят как начало оси вращения. Если смотреть на объект с начала оси вращения, то положительное направление поворота будет соответствовать вращению по часовой стрелке.

Начальный угол, который программа попросит указать, определяет отступ начала поверхности вращения от плоскости определяющей кривой:

Specify start angle <0>:

Если оставить указанное по умолчанию значение 0°, то поворот будет начат с определяющей кривой.

Затем появится запрос об указании угла поворота:

Specify included angle (+=ccw, -=cw) <360>:

Если вы собираетесь создать замкнутую модель, то оставьте значение угла поворота по умолчанию – 360°. Cледует отметить, что в этом случае не имеет значения, как вы указали ось вращения. Однако повернуть образующую кривую можно на любой угол, при этом можно задать как положительное значение угла (соответствует вращению против часовой стрелки), так и отрицательное (вращение происходит по часовой стрелке). По умолчанию вращение производится по часовой стрелке, поэтому знак + можно с клавиатуры не вводить.

По аналогии с величинами M и N , которые задают количество вершин в сети, создаваемой с помощью команды 3DMESH , при построении поверхностей вращения используются системные переменные SURFTAB1 и SURFTAB2 . Дело в том, что на экране криволинейная поверхность, полученная путем вращения какого-либо объекта, отображается в виде ребер, составляющих эту поверхность. Чем больше значения переменных SURFTAB1 и SURFTAB2 , тем больше линий используется для построения сети и тем более правдоподобно будет выглядеть модель.

На рис. 10.3 показана поверхность, полученная путем вращения окружности на 270°. Слева модель изображена при значениях системных переменных SURFTAB1 и SURFTAB2 , равных 6 , а во втором случае переменной SURFTAB1 присвоено значение 15 , а SURFTAB2 10 .


Рис. 10.3. Поверхность вращения при различных значениях переменных SURFTAB1 и SURFTAB2


Следует отметить, что изменение значений переменных SURFTAB1 и SURFTAB2 не влияет на существующие объекты, поэтому изменять эти значения следует до начала построения поверхности вращения.

После выполнения команды REVSURF объекты, использовавшиеся для построения поверхности вращения, сохраняются и их можно применять повторно. Если такой необходимости не возникнет, то лучше удалите их.

Поверхности сдвига

Команда TABSURF служит для построения поверхностей путем сдвига образующей кривой вдоль указанного вектора. Создание такой поверхности обычно начинается с построения образующей кривой, в качестве которой может быть отрезок, дуга, окружность, полилиния, эллипс или эллиптическая дуга, и вычерчивания объекта (отрезка или полилинии), который в дальнейшем будет служить вектором сдвига.

Итак, чтобы запустить данную команду, выполните команду меню Draw > Modeling > Meshes > Tabulated Mesh (Черчение > Моделирование > Сети > Сеть сдвига) либо нажмите кнопку Tabulated Surface (Поверхность сдвига) на вкладке Home (Основная) в группе 3D Modeling (Трехмерное моделирование) ленты.

Select object for path curve:

В ответ на это приглашение выделите объект, служащий основой для создания поверхности. Появится запрос:

Select object for direction vector:

Щелкните кнопкой мыши на объекте, задающем направление объекта. При этом за начало вектора принимается тот конец отрезка, ближе к которому вы щелкнете. Поэтому, например, если задать вектор, щелкнув ближе к верхнему концу отрезка, то поверхность будет построена путем сдвига в противоположном направлении, то есть вниз. При этом сдвиг высоты поверхности будет равен абсолютной длине вектора. Следует также отметить, что вектор, задающий направление, может быть расположен под любым углом к плоскости, в которой находится задающая кривая.

Примеры построенных поверхностей сдвига показаны на рис. 10.4. Обратите внимание, что поверхность, расположенная справа, построена при значении системной переменной SURFTAB1 , равном 25 . При построении второй поверхности за начало вектора был принят верхний конец отрезка, а системной переменной SURFTAB1 в этом случае было присвоено значение по умолчанию – 6 .


Рис. 10.4. Примеры поверхностей сдвига


Системная переменная SURFTAB1 регулирует плотность сети, то есть задает количество отрезков, которым будет определена криволинейная поверхность.

Итак, после выполнения команды TABSURF поверхность сдвига и объект, вдоль которого происходил сдвиг поверхности, остаются неизменными, а на экране появляется трехмерная сеть, состоящая из полилиний.

Поверхности соединения

Поверхности, создаваемые с помощью команды RULESURF , связывают между собой два примитива, в качестве которых могут выступать отрезки, полилинии, сплайны, окружности, точки, эллипсы и эллиптические дуги. Например, если такими объектами будут две окружности, расположенные в параллельных плоскостях, то при выполнении данной команды на экране появится либо цилиндр, либо усеченный конус – в зависимости от соотношения размеров окружностей (рис. 10.5). Отмечу, что должно соблюдаться следующее условие – оба объекта должны быть либо замкнутыми, либо разомкнутыми.


Рис. 10.5. Примеры поверхностей соединения


Итак, чтобы запустить команду RULESURF , нажмите кнопку Ruled Surface (Поверхность соединения) на вкладке Home (Основная) в группе 3D Modeling (Трехмерное моделирование) ленты либо выполните команду меню Draw > Modeling > Meshes > Ruled Mesh (Черчение > Моделирование > Сети > Сеть соединения). В командной строке последовательно появятся следующие запросы:

Select fi rst defi ning curve:

Select second defi ning curve:

В ответ на них укажите объекты, между которыми будет «натянута» поверхность. Последовательность задания объектов не играет никакой роли. Может иметь значение только указание точек на конкретном объекте. Чтобы не получить пересекающуюся поверхность (рис. 10.6), старайтесь указывать точки, примерно расположенные в одной плоскости.


Рис. 10.6. Примеры поверхностей сдвига


После указания второго объекта на экране появится созданная поверхность. Как и в предыдущем случае, системная переменная SURFTAB1 определяет количество отображаемых линий на поверхности, которую вы создаете. Данный параметр необходимо задавать до вызова команды RULESURF .

Поверхность Куна

Воспользовавшись командой EDGESURF , можно построить поверхность на основании четырех соприкасающихся объектов. Такая поверхностная сеть может получиться достаточно причудливой конфигурации, учитывая то, что в качестве задающих объектов могут выступать отрезки, дуги, сплайны и полилинии (рис. 10.7). Такая поверхность получила название поверхности, или сети, Куна.


Рис. 10.7. Поверхность Куна, ограниченная тремя отрезками и сплайном


Прежде чем вызвать команду построения такой поверхности, необходимо начертить четыре объекта, на которые будет натянута сеть. При этом следует иметь в виду, что объекты могут быть произвольным образом ориентированы друг относительно друга, однако они должны соприкасаться, то есть между ребрами не должно быть зазоров.

Приступая к построению поверхности Куна, выполните команду меню Draw > Modeling > Meshes > Edge Mesh (Черчение > Моделирование > Сети > Сеть Куна) или введите в командной строке EDGESURF . На ленте данную команду можно вызвать, если нажать кнопку Edge Surface (Поверхность Куна) на вкладке Home (Основная) в группе 3D Modeling (Трехмерное моделирование).

Select object 1 for surface edge:

Select object 2 for surface edge:

Select object 3 for surface edge:

Select object 4 for surface edge:

Последовательность, в которой вы будете задавать объекты, не имеет значения. После выделения четвертого (последнего) объекта сеть будет построена.

Количество линий создаваемой сети в двух направлениях зависит от значений системных переменных SURFTAB1 и SURFTAB2 . Напомню, что изменять эти параметры необходимо до создания поверхности.

Плоская поверхность

Команда PLANESURF позволяет создавать прямоугольные поверхности путем задания угловых точек. Кроме того, воспользовавшись дополнительным параметром этой команды, можно конвертировать замкнутую поверхность, состоящую из любого количества примитивов.

Чтобы создать прямоугольную поверхность с помощью команды PLANESURF , щелкните на кнопке Planar Surface (Поверхность), расположенной на вкладке Home (Основная) в группе 3D Modeling (Трехмерное моделирование), либо введите команду в командную строку.

Программа запросит координаты первого угла прямоугольной поверхности:

Specify fi rst corner or :

Введите координаты точки с клавиатуры или укажите их, щелкнув на нужном месте чертежа. Появится запрос о вводе второго угла:

Specify other corner:

Просто переместите указатель в нужную позицию и щелкните кнопкой мыши, чтобы завершить построение прямоугольной поверхности.

