Почему у металлов есть металлический блеск. Металлы в природе

Металлы человечество начало активно использовать еще в 3000-4000 годах до нашей эры. Тогда люди познакомились с самыми распространенными из них, это золото , серебро , медь. Эти металлы было очень легко найти на поверхности земли. Чуть позже они познали химию и начали выделять из них такие виды как олово, свинец и железо. В Средневековье набирали популярность очень ядовитые виды металлов. В обиходе был мышьяк , которым было отравлено больше половины королевского двора во Франции. Так же и , которая помогала вылечить разные болезни тех времен, начиная от ангины и до чумы. Уже до двадцатого столетия было известно более 60 металлов, а вначале XXI века – 90. Прогресс не стоит на месте и ведет человечество вперед. Но встает вопрос, какой металл является тяжелым и превосходит по весу все остальные? И вообще, какие они, эти самые тяжелые металлы в мире?

Многие ошибочно думают, что золото и свинец являются самыми тяжелыми металлами. Почему именно так сложилось? Многие из нас выросли на старых фильмах и видели, как главный герой использует свинцовую пластину для зашиты от злобных пуль. В добавок, и сегодня используют свинцовые пластины в некоторых видах бронежилетов. А при слове золото у многих всплывает картинка с тяжелыми слитками этого металла. Но думать, что они самые тяжелые – ошибочно!

Для определения самого тяжелого металла надо брать во внимание его плотность, ведь чем больше плотность вещества, тем оно тяжелее.

ТОП-10 самых тяжелых металлов в мире

  1. Осмий (22,62 г/см 3),
  2. Иридий (22,53 г/см 3),
  3. Платина (21,44 г/см 3),
  4. Рений (21,01 г/см 3),
  5. Нептуний (20,48 г/см 3),
  6. Плутоний (19,85 г/см 3),
  7. Золото (19,85 г/см 3)
  8. Вольфрам (19,21 г/см 3),
  9. Уран (18,92 г/см 3),
  10. Тантал (16,64 г/см 3).

И где же свинец? А он располагается намного ниже в данном списке, в середине второго десятка.

Осмий и иридий — самые тяжелые металлы в мире

Рассмотрим основных тяжеловесов, которые делят 1 и 2 места. Начнем с иридия и заодно произнесём слова благодарности в адрес английского ученого Смитсона Теннат, который в 1803 году получил этот химический элемент из платины, где присутствовал вместе с осмием в виде примеси. Иридий с древнегреческого можно перевести, как «радуга». Металл имеет белый цвет с серебряным оттенком и его можно назвать ни только тяжеловесным, но и самым прочным. На нашей планете его очень мало и за год его добывают всего до 10000 кг. Известно, что большинство месторождений иридия можно обнаружить на местах падения метеоритов. Некоторые ученые приходят к мысли, что данный металл ранее был широко распространён на нашей планете, однако из-за своего веса, он постоянно выдавливал себя ближе к центру Земли. Иридий сейчас широко востребован в промышленности и используется для получения электрической энергии. Так же его любят использовать палеонтологи, и с помощью иридия определяют возраст многих находок. Вдобавок, данный металл могут использовать для покрытия некоторых поверхностей. Но сделать это сложно.


Далее рассмотрим осмий. Он самый тяжёлый в периодической таблице Менделеева , ну, соответственно, и самый тяжелый в мире металл. Осмий имеет оловянно-белый с синим оттенок и также открыт Смитсоном Теннат одновременно с иридием. Осмий практически невозможно обработать и, в основном, его находят на местах падения метеоритов. Он неприятно пахнет, запах похож на смесь хлора и чеснока. И с древнегреческого переводится, как «запах». Металл довольно тугоплавкий и используется в лампочках и в других приборах с тугоплавкими металлами. За один только грамм этого элемента надо заплатить более 10000 долларов, из этого понятно, что метал очень редкий.


Осмий

Как не крути, самые тяжелые металлы являются большой редкостью и поэтому они дорого стоят. И надо запомнить на будущее, что ни золото, ни свинец – не самые тяжелые металлы в мире! Иридий и осмий – вот победители в весе!

Металлы (от лат. metallum - шахта, рудник) - группа элементов, в виде простых веществ обладающих характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.

Из 118 химических элементов, открытых на данный момент (из них не все официально признаны), к металлам относят:

  • 6 элементов в группе щелочных металлов,
  • 6 в группе щёлочноземельных металлов,
  • 38 в группе переходных металлов,
  • 11 в группе лёгких металлов,
  • 7 в группе полуметаллов,
  • 14 в группе лантаноиды + лантан,
  • 14 в группе актиноиды (физические свойства изучены не у всех элементов) + актиний,
  • вне определённых групп бериллий и магний.

Таким образом, к металлам, возможно, относится 96 элементов из всех открытых.