Команда PLANESURF обладает одним полезным свойством. Как уже говорилось, с ее помощью можно преобразовать любой замкнутый контур в поверхность.

Для этого достаточно в ответ на запрос об указании первого угла просто нажать клавишу Enter , тем самым выбрав параметр Object , а затем путем выделения объектов определить контур, подлежащий преобразованию в поверхность. Выделив объекты, нажмите клавишу Enter , чтобы завершить выполнение команды PLANESURF . На экране появится поверхностная модель, основанная на выбранном контуре.

Поверхностные примитивы

Стандартные трехмерные примитивы в программе AutoCAD можно создать несколькими способами. Первый способ – использование команды 3D . После ее запуска в командной строке появится запрос:

Enter an option

:

Выбрав один из параметров (Box (Параллелепипед), Cone (Конус), DIsh (Чаша), Dome (Купол), Mesh (Сеть), Pyramid (Пирамида), Sphere (Сфера), Torus (Тор) или Wedge (Клин)), можно создать нужный примитив.

Второй способ является, наверное, наиболее удобным. Он состоит во вводе в командную строку команды AI_ с именем фигуры. Например, команда AI_SPHERE предназначена для построения сферы.

Создание стандартных трехмерных примитивов с помощью различных команд рассмотрено в следующих подразделах.

Параллелепипед

Внешний вид параллелепипеда приведен на рис. 10.8.

Рис. 10.8. Поверхностный примитив параллелепипед


Стобы построить параллелепипед, вызовите команду AI_BOX . Появится приглашение:

Specify corner point of box:

Укажите координаты нижнего левого угла параллелепипеда. Появится следующий запрос:

Specify length of box:

Задайте длину параллелепипеда вдоль оси X . Программа выдаст запрос:

Specify width of box or :

Определите ширину фигуры, то есть размер вдоль оси Y . Если выбрать параметр Cube (Куб), то программа не попросит определения размера по вертикали, а создаст куб, все стороны которого будут равны длине, указанной в ответ на предыдущий запрос.

Появится следующее приглашение:

Specify height of box:

Укажите высоту параллелепипеда.

Последнее, что нужно сделать, – это определить угол поворота вокруг оси Z в ответ на запрос:

Specify rotation angle of box about the Z axis or :

В процессе формирования параллелепипед будет отображаться на экране желтыми линиями.

Чтобы приступить к формированию клина (рис. 10.9), вызовите команду AI_WEDGE .

Рис. 10.9. Клин


Создание клина во многом схоже с построением куба: необходимо указать аналогичные параметры.

После вызова команды AI_WEDGE появится приглашение:

Specify corner point of wedge:

Укажите координаты нижнего левого угла. Появится запрос:

Specify length of wedge:

Определите длину клина – размер вдоль оси X . Программа выдаст следующий запрос:

Specify width of wedge:

Задайте линейный размер по оси Y . Появится приглашение:

Specify height of wedge:

Укажите вертикальный размер клина. AutoCAD выдаст последний запрос:

Specify rotation angle of wedge about the Z axis:

В ответ укажите угол поворота клина в плоскости XY .

Пирамида

Команда AI_PYRAMID позволяет построить пирамиду (рис. 10.10).


Рис. 10.10. Примеры пирамид


После запуска команды появится первое приглашение:

Specify fi rst corner point for base of pyramid:

Укажите координаты одной из угловой точек основания пирамиды. Появится следующее приглашение:

Specify second corner point for base of pyramid:

Введите координаты второй точки. Программа попросит указать координаты третьей точки:

Specify third corner point for base of pyramid:

Задайте координаты третьей угловой точки. Появится очередной запрос:

Specify fourth corner point for base of pyramid or :

В ответ можно указать четвертую точку основания. Если вам необходимо построить пирамиду с треугольным основанием, следует выбрать параметр Tetrahedron (пирамида с треугольным основанием называется тетраэдром).

В зависимости от ответа на данный запрос построение пирамиды будет продолжаться разными путями.

Если вы указали четыре точки основания, то программа предложит указать точку схода пирамиды:

Specify apex point of pyramid or :

Можно выбрать параметр Ridge , чтобы путем указания двух точек построить пирамиду с ребром в вершине. Параметр Top позволяет создать усеченную пирамиду.

Если же вы собираетесь построить тетраэдр и, соответственно, выбрали параметр Tetrahedron , то далее появится приглашение:

Specify apex point of tetrahedron or :

В ответ можно указать точку, служащую вершиной пирамиды, или, выбрав параметр Top , построить усеченный тетраэдр.

Указание некоторых угловых точек пирамиды может быть непростой задачей, так как обычно их абсолютные координаты неизвестны. Поэтому перед построением пирамиды вам, возможно, понадобится выполнить вспомогательные построения.

С помощью команды AI_CONE можно построить полный или усеченный конус (рис. 10.11).


Рис. 10.11. Конусы


В первую очередь следует указать центр основания конуса в ответ на запрос:

Specify center point for base of cone:

После этого появится следующее приглашение:

Specify radius for base of cone or :

В ответ нужно указать радиус окружности, служащей нижним основанием конуса. Выбрав параметр Diameter , можно задать диаметр основания.

Specify radius for top of cone or <0>:

Задайте радиус или диаметр (если ранее вы выбрали параметр Diameter ) верхнего основания конуса. Если нажать клавишу Enter , то будет выбрано значение по умолчанию – 0 единиц, то есть будет создан полный конус. Ввод отличного от нуля значения создаст усеченный конус.

После появления приглашения Specify height of cone: укажите высоту конуса. Программа выдаст следующий запрос:

Enter number of segments for surface of cone <16>:

Задайте количество сегментов, составляющих поверхность конуса. Большое количество сегментов позволит более реалистично отобразить поверхность, однако и потребует большей производительности компьютера.

Основными параметрами, которые следует указать при построении сферы, являются центр и радиус (диаметр). Чтобы приступить к построению сферы (рис. 10.12), наберите в командной строке команду AI_SPHERE .

Рис. 10.12. Сфера


Сначала программа попросит указать центральную точку сферы:

Specify center point of sphere:

Помните, что в этом случае обязательно указывать все три координаты, иначе положение по оси Z будет принято за 0. Далее появится следующий запрос:

Specify radius of sphere or :

Задайте радиус сферы или, выбрав параметр Diameter , определите диаметр. AutoCAD выдаст запрос:

Enter number of longitudinal segments for surface of sphere <16>:

В ответ можно задать количество меридианов, то есть линий, проходящих из верхней центральной точки в нижнюю. Естественно, чем большее число вы укажете, тем более гладкой будет выглядеть поверхность.

Enter number of latitudinal segments for surface of sphere <16>:

Задайте количество параллелей, служащих для отображения сферы.

Аналогично сфере строятся купол и чаша, так как они представляют собой верхнюю и нижнюю половины сферы.

Чтобы построить купол (рис. 10.13), вызовите команду AI_DOME .

Рис. 10.13. Купол


Первым приглашением команды будет следующее:

Specify center point of dome:

В ответ на него следует задать центр купола. Появится запрос:

Specify radius of dome or :

Задайте радиус купола. Следующие запросы предназначены для указания количества меридианов и параллелей соответственно:

Enter number of longitudinal segments for surface of dome <16>:

Enter number of latitudinal segments for surface of dome <8>:

Чаша является нижней половиной сферы (рис. 10.14), и ее построение начинается с вызова команды AI_DISH .

Рис. 10.14. Чаша


После запуска команды появится приглашение:

Specify center point of dish:

Specify radius of dish or :

Укажите радиус чаши. После этого в ответ на запросы следует определить количество меридианов и параллелей, составляющих поверхность чаши:

Enter number of longitudinal segments for surface of dish <16>:

Enter number of latitudinal segments for surface of dish <8>:

Интересную возможность предоставляет команда AI_TORUS : с ее помощью создается тор – фигура, изображенная на рис. 10.15.


Рис. 10.15. Тор


После запуска команды AutoCAD попросит указать центральную точку тора:

Specify center point of torus:

Specify radius of torus or :

Задайте радиус тора или, выбрав параметр Diameter , укажите его диаметр. Программа выдаст запрос:

Specify radius of tube or :

В ответ укажите радиус или диаметр фигуры. Появится приглашение:

Enter number of segments around tube circumference <16>:

Укажите количество сегментов тора. Наконец, появится последнее приглашение:

Enter number of segments around torus circumference <16>:

Введите число, указывающее количество отрезков вдоль окружности тора.

Трехмерная сеть

Еще одной стандартной поверхностью, которую вы можете построить, является трехмерная сеть (рис. 10.16). Чтобы сформировать такую сеть, введите с клавиатуры команду AI_MESH . Построение трехмерной сети во многом схоже с созданием сети с помощью команды 3DMESH . Правда, команда AI_MESH предоставляет значительно меньше параметров. Все, что требуется указать, – это координаты четырех угловых точек и значения параметров M и N . После этого трехмерная сеть сразу появится на чертеже.

Рис. 10.16. Трехмерная сеть: M = 20, N = 10


Воспользовавшись данной командой, можно быстро создать трехмерную сеть достаточно большого размера, а затем уже с помощью маркеров подкорректировать положение узловых точек.

Создание отверстий

До сих пор вы создавали поверхности с помощью различных команд, однако ни разу не сталкивались с формированием отверстий. Запомните, что если вы сформировали поверхность с помощью одной из вышеперечисленных команд, то создать в ней отверстие невозможно. Поэтому отверстия необходимо создавать на этапе построения плоской грани. В этом случае для построения поверхностей используется команда REGION , которая создает область из выделенных объектов. Применяя к существующим областям операцию вычитания, можно создать отверстия.

Рассмотрим процесс создания отверстия круглой формы в прямоугольной поверхности (рис. 10.17).

Рис. 10.17. Прямоугольная область с отверстием


1. Для начала необходимо создать объекты, которые в дальнейшем определят границы областей. В рассматриваемом случае это прямоугольник и круг.

2. Создадим области из существующих поверхностей. Для этого вызовите команду REGION . Появится запрос:

Select objects:

3. Выделите окружность и нажмите клавишу Enter . Окружность превратится в область, но на практике области можно считать поверхностями.

4. Повторно вызовите команду REGION , чтобы создать прямоугольную область.

5. Теперь необходимо вычесть из прямоугольной области круглую. Для этого наберите в командной строке команду SUBTRACT или щелкните на одноименной кнопке на вкладке Home (Основная) в 3D Modeling (Трехмерное моделирование) ленты. Появится приглашение:

Select solids and regions to subtract from ..

Select objects:

6. Выберите объект, из которого в дальнейшем будет вычитаться другая область, и нажмите клавишу Enter . Появится запрос:

Select solids and regions to subtract ..

Select objects:


Примечание

Команда SUBTRACT является одним из инструментов теоретико-множественных операций, которые мы более подробно рассмотрим в следующей главе.

7. Выберите окружность, то есть вычитаемый объект, и нажмите клавишу Enter .

На этом создание отверстия завершено. Чтобы увидеть изменения, можно выбрать стиль визуализации Realistic (Реалистичный).

Прочитав эту главу, вы познакомились с трехмерными поверхностями. В AutoCAD поверхности моделируются так называемыми сетями, способы создания которых мы и рассмотрели. Кроме того, можно сформировать поверхность путем создания трехмерных примитивов. Замечу также, что наиболее часто данные поверхности применяются для отображения таких объектов, как, например, гнутые профили и штампованные детали.

ОБРАБОТКА ПЛОСКИХ ПОВЕРХНОСТЕЙ

Обработку плоских поверхностей режущим инструментом можно

производить на различных станках: строгальных, долбежных,

фрезерных, протяжных, карусельных, расточных, токарных и шабровочных; обработку абразивным инструментом - на шлифовальных станках

Наиболее широкое применение получили строгание, фрезерование, протягивание и шлифование.

1. Обработка плоских поверхностей строганием и долблением

Строгание производится на продольно- и поперечно строгальных станках (последние называются шепингами). При строгании на продольно-строгальных станках стол с закрепленной на нем деталью (или деталями) совершает возвратно – поступательнoe движение; подача в поперечном направлении придается резцу путем перемещения резцового суппорта, которое осуществляется прерывисто после каждого рабочего хода. Стружка снимается во время хода стола в одном направлении, т. е. рабочего хода, хотя обратный - холостой ход - совершается со скоростью, в 2-3 раза большей, чем скорость рабочего хода, тем не менее потеря времени при холостых ходах делает строгание менее производительным способом обработки, чем другие способы (например, фрезерование).

Рис. 1. Схема строгания плоскости.

Схема строгания плоскости представлена на рис.1. На поперечно-строгальных станках возвратно-поступательное движение имеет резец, который закреплен в суппорте ползуна. Обрабатываемая деталь, закрепляемая на столе станка, получает поперечную подачу благодаря прерывистому переме­щению стола в поперечном направлении после каждого рабочего хода. Продольно-строгальные станки изготовляются одностоечными и двухстоечными, с одним, двумя и четырьмя суппортами. Одностоечные строгальные станки применяются для деталей, которые не помещаются полностью на столе, а свешиваются с него.

Продольно-строгальные и поперечно-строгальные станки широко применяются в единичном, мелко- и среднесерийном производстве вследствие их универсальности, простоты управления, достаточной точности обработки и меньшей цены по сравнению с фрезерными станками.

На долбежных станках, относящихся к классу строгальных, долбяк с закрепленным в нем резцом совершает возвратно-поступательное движение в вертикальной плоскости. Стол станка, на котором закрепляется обрабатываемая деталь, имеет движение подачи в горизонтальной плоскости в двух взаимно перпендикулярных направлениях.

Долбежные станки применяются в единичном производстве для получения шпоночных канавок в отверстиях, а также для обработки квадратных, прямоугольных и других форм отверстий. Для этих работ в серийном и массовом производстве применяют протяжные станки.

Строгание, так же как и точение, разделяется на черновое и чистовое. Чистовое строгание производится с малой подачей или резцами с широким лезвием.

При строгании крупных литых и сварных деталей особенное зна­чение имеет правильность закрепления их на столе станка. Необходимо избегать при закреплении деформации детали, так как в против­ном случае после окончания обработки и освобождения детали от прижимов она примет свою первоначальную форму и обработанная поверхность окажется искривленной.

Наличие внутренних напряжений в отливках сильно отражается на точности строгания. Когда при строгании удаляется поверхностный слой металла, равновесие внутренних напряжений нарушается и деталь деформируется. Для устранения или уменьшения внутренних напряжений стальные детали подвергают отжигу, а чугунные отливки – искусственному или естественному старению.

Основное время для строгальных работ на продольно-строгальных станках определяется также по основной формуле, причем значение равно длине обработки в направлении подачи. Так как в строгальных станках подача идет по направлению строгания, т. е. по ширине детали, то в этом случае будет обозначать ширину строгания, которая сложится из ширины строгаемой поверхности, врезания и боковых сходов резца; тогда эта формула примет вид:

,мин,

где ; - ширина строгаемой поверхности в мм; - врезание резца и; Ь 2 - боковые сходы резца в мм; i - число ходов; п - число двойных ходов стола в минуту; s - подача резца за один двойной ход стола в мм;

,

где р.х - скорость рабочего хода стола; L - длина хода стола, равная длине строгаемой поверхности 1 плюс подход 2 и перебег 3 в начале и конце рабочего хода в мм. . – отношение скорости рабочего хода стола к скорости холостого хода.

Тогда получим:

, мин,

врезание резца: ,мм,

где - глубина резания в мм; - главный угол резца в плане; =0,5-2 мм - подход при рабочей подаче. Боковые сходы b 2 = 2–5 мм. Подход 2 и перебег 3 резца в продольном направлении, входящие в величину , принимаются:

Длина хода стола L в мм

мм

Если число двойных ходов стола для упрощения подсчетов принять по средней скорости хода стола (по отношению к скорости рабочего и холостого хода стола), что несколько менее точно, то: .

где - средняя скорость хода стола в м/мин.

Основное время для работ на поперечно-строгальных станках определяется также по формуле:. ,мин, Число двойных ходов п опреде­ляется по тем же формулам, что и для продольно-строгальных станков.