В астрофизике термин «металл» может иметь другое значение и обозначать все химические элементы тяжелее гелия

Характерные свойства металлов

  1. Металлический блеск (характерен не только для металлов: его имеют и неметаллы иод и углерод в виде графита)
  2. Хорошая электропроводность
  3. Возможность лёгкой механической обработки
  4. Высокая плотность (обычно металлы тяжелее неметаллов)
  5. Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)
  6. Большая теплопроводность
  7. В реакциях чаще всего являются восстановителями.

Физические свойства металлов

Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью. Ниже приводится твёрдость некоторых металлов по шкале Мооса.

Температуры плавления чистых металлов лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам). Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые «нормальные» металлы, например олово и свинец, можно расплавить на обычной электрической или газовой плите.

В зависимости от плотности , металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³). Самым лёгким металлом является литий (плотность 0.53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия - двух самых тяжёлых металлов - почти равны (около 22.6 г/см³ - ровно в два раза выше плотности свинца), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.

Большинство металлов пластичны , то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0.003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются. Пластичность зависит и от чистоты металла; так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым. Некоторые металлы такие как золото, серебро, свинец, алюминий, осмий могут срастаться между собой, но на это может уйти десятки лет.

Все металлы хорошо проводят электрический ток; это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность; по этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также натрий, в экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.

Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла; широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.

Цвет у большинства металлов примерно одинаковый - светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.

Химические свойства металлов

На внешнем электронном уровне у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители (то есть «отдают» свои электроны)

Реакции с простыми веществами

  • С кислородом реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды:

оксид лития

пероксид натрия

надпероксид калия

Чтобы получить из пероксида оксид, пероксид восстанавливают металлом:

Со средними и малоактивными металлами реакция происходит при нагревании:

  • С азотом реагируют только самые активные металлы, при комнатной температуре взаимодействует только литий, образуя нитриды:

При нагревании:

  • С серой реагируют все металлы, кроме золота и платины:

Железо взаимодействует с серой при нагревании, образуя сульфид:

  • С водородом реагируют только самые активные металлы, то есть металлы IA и IIA групп кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1:
  • С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодействии с водой дают ацетилен, метаниды - метан.

Характерные химические свойства простых веществ – металлов

Большинство химических элементов относят к металлам - 92 из 114 известных элементов. Металлы - это химические элементы, атомы которых отдают электроны внешнего (а некоторые - и предвнешнего) электронного слоя, превращаясь в положительные ионы. Это свойство атомов металлов определяется тем, что они имеют сравнительно большие радиусы и малое число электронов (в основном от 1 до 3 на внешнем слое). Исключение составляют лишь 6 металлов: атомы германия, олова, свинца на внешнем слое имеют 4 электрона, атомы сурьмы и висмута - 5, атомы полония - 6. Для атомов металлов характерны небольшие значения электроотрицательности (от 0,7 до 1,9) и исключительно восстановительные свойства , т. е. способность отдавать электроны. В Периодической системе химических элементов Д. И. Менделеева металлы находятся ниже диагонали бор - астат, а также выше ее, в побочных подгруппах. В периодах и главных подгруппах действуют известные вам закономерности в изменении металлических, а значит, восстановительных свойств атомов элементов.

Химические элементы, расположенные вблизи диагонали бор - астат (Be, Al, Ti, Ge, Nb, Sb и др.), обладают двойственными свойствами : в одних своих соединениях ведут себя как металлы, в других - проявляют свойства неметаллов. В побочных подгруппах восстановительные свойства металлов с увеличением порядкового номера чаще всего уменьшаются.

Сравните активность известных вам металлов I группы побочной подгруппы: Cu, Ag, Au; II группы побочной подгруппы: Zn, Cd, Hg - и вы убедитесь в этом сами. Это можно объяснить тем, что на прочность связи валентных электронов с ядром у атомов данных металлов в большей степени влияет величина заряда ядра, а не радиус атома. Величина заряда ядра значительно увеличивается, притяжение электронов к ядру усиливается. Радиус атома при этом хотя и увеличивается, но не столь значительно, как у металлов главных подгрупп.

Простые вещества, образованные химическими элементами - металлами, и сложные металлосодержащие вещества играют важнейшую роль в минеральной и органической «жизни» Земли. Достаточно вспомнить, что атомы (ионы) элементов металлов являются составной частью соединений, определяющих обмен веществ в организме человека, животных. Например, в крови человека найдено 76 элементов, и из них только 14 не являются металлами.

В организме человека некоторые элементы металлы (кальций, калий, натрий, магний) присутствуют в большом количестве, т. е. являются макроэлементами. А такие металлы, как хром, марганец, железо, кобальт, медь, цинк, молибден присутствуют в небольших количествах, т. е. это микроэлементы. Если человек весит 70 кг, то в его организме содержится (в граммах): кальция - 1700, калия - 250, натрия - 70, магния - 42, железа - 5, цинка - 3. Все металлы чрезвычайно важны, проблемы со здоровьем возникают и при их недостатке, и при избытке.

Например, ионы натрия регулируют содержание воды в организме, передачу нервных импульсов. Его недостаток приводит к головной боли, слабости, слабой памяти, потере аппетита, а избыток - к повышению артериального давле­ния, гипертонии, заболеваниям сердца.