Подход и перебег резца в продольном направлении, входящие в величину L, принимаются для поперечно-строгальных станков по следующим данным:

Длина хода резца L в мм

Сумма подхода и перебега резца ( 2 + 3) в мм

Врезание резца = 2-5 мм.

2. Обработка плоских поверхностей фрезерованием

При фрезеровании поверхность обрабатывается не однолезвийным инструментом - резцом, как при строгании, а многолезвийным вращающимся инструментом - фрезой. Подача осуществляется путем перемещения обрабатываемой детали, закрепленной на столе станка. Фреза получает вращение от шпинделя станка.

Плоские поверхности можно фрезеровать торцовыми и цилиндрическими фрезами. Фрезерование торцовыми фрезами более производительно, чем цилиндрическими. Это объясняется тем, что при торцовом фрезеровании происходит одновременное резание металла несколькими зубьями, причем возможно применение фрез большого диаметра с большим числом зубьев.

Фрезерование цилиндрическими фрезами производится двумя способами. Первый способ - встречное фрезерование (рис. 2, а), когда вращение фрезы направлено против подачи; второй способ - попутное фрезерование (рис. 2, б), когда направление вращения фрезы совпадает с направлением подачи.

Рис. 2. Схемы фрезерования: a - встречное; б - попутное

При первом способе фрезерования толщина стружки постепенно увеличивается при резании металла каждым зубом фрезы, достигая величины а тах. Перед началом резания происходит небольшое проскальзывание режущей кромки зуба по поверхности резания, что вызывает наклеп обработанной поверхности и затупляет зубья.

При втором способе фрезерования толщина стружки постепенно уменьшаеся. Производительность может быть больше и качество обработанной поверхности лучше, чем при первом, но при втором фрезерования зуб фрезы захватывает металл сразу на полную глубину резания и, таким образом, резание происходит с ударами. Ввиду этого второй способ фрезерования можно применять только для работы на станках с большой жесткостью конструкции и устройством для устранения зазоров в механизмах подачи. По этой причин первый способ фрезерования применяется чаще, чем второй.

Фрезерные станки разделяются на следующие виды: 1) горизонтально-фрезерные, 2) вертикально-фрезерные, 3) универсально – фрезерныe, 4) продольно-фрезерные, 5) карусельно – фрезерцые, 6) барабанно – фрезерные и 7) специальные.

Фрезерные станки первых трех видов являются станками общего назначения и применяются во всех видах производства; остальные относятся к высокопроизводительным и применяются в серийном, преимущественно крупносерийном и массовом производстве. На горизонтально-фрезерных и вертикально-фрезерных станках можно устанавливать на стол станка 3 одну деталь 1 или несколько деталей рядами, обрабатывая их одновременно или последовательно (рис. 3) фрезами 2, закрепленными в приспособлении 4

Рис. 3. Фрезерование деталей, установленных рядами:1 - обрабатываемые детали; 2 - набор фрез; 3 - стол станка; 4 - приспособление.

Рис. 4. Производительные методы фрезерования:

1 и 2 - обрабатываемые детали; 3 - стол станка; 4 - поворотный стол

На рис. 4, а показано фрезерование деталей торцовой фрезой на вертикально-фрезерном станке так называемым методом маятниковой подачи (подача в обе стороны); при этом вспомогательное время затрачивается только на передвижение стола 3 на длину расстояния между деталями. Применение этого метода может значительно повысить производительность станка. Универсально-фрезерные станки в отличие от горизонтально-фрезерных имеют поворотный стол, которому можно придавать положение в горизонтальной плоскости под углом к оси шпинделя. Это дает возможность фрезеровать винтовые поверхности при использовании универсальной делительной головки.

Продольно-фрезерные станки бывают с горизонтальными и верти­кальными шпинделями в различном сочетании: с одним горизонтальным или с одним вертикальным шпинделем; с двумя горизонтальными; с двумя горизонтальными и одним вертикальным; с двумя горизонтальными и двумя вертикальными. Такие станки бывают больших размеров (с ходом стола до 8 м, а иногда и более); их применяют для обработки крупных деталей - одновременно с двух или трех сторон.

На рис. 4, показано высокопроизводительное фрезерование на продольно-фрезерном (а) и горизонтально-фрезерном (б) станках с применением поворотного стола 4, благодаря которому смена обработанных деталей 1, 2 производится во время фрезерования; вспомогательное время затрачивается только на обратный отвод стола и поворот его, что не превышает 0,2-0,5 минуты на две детали.

Карусельно-фрезерные станки имеют круглые вращающиеся столы большого диаметра и один (рис. 5, а) или два (рис. 5, б) вертикально расположенных шпинделя.

Рис. 5. Примеры фрезерования деталей на фрезерных станках.

карусельно-фрезерном с одним шпинделем; б - шпинделями; барабанно-фрезерном; 1 - фрезы; 2 - обрабатываемые детали; 3 - стол станка; 4 - барабан.

На этих станках обрабатываются плоские поверхности торцовыми фрезами. Детали устанавливают для обработки и снимают их по окончании обработки во время вращения стола; таким образом, детали обрабатываются непрерывно. Если на станке два шпинделя, то одним шпинделем производится черновая обработка, другим - чистовая (рис. 5, б). Такие станки применяют в крупносерийном и массовом производствах. -Барабанно-фрезерные станки служат для обработки параллельных плоскостей детали одновременно с двух сторон (рис. 5, в). Детали подлежащие обработке, устанавливают на барабан 4, который вращается внутри станины, имеющей портальную форму. Фрезы 1 помещены на расположенных с двух сторон четырехшпиндельных бабках, с каждой стороны по две. Одна фреза с каждой стороны производит черновое фрезерование, другая - чистовое. Нa этих станках детали устанавливают и снимают на ходу станка, таким образом, фрезерование идет непрерывно. Такие станки отличаются большой производительностью и применяются в крупносерий­ном и массовом производстве.

Фрезерные полуавтоматы и автоматы широко применяются в массовом производстве для фрезерования деталей малых размеров. Основное время при цилиндрическом и торцовом фрезеровании определяется по формуле:

Или ,мин,

где – расчетная длина обработки фрезой в мм; i - число ходов; – подача в мм/мин; s 2 - подача на зуб фрезы в мм; z - число

зубьев фрезы; п - число оборотов фрезы в минуту.

Величина врезания фрезы для цилиндрического фрезерования определяется (рис. 6 а) по формуле:

где t - глубина фрезерования в мм; D - диаметр фрезы в мм.

Рис. 6. Схемы фрезерования:

а - цилиндрической фрезой; б - торцовой фрезой

Для торцового симметричного фрезерования (рис. 6, б) величина врезания фрезы равна:

,мм,

Где b - ширина фрезерования в мм; - главный угол фрезы в плане.

Перебег фрезы п принимается равным 2-5 мм в зависимости от диаметра фрезы.

Основное время для фрезерования с круговой подачей стола определяется: ,мин. В крупносерийном и массовом производстве =l.

3. Обработка плоских поверхностей протягиванием

Протягивание наружных плоских поверхностей (как и фасонных) благодаря высокой производительности и низкой себестоимости обработки находит все большее применение в крупносерийном и массовом производстве; этот метод экономически выгоден, несмотря на высокую Себестоимость оборудования и инструмента. Многие операции вместо фрезерования выполняются посредством наружного протягивания. К числу таких операций относится протягивание пазов, канавок, плоскостей блоков двигателей и других деталей, зубьев шестерен и т. д. При обработке протягиванием наружных черных (предварительно не обработанных) поверхностей за один ход протяжки достигаются высокая точность и чистота поверхности. В процессе обработки каж­дый режущий зуб протяжки снимает слой металла, составляю­щий часть припуска, а калибрующие зубья зачищают поверх­ность, при этом они долго не теряют своей режущей способности и формы.

Рис. 7. Схемы плоских протяжек:а - обычные; 6, в, г - прогрессивные.

При обработке черных поверхностей поковок и отливок более целесообразно применять не обычные плоские протяжки (рис. 7, а), а прогрессивные (рис. 7, б, в, г). У обычных плоских протяжек каждый зуб снимает стружку по всей ширине обрабатываемой поверхности; поэтому при обработке черной поверхности, имеющей. корку, первые зубья протяжки быстро тупятся или выкрашиваются. У прогрессивных протяжек режущие зубья делают переменной ширины, постепенно увеличивающейся, и каждый режущий зуб срезает металл не по всей ширине обрабатываемой поверхности, а полосой, причем ширина этих полос с каждым зубом увеличивается, и только калибрующие зубья зачищают обрабатываемую поверхность, по всей ее ширине.