Простые вещества - металлы

С развитием производства металлов (простых веществ) и сплавов связано возникновение цивилизации (бронзовый век, железный век). Начавшаяся примерно 100 лет назад научно-техническая революция, затронувшая и промышленность, и социальную сферу, также тесно связана с производством металлов. На основе вольфрама, молибдена, титана и других металлов начали создавать коррозионностойкие, сверхтвердые, тугоплавкие сплавы, применение которых сильно расширило возможности машиностроения. В ядерной и космической технике из сплавов вольфрама и рения делают детали, работающие при температурах до 3000 °С; в медицине используют хирургические инструменты из сплавов тантала и платины, уникальной керамики на основе оксидов титана и циркония.

И, конечно же, мы не должны забывать, что в большинстве сплавов используют давно известный металл железо, а основу многих легких сплавов составляют сравнительно «молодые» металлы - алюминий и магний. Сверхновыми стали композиционные материалы, представляющие, например, полимер или керамику, которые внутри (как бетон железными прутьями) упрочнены металлическими волокнами из вольфрама, молибдена, стали и других металлов, и сплавов - все зависит от поставленной цели, необходимых для ее достижения свойств материала. На рисунке изображена схема кристаллической решетки металлического натрия. В ней каждый атом натрия окружен восемью соседями. У атома натрия, как и у всех металлов, имеется много свободных валентных орбиталей и мало валентных электронов. Электронная формула атома натрия: 1s 2 2s 2 2p 6 3s 1 3p 0 3d 0 , где 3s, 3p, 3d - валентные орбитали .

Единственный валент­ный электрон атома натрия 3s 1 может занимать любую из девяти свободных орбиталей - 3s (одна), 3р (три) и 3d (пять), ведь они не очень отличаются по уровню энергии. При сближении атомов, когда образуется кристалличе­ская решетка, валентные орбитали соседних ато­мов перекрываются, благодаря чему электроны свободно перемещаются с одной орбитали на дру­гую, осуществляя связь между всеми атомами кри­сталла металла. Такую химическую связь называют металлической.

Металлическую связь обра­зуют элементы, атомы кото­рых на внешнем слое имеют мало валентных электронов по сравнению с большим числом внешних энергетически близких орбиталей. Их валентные электроны слабо удерживаются в атоме. Электроны, осуществляющие связь, обобществлены и перемещаются по всей кристаллической решетке в целом нейтрального металла. Веществам с металлической связью присущи металлические кристаллические решетки, которые обычно изображают схематически так, как показано на рисунке. Катионы и атомы металлов, расположенные в узлах кристаллической решетки, обеспечивают ее стабильность и прочность (обобществленные электроны изображены в виде черных маленьких шариков).

Металлическая связь - это связь в металлах и сплавах между атом-ионами металлов, расположенными в узлах кристаллической решетки, осуществляемая обобществленными валентными электронами. Некоторые металлы кристаллизуются в двух или более кристаллических формах. Это свойство веществ - существовать в нескольких кристаллических модификациях - называют полиморфизмом. Полиморфизм простых веществ известен под названием аллотропии. Например, железо имеет четыре кристалличес­кие модификации, каждая из которых устойчива в определенном температурном интервале:

α - устойчива до 768 °С, ферромагнитная;

β - устойчива от 768 до 910 °С, неферромагнит­ная, т. е. парамагнитная;

γ - устойчива от 910 до 1390 °С, неферромаг­нитная, т. е. парамагнитная;

δ - устойчива от 1390 до 1539 °С (£° пл железа), неферромагнитная.

Олово имеет две кристаллические модифика­ции:

α - устойчива ниже 13,2 °С (р = 5,75 г/см 3). Это серое олово. Оно имеет кристаллическую решет­ку типа алмаза (атомную);

β - устойчива выше 13,2 °С (р = 6,55 г/см 3). Это белое олово.

Белое олово - серебристо-белый очень мягкий металл. При охлаждении ниже 13,2 °С он рассы­пается в серый порошок, т. к. при переходе значительно увеличивается его удельный объем. Это явление получило название «оловянной чумы».

Конечно, особый вид химической связи и тип кристаллической решетки металлов должны опре­делять и объяснять их физические свойства. Каковы же они? Это ме­таллический блеск, пластич­ность, высокая электрическая проводимость и теплопровод­ность, рост электрического сопротивления при повыше­нии температуры, а также та­кие значимые свойства, как плотность, высокие температуры плавления и кипения, твердость, магнитные свойства. Механическое воздействие на кристалл с метал­лической кристаллической решеткой вызывает сме­щение слоев ион-атомов друг относительно друга (рис. 17), а так как электроны переме­щаются по всему кристаллу, разрыв связей не происходит, поэтому для металлов харак­терна большая пластичность. Аналогичное воздействие на твердое вещество с кова­лентными свя зями (атомной кристаллической решеткой) приводит к разрыву ковалент­ных связей. Разрыв связей в ионной решетке приводит к взаимному отталкиванию одноименно заряженных