Для обработки наружным протягиванием широких плоскостей (более 50 мм) устанавливают несколько протяжек рядом.

Протягивание наружных поверхностей производится большей частью на вертикально-протяжных станках - полуавтоматах и автоматах. На рис. 8 показаны детали, поверхности которых обрабатываются наружным протягиванием (обрабатываемые поверхности обозначены буквой ).

Рис. 8. Детали, обрабатываемые протяжками

Применение наружного протягивания для обработки лысок на концах валика изображены на рис. 9, а. Одновременно обрабаты­ваются два валика; каждый валик обрабатывается двумя протяжками. На рис. 9, б изображена схема протягивания крышки и головки шатуна автомобильного двигателя. Цилиндрическая поверхность крышки протягивается круглыми протяжками 1 и 3, которые по мере затупления одной половины повертываются на 180°, и в работу вступает другая половина. Протяжки 2 и 4 обрабатывают плоскости разъема крышки. Головка шатуна обрабатывается протяжками 5,6,7 и 8. Протяжки делают из трех секций по длине - обдирочной, получистовой и калибровочной. После износа калибровочная секция перетачивается и ставится на место полу чистовой, а полу чистовая - на место обдирочной.

В массовом производстве применяют высокопроизводительные протяжные станки непрерывного действия. Станки с цепным приводом имеют цепь, вращающуюся на звездочках (подобно гусенице тракторов), которая перемещает детали, закрепленные на ней; когда цепь двигает детали мимо протяжек, находящихся в верхней части станка, протяжки снимают стружку с оббатываемой поверхности.

Рис. 9. Схемы протягивания:

в - лысок на валиках; 6 - крышки и головки шатуна

Нa станках непрерывного действия с карусельным столом (рис. 10, а) или с барабаном (рис. 10, б), по окружности которых детали 1 располагаются в приспособлениях, стол или барабан при вращении перемещает детали мимо протяжек 2, которые обрабатывают поверхности деталей.

Рис. 10. Схемы работы станках для непрерывного протягивания с карусельным столом:

1 - обрабатываемые детали; 2 - протяжка

4. Обработка плоских поверхностей шлифованием

Шлифование плоских поверхностей применяется как для обдирочной, так и для черновой и чистовой обработки. Обдирочное шлифование плоскостей может быть предварительной или окончательной операцией, если не требуется большой точности и чистоты поверхности. Припуск для обдирочного шлифования должен быть значительно меньше, чем для фрезерования и строгания. При больших припусках обдирочное шлифование оказывается неэкономичным. Обдирочное шлифование плоскостей применяется в том случае, когда наличие твердой корки на поверхности детали или большая твердость материала затрудняют фрезерование или строгание. Оно применяется

также при обработке плоских поверхностей деталей с малой жесткостью.

Обдирочное шлифование применяется для чугунных отливок, поковок и сварных конструкций и реже - для стальных отливок.

Черновое и чистовое шлифование плоскостей производится для получения большой точности и чистоты поверхности, когда не представляется возможным строгание. Оно применяется достигнуть этого фрезерованием или строганием.

Круги больших диаметров для шлифования изготовляют составными из отдельных частей - брусков и сегментов, прикрепленных к металлическому диску (рис. 11). При работе такими кругами уменьшается выделение тепла, улучшается удаление пыли и мелкой стружки, образующихся при шлифовании, повышается безопасность шлифовальных работ.

Рис. 11. Составные шлифовальные круги

Чистовое шлифование плоскостей производится мелкозернистыми, большей частью цельными кругами. Шлифование производится торцовой частью круга и периферией круга. При шлифовании торцевой частью круга применяют круги чашечной или тарельчатой формы. При такой форме круга изнашивается только та часть его, которая находится в соприкосновении с обрабатываемой поверхностью, и поэтому отпадает необходимость править всю поверхность круга. Кроме того, при такой форме различие скоростей вращения отдельных точек торца круга меньше влияет на точность и качество обработки поверхности.

Шлифование торцом круга более производительно, чем шлифование

периферией, так как в процессе работы торцом круга большая площадь круга находится в соприкосновении с обрабатываемой поверхностью и большее количество абразивных зерен одновременно работает; к тому же этот способ шлифования обеспечивает достаточно высокую точность; в силу указанных

Шлифование периферией круга менее производительно, но с его помощью достигается более высокая точность, чем при шлифовании торцом круга, поэтому шлифование периферией круга применяют обычно для окончательной отделки деталей измерительных инструментов, приборов и др. Плоскошлифовальные станки изготовляются для обдирочного, чернового и чистового (точного) шлифования.

Станки для обдирочного шлифования бывают:

а) односторонние (для обработки с одной стороны) - с горизонтальным или вертикальным расположением шпинделя;

б) двусторонние (для обработки с двух сторон) - двухшпиндель-Кые с горизонтальным расположением шпинделей (рис. 12). Станки для чернового и чистового (точного) шлифования изготовляются:

причин этот способ шлифования является весьма распространенным.

Рис. 12. Схема расположения шпинделей у двусторонних станков для об

дирочного шлифования.

а) для работы торцовой частью круга с прямоугольным и круглым столом; последние бывают одношпиндельные и двухшпиндельные; на рис. 13 показана схема работы станка;

б) для работы периферией круга с прямоугольным и круглым столом.

Для шлифования пластин, торцов колец и подобных тонких деталей используют плоскошлифовальные станки с магнитным столом или с применением магнитных плит, дающие весьма чистую поверхность и высокую точность.

Магнитный стол

Рис. 13. Схема работы двухшпиндельного плоскошлифовального станка

Основное время для плоского шлифования торцом круга на станках карусельного типа (рис. 14, а) определяется по формуле: ,мин,

Где – припуск на сторону в мм; -вертикальная подача круга на один оборот стола в мм; п – число оборотов стола в минуту т – количество деталей, одновременно устанавливаемых на столе- k - коэффициент, учитывающий точность шлифования.

Рис.14. Схемы плоского шлифования.

Основное время для шлифования торцом круга на станках продольного типа (рис. 14,6 - ширина шлифуемой поверхности В я принимается в долях высоты круга.

Основное время для шлифования периферией круга на станках карусельного типа (рис. 14, г) определяется по формуле:

,мин.

5 Отделка плоских поверхностей абразивами и шабрением

Окончательная чистовая обработка плоских поверхностей - отделка - кроме шлифования может производиться с применением абразивов - доводкой, притиркой, полированием. Помимо этого, для окончательной чистовой обработки применяется шабрение. Отделка плоских поверхностей с применением абразивов производится аналогично отделке наружных цилиндрических поверхностей.

Шабрение плоских поверхностей можно выполнять с помощью шабера вручную или механическим способом.

Первый способ требует большой затраты времени и высокой квалификации исполнения, но обеспечивает сравнительно высокую точность.

Второй способ - механический - осуществляется при помощи специальных станков, на которых шабер получает возвратно-поступательное движение от электродвигателя небольшой мощности. Такой способ шабрения требует меньшей затраты времени, однако его нельзя использовать для шабрения сложных поверхностей и поэтому применение его ограничено. Первый способ имеет широкое расппространение.

Проверка плоскостности обрабатываемых поверхностей производится с помощью поверочных плит и линеек на краску (по числу пятен). Поверочная плита покрывается краской и при соприкосновении с шабреной поверхностью детали оставляет пятна краски на последней в местах соприкосновения.

Число пятен краски, приходящееся на квадрат обработанной поверхности размером 25X25 мм 2 , характеризует неровность поверхности. Так, для поверхности высокой точности (детали измерительных приборов и инструментов) число пятен должно быть 25-30; для поверхностей средней, обычной точности - 20-25 и для поверхностей пониженной точности - 12-20 пятен.

6. Особенности обработки плоскостей у крупных литых деталей сложной формы

При обработке крупных литых деталей сложной формы (например, станин металлорежущих станков или других подобных деталей) возникает вопрос о целесообразности применения строгания или фрезерования.

Прежде всего следует отметить, что при том и другом способе обработки чистовую обработку надо отделять от черновой, потому что станки более продолжительное время сохраняют точность на чистовой обработке и, кроме того, крупные литые детали после черновой обработки подвергаются естественному или искусственному старению. ни получается экономия времени. Однако в ряде случаев оказывается целесообразным такие детали не фрезеровать, а строгать.

Затраты на станки и инструмент, применяемые при строгании меньше, чем аналогичные затраты при фрезеровании (фрезерные станки изнашиваются значительно быстрее), но при строгании требуется высокая квалификация рабочих.

При строгании сила резания и нагрев обрабатываемых плоскостей значительно меньше, вследствие чего и деформация обрабатываемых деталей меньше, чем при фрезеровании. Эти преимущества имеют качение при чистовой обработке крупных деталей, тем более что при фрезеровании набором фрез оправки часто прогибаются, вследствие чего искажается профиль обрабатываемой поверхности, т. е. понижается точность обработки. Черновое фрезерование наборами фрез крупных литых деталей дает экономию времени только при большой партии деталей, так как наладка станка занимает много времени. Применение этого способа обработки ограничивается быстрым затуплением фрез, работающих по корке, а также трудностью заточки набора фрез, размеры которых должны быть точно выдержаны после переточки.

Значительно экономичнее способ фрезерования крупных литых деталей сложной фермы торцовыми фрезами. Стойкость инструмента здесь значительно выше, режимы резания более высокие и заточка торцовых фрез проще, чем наборных. Таким образом, фрезерование торцовыми фрезами имеет преимущества перед фрезерованием наборами фрез; по сравнению со строганием этот способ также экономичен, как менее трудоемок.

Из всего сказанного видно, что для черновой обработки выгодно применять фрезерование торцовыми фрезами, в особенности при большом объеме выпуска деталей, когда можно рационально использовать ммогошпиндельные станки.

На заводах тяжелого машиностроения для обработки широких и длинных плоскостей применяют фрезы больших диаметров. При использовании фрезы диаметром 700 мм и более на расточном станке она крепится на планшайбе станка болтами с гайками.

Горьковским заводом фрезерных станков изготовлены мощные фрезерные станки, работающие фрезами диаметром 2250 мм и снимающие припуск за один проход до 20 мм. Мощность электродвигателя станка 155 кВт, что позволяет добиться резкого сокращения основного времени при обработке плоскостей шириной до 2000 мм и повышения производительности труда в 5 - 7 раз.

С тем отличием, что вместо «плоских» графиков мы рассмотрим наиболее распространенные пространственные поверхности, а также научимся грамотно их строить от руки. Я довольно долго подбирал программные средства для построения трёхмерных чертежей и нашёл пару неплохих приложений, но, несмотря на всё удобство использования, эти программы плохо решают важный практический вопрос. Дело в том, что в обозримом историческом будущем студенты по-прежнему будут вооружены линейкой с карандашом, и, даже располагая качественным «машинным» чертежом, многие не смогут корректно перенести его на клетчатую бумагу. Поэтому в методичке особое внимание уделено технике ручного построения, и значительная часть иллюстраций страницы представляет собой handmade-продукт.

Чем отличается этот справочный материал от аналогов?

Обладая приличным практическим опытом, я очень хорошо знаю, с какими поверхностями чаще всего приходится иметь дело в реальных задачах высшей математики, и надеюсь, что эта статья поможет вам в кратчайшие сроки пополнить свой багаж соответствующими знаниями и прикладными навыками, которых в 90-95% случаев должно хватить.

Что нужно уметь на данный момент?

Самое элементарное:

Во-первых, необходимо уметь правильно строить пространственную декартову систему координат (см. начало статьи Графики и свойства функций ) .

Что вы приобретёте после прочтения этой статьи?

Бутылку После освоения материалов урока вы научитесь быстро определять тип поверхности по её функции и/или уравнению, представлять, как она расположена в пространстве, и, конечно же, выполнять чертежи. Ничего страшного, если не всё уложится в голове с 1-го прочтения – к любому параграфу по мере надобности всегда можно вернуться позже.

Информация по силам каждому – для её освоения не нужно каких-то сверхзнаний, особого художественного таланта и пространственного зрения.

Начинаем!

На практике пространственная поверхность обычно задаётся функцией двух переменных или уравнением вида (константа правой части чаще всего равна нулю либо единице) . Первое обозначение больше характерно для математического анализа, второе – для аналитической геометрии . Уравнение , по существу, является неявно заданной функцией 2 переменных, которую в типовых случаях легко привести к виду . Напоминаю простейший пример c :

уравнение плоскости вида .

– функция плоскости в явном виде .

Давайте с неё и начнём:

Распространенные уравнения плоскостей

Типовые варианты расположения плоскостей в прямоугольной системе координат детально рассмотрены в самом начале статьи Уравнение плоскости . Тем не менее, ещё раз остановимся на уравнениях, которые имеют огромное значение для практики.

Прежде всего, вы должны на полном автомате узнавать уравнения плоскостей, которые параллельны координатным плоскостям . Фрагменты плоскостей стандартно изображают прямоугольниками, которые в последних двух случаях выглядят, как параллелограммы. По умолчанию размеры можно выбрать любые (в разумных пределах, конечно), при этом желательно, чтобы точка, в которой координатная ось «протыкает» плоскость являлась центром симметрии:


Строго говоря, координатные оси местами следовало изобразить пунктиром, но во избежание путаницы будем пренебрегать данным нюансом.

(левый чертёж) неравенство задаёт дальнее от нас полупространство, исключая саму плоскость ;

(средний чертёж) неравенство задаёт правое полупространство, включая плоскость ;

(правый чертёж) двойное неравенство задаёт «слой», расположенный между плоскостями , включая обе плоскости.

Для самостоятельной разминки:

Пример 1

Изобразить тело, ограниченное плоскостями
Составить систему неравенств, определяющих данное тело.

Из-под грифеля вашего карандаша должен выйти старый знакомый прямоугольный параллелепипед . Не забывайте, что невидимые рёбра и грани нужно прочертить пунктиром. Готовый чертёж в конце урока.

Пожалуйста, НЕ ПРЕНЕБРЕГАЙТЕ учебными задачами, даже если они кажутся слишком простыми. А то может статься, раз пропустили, два пропустили, а затем потратили битый час, вымучивая трёхмерный чертёж в каком-нибудь реальном примере. Кроме того, механическая работа поможет гораздо эффективнее усвоить материал и развить интеллект! Не случайно в детском саду и начальной школе детей загружают рисованием, лепкой, конструкторами и другими заданиями на мелкую моторику пальцев. Простите за отступление, не пропадать же двум моим тетрадям по возрастной психологии =)

Следующую группу плоскостей условно назовём «прямыми пропорциональностями» – это плоскости, проходящие через координатные оси:

2) уравнение вида задаёт плоскость, проходящую через ось ;

3) уравнение вида задаёт плоскость, проходящую через ось .

Хотя формальный признак очевиден (какая переменная отсутствует в уравнении – через ту ось и проходит плоскость) , всегда полезно понимать суть происходящих событий:

Пример 2

Построить плоскость

Как лучше осуществить построение? Предлагаю следующий алгоритм:

Сначала перепишем уравнение в виде , из которого хорошо видно, что «игрек» может принимать любые значения. Зафиксируем значение , то есть, будем рассматривать координатную плоскость . Уравнения задают пространственную прямую , лежащую в данной координатной плоскости. Изобразим эту линию на чертеже. Прямая проходит через начало координат, поэтому для её построения достаточно найти одну точку. Пусть . Откладываем точку и проводим прямую.

Теперь возвращаемся к уравнению плоскости . Поскольку «игрек» принимает любые значения, то построенная в плоскости прямая непрерывно «тиражируется» влево и вправо. Именно так и образуется наша плоскость , проходящая через ось . Чтобы завершить чертёж, слева и справа от прямой откладываем две параллельные линии и поперечными горизонтальными отрезками «замыкаем» символический параллелограмм:

Так как условие не накладывало дополнительных ограничений, то фрагмент плоскости можно было изобразить чуть меньших или чуть бОльших размеров.

Ещё раз повторим смысл пространственного линейного неравенства на примере . Как определить полупространство, которое оно задаёт? Берём какую-нибудь точку, не принадлежащую плоскости , например, точку из ближнего к нам полупространства и подставляем её координаты в неравенство:

Получено верное неравенство , значит, неравенство задаёт нижнее (относительно плоскости ) полупространство, при этом сама плоскость не входит в решение.

Пример 3

Построить плоскости
а) ;
б) .

Это задания для самостоятельного построения, в случае затруднений используйте аналогичные рассуждения. Краткие указания и чертежи в конце урока.

На практике особенно распространены плоскости, параллельные оси . Частный случай, когда плоскость проходит через ось, только что был в пункте «бэ», и сейчас мы разберём более общую задачу:

Пример 4

Построить плоскость

Решение : в уравнение в явном виде не участвует переменная «зет», а значит, плоскость параллельна оси аппликат. Применим ту же технику, что и в предыдущих примерах.

Перепишем уравнение плоскости в виде из которого понятно, что «зет» может принимать любые значения. Зафиксируем и в «родной» плоскости начертим обычную «плоскую» прямую . Для её построения удобно взять опорные точки .

Поскольку «зет» принимает все значения, то построенная прямая непрерывно «размножается» вверх и вниз, образуя тем самым искомую плоскость . Аккуратно оформляем параллелограмм разумной величины:

Готово.

Уравнение плоскости в отрезках

Важнейшая прикладная разновидность. Если все коэффициенты общего уравнения плоскости отличны от нуля , то оно представимо в виде , который называется уравнением плоскости в отрезках . Очевидно, что плоскость пересекает координатные оси в точках , и большое преимущество такого уравнения состоит в лёгкости построения чертежа:

Пример 5

Построить плоскость

Решение : сначала составим уравнение плоскости в отрезках. Перебросим свободный член направо и разделим обе части на 12:

Нет, здесь не опечатка и все дела происходят именно в пространстве! Исследуем предложенную поверхность тем же методом, что недавно использовали для плоскостей. Перепишем уравнение в виде , из которого следует, что «зет» принимает любые значения. Зафиксируем и построим в плоскости эллипс . Так как «зет» принимает все значения, то построенный эллипс непрерывно «тиражируется» вверх и вниз. Легко понять, что поверхность бесконечна :

Данная поверхность называется эллиптическим цилиндром . Эллипс (на любой высоте) называется направляющей цилиндра, а параллельные прямые, проходящие через каждую точку эллипса называются образующими цилиндра (которые в прямом смысле слова его и образуют). Ось является осью симметрии поверхности (но не её частью!).

Координаты любой точки, принадлежащей данной поверхности, обязательно удовлетворяют уравнению .

Пространственное неравенство задаёт «внутренность» бесконечной «трубы», включая саму цилиндрическую поверхность, и, соответственно, противоположное неравенство определяет множество точек вне цилиндра.

В практических задачах наиболее популярен частный случай, когда направляющей цилиндра является окружность :

Пример 8

Построить поверхность, заданную уравнением

Бесконечную «трубу» изобразить невозможно, поэтому художества ограничиваются, как правило, «обрезком».

Сначала удобно построить окружность радиуса в плоскости , а затем ещё пару окружностей сверху и снизу. Полученные окружности (направляющие цилиндра) аккуратно соединяем четырьмя параллельными прямыми (образующими цилиндра):

Не забываем использовать пунктир для невидимых нам линий.

Координаты любой точки, принадлежащей данному цилиндру, удовлетворяют уравнению . Координаты любой точки, лежащей строго внутри «трубы», удовлетворяют неравенству , а неравенство задаёт множество точек внешней части. Для лучшего понимания рекомендую рассмотреть несколько конкретных точек пространства и убедиться в этом самостоятельно.

Пример 9

Построить поверхность и найти её проекцию на плоскость

Перепишем уравнение в виде из которого следует, что «икс» принимает любые значения. Зафиксируем и в плоскости изобразим окружность – с центром в начале координат, единичного радиуса. Так как «икс» непрерывно принимает все значения, то построенная окружность порождает круговой цилиндр с осью симметрии . Рисуем ещё одну окружность (направляющую цилиндра) и аккуратно соединяем их прямыми (образующими цилиндра). Местами получились накладки, но что делать, такой уж наклон:

На этот раз я ограничился кусочком цилиндра на промежутке и это не случайно. На практике зачастую и требуется изобразить лишь небольшой фрагмент поверхности.

Тут, к слову, получилось 6 образующих – две дополнительные прямые «закрывают» поверхность с левого верхнего и правого нижнего углов.

Теперь разбираемся с проекцией цилиндра на плоскость . Многие читатели понимают, что такое проекция, но, тем не менее, проведём очередную физкульт-пятиминутку. Пожалуйста, встаньте и склоните голову над чертежом так, чтобы остриё оси смотрело перпендикулярно вам в лоб. То, чем с этого ракурса кажется цилиндр – и есть его проекция на плоскость . А кажется он бесконечной полосой, заключенным между прямыми , включая сами прямые. Данная проекция – это в точности область определения функций (верхний «жёлоб» цилиндра), (нижний «жёлоб»).

Давайте, кстати, проясним ситуацию и с проекциями на другие координатные плоскости. Пусть лучи солнца светят на цилиндр со стороны острия и вдоль оси . Тенью (проекцией) цилиндра на плоскость является аналогичная бесконечная полоса – часть плоскости , ограниченная прямыми ( – любое), включая сами прямые.

А вот проекция на плоскость несколько иная. Если смотреть на цилиндр из острия оси , то он спроецируется в окружность единичного радиуса , с которой мы начинали построение.

Пример 10

Построить поверхность и найти её проекции на координатные плоскости

Это задача для самостоятельного решения. Если условие не очень понятно, возведите обе части в квадрат и проанализируйте результат; выясните, какую именно часть цилиндра задаёт функция . Используйте методику построения, неоднократно применявшуюся выше. Краткое решение, чертёж и комментарии в конце урока.

Эллиптические и другие цилиндрические поверхности могут быть смещены относительно координатных осей, например:

(по знакомым мотивам статьи о линиях 2-го порядка ) – цилиндр единичного радиуса с линией симметрии, проходящей через точку параллельно оси . Однако на практике подобные цилиндры попадаются довольно редко, и совсем уж невероятно встретить «косую» относительно координатных осей цилиндрическую поверхность.

Параболические цилиндры

Как следует из названия, направляющей такого цилиндра является парабола .

Пример 11

Построить поверхность и найти её проекции на координатные плоскости.

Не мог удержаться от этого примера =)

Решение : идём проторенной тропой. Перепишем уравнение в виде , из которого следует, что «зет» может принимать любые значения. Зафиксируем и построим обычную параболу на плоскости , предварительно отметив тривиальные опорные точки . Поскольку «зет» принимает все значения, то построенная парабола непрерывно «тиражируется» вверх и вниз до бесконечности. Откладываем такую же параболу, скажем, на высоте (в плоскости) и аккуратно соединяем их параллельными прямыми (образующими цилиндра ):

Напоминаю полезный технический приём : если изначально нет уверенности в качестве чертежа, то линии сначала лучше прочертить тонко-тонко карандашом. Затем оцениваем качество эскиза, выясняем участки, где поверхность скрыта от наших глаз, и только потом придаём нажим грифелю.

Проекции.

1) Проекцией цилиндра на плоскость является парабола . Следует отметить, что в данном случае нельзя рассуждать об области определения функции двух переменных – по той причине, что уравнение цилиндра не приводимо к функциональному виду .

2) Проекция цилиндра на плоскость представляет собой полуплоскость , включая ось

3) И, наконец, проекцией цилиндра на плоскость является вся плоскость .

Пример 12

Построить параболические цилиндры:

а) , ограничиться фрагментом поверхности в ближнем полупространстве;

б) на промежутке

В случае затруднений не спешим и рассуждаем по аналогии с предыдущими примерами, благо, технология досконально отработана. Не критично, если поверхности будут получаться немного корявыми – важно правильно отобразить принципиальную картину. Я и сам особо не заморачиваюсь над красотой линий, если получился сносный чертёж «на троечку», обычно не переделываю. В образце решения, кстати, использован ещё один приём, позволяющий улучшить качество чертежа;-)

Гиперболические цилиндры

Направляющими таких цилиндров являются гиперболы . Этот тип поверхностей, по моим наблюдениям, встречается значительно реже, чем предыдущие виды, поэтому я ограничусь единственным схематическим чертежом гиперболического цилиндра :

Принцип рассуждения здесь точно такой же – обычная школьная гипербола из плоскости непрерывно «размножается» вверх и вниз до бесконечности.

Рассмотренные цилиндры относятся к так называемым поверхностям 2-го порядка , и сейчас мы продолжим знакомиться с другими представителями этой группы:

Эллипсоид. Сфера и шар

Каноническое уравнение эллипсоида в прямоугольной системе координат имеет вид , где – положительные числа (полуоси эллипсоида), которые в общем случае различны . Эллипсоидом называют как поверхность , так и тело , ограниченное данной поверхностью. Тело, как многие догадались, задаётся неравенством и координаты любой внутренней точки (а также любой точки поверхности) обязательно удовлетворяют этому неравенству. Конструкция симметрична относительно координатных осей и координатных плоскостей:

Происхождение термина «эллипсоид» тоже очевидно: если поверхность «разрезать» координатными плоскостями, то в сечениях получатся три различных (в общем случае)

Cтраница 1


Плоские поверхности обычно фрезеруют торцовыми и цилиндрическими фрезами. Такое смещение облегчает условия врезания фрезы и обеспечивает нормальное фрезерование.  

Плоская поверхность, как свободная, так и жесткая, по-видимому, является единственной границей, для которой величина k постоянна во всех точках жидкости.  


Плоские поверхности обрабатывают методом шабровки. Проверка плоскостности таких поверхностей осуществляется по числу пятен краски на проверяемой поверхности в квадрате размером 25 х 25 мм (число пятен на квадратный дюйм) при соприкосновении его с поверхностью плиты, отконением от плоскостности которой пренебрегают.  

Плоские поверхности шлифуют с двух сторон на глубину 0 2 мм и обеспечивают шероховатость поверхности Ra 0 8 мкм.  


Плоские поверхности становятся областями.  


Плоские поверхности предпочтительно фрезеровать торцовыми фрезами с СМП с углом в плане ср, равным 45, 60 и 75 (рис. 163, табл. 23), или с круглыми пластинами. Шпиндель чистовой фрезы устанавливают с уклоном 0 0001, чтобы исключить контакт с обработанной поверхностью зубьев, не участвующих в резании.  

Торцовая фреза с креплением твердосплавных пластин подпружиненным плунжером.| Схема фрезерования торцов заготовок на двухшпиндельном фрезерном станке с вращающимся столом. / - черновая фреза. 2 -чистовая фреза.  

Плоские поверхности обрабатывают цилиндрическими фрезами с встречной или попутной подачей. Попутное фрезерование способствует повышению стойкости фрез и уменьшению шероховатости обработанной поверхности, но для его осуществления требуется устройство, компенсирующее зазоры в механизме подачи. На станках с обычной гайкой ходового винта рекомендуется встречное фрезерование.  

Плоские поверхности могут располагаться с разных сторон корпусной детали, находиться в разных плоскостях (горизонтальной, вертикальной) и могут быть параллельными, перпендикулярными и наклонными. В соответствии с этим создаются станки горизонтальной и вертикальной компоновки, с агрегатными головками для односторонней, двух - или трехсторонней параллельной или последовательной обработки плоскостей. Точность обработки зависит от геометрических погрешностей станка, упругих и тепловых деформаций технологической системы, погрешности установки заготовок для обработки, погрешности настройки фрез на заданный размер и износа зубьев фрезы. Большое влияние оказывает стабильность механических свойств материала заготовок, точность их размеров, конфигураций плоскостей и величина припусков.  

Плоские поверхности обрабатываются на шлифо-вально-полировальных станках на вращающихся плоских дисках-притирах. Технология шлифовки и полировки аналогична применяемой для оптических стекол. В качестве абразивов используются алмазы, карборунд (зеленый, марки КЗ), электрокорунд (белый, марки ЭБ), эльбор в виде порошка или пасты.  

Плоская поверхность.

Сходную поперечную силу отрыв потока вызывает в случае плоской поверхности, наклоненной, подобно воздушному змею, относительно направления течения, но в этом случае боковая сила не меняет периодически своего направления.

На тонкую пластину, находящуюся в потоке под углом атаки к нему, также действует заметная сила сопротивления, обусловленная понижением давления в зоне отрыва, но эту силу можно существенно уменьшить (при одновременном увеличении поперечной силы), если придать пластине утолщенный профиль, закругленный спереди и слегка искривленный («вогнуто-выпуклый»). Такое тело, называемое аэродинамической поверхностью или попросту крылом, создает подъемную силу, за счет которой летают самолеты (теория крыла разработана русскими учеными Н.Е.Жуковским (1847–1921) и С.А.Чаплыгиным (1869–1942)), а в виде подводного крыла используется на скоростных речных и морских судах.

Искусство проектирования таких профилей достигло столь высокого уровня, что легко обеспечиваются подъемные силы, в 30 и более раз превышающие лобовое сопротивление Сила, действующая на крыло (или руль) в потоке, дается выражением: где s – размах (длина), а c – хорда (ширина) крыла.

При больших числах Рейнольдса величина CL зависит практически только от формы и угла наклона профиля; приемлемой величиной для крыла можно считать CL = 0,5 .

Конец работы -

Эта тема принадлежит разделу:

Механика жидкости и газа

Два физических подхода – макроскопический (термодинамический) и микроскопический (молекулярно-кинетический) – дополнили друг друга. Идея о том, что вещество состоит из молекул, а те, в свою очередь, из атомов.. Казалось, на основе кинетической теории, легко можно определить свойства газов, поскольку достаточно знать свойства..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Законы механики сплошной среды
Законы механики сплошной среды. Механика сплошной среды основывается на трёх главных законах: 1. Сохранение массы (сохранение импульса) 2. Сохранение энергии 3. Второй закон Ньютона (изменение коли

Закон сохранения момента импульса
Закон сохранения момента импульса. Если понятие импульса в классической механике характеризует поступательное движение тел, момент импульса вводится для характеристики вращения и является следствие

Гидростатика. Равновесие жидкостей и газов
Гидростатика. Равновесие жидкостей и газов. Гидростатика – наиболее простой раздел гидроаэромеханики, который исследует ситуации, когда движение отсутствует или скорость пренебрежимо мала. Гидроста

Гравитационное моделирование
Гравитационное моделирование. Число Фруда. Хотя многие задачи такого рода решаются с приемлемой точностью, существует много других сложных задач, аналитическое решение которых пока невозможно. Тем

Гидродинамика Эйлера и Навье-Стокса
Гидродинамика Эйлера и Навье-Стокса. Выводя дифференциальное уравнение движения идеальной жидкости, Леонард Эйлер полагал, что силы, действующие на любую поверхность в ней, так же как и в не

Влияние вязкости на картину течения
Влияние вязкости на картину течения. Вязкость жидкости и газа обычно существенна только при относительно малых скоростях, поэтому гидродинамика Эйлера – это частный предельный случай больших

Турбулентное течение в трубах
Турбулентное течение в трубах. Течение вязкой жидкости вдоль границы может оказаться неустойчивым по отношению к малым возмущениям, если число Рейнольдса превысит некоторое значение. Так, например,

Явления в пограничном слое
Явления в пограничном слое. В случае течения указанного вида по длинной трубе влияние стенок на характер течения распространяется и на центральную часть трубы. В случае же обтекания тела сре

Вихревые колебания
Вихревые колебания. В случае удлиненных тел, скажем цилиндрических, закономерности сопротивления среды оказываются примерно такими же, как и для сфер, но, кроме того, происходят поперечные к

Поверхности другой формы
Поверхности другой формы. Поверхности, создающие подъемную силу, используются в конструкциях крыла самолетов и других скоростных судов; на основе тех же принципов проектируются лопасти воздушных и

Аналогии между течением жидкости и газа
Аналогии между течением жидкости и газа. Тесная аналогия между процессами образования волн «маховского» и «фрудовского» типов дает возможность исследователям, работающим в обоих этих направлениях,



Последние материалы раздела:

Важность Патриотического Воспитания Через Детские Песни
Важность Патриотического Воспитания Через Детские Песни

Патриотическое воспитание детей является важной частью их общего воспитания и развития. Оно помогает формировать у детей чувство гордости за свою...

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

© Общеобразовательный журнал SLOVARSLOV.RU, 2024

Все статьи, расположенные на сайте, несут лишь ознакомительный характер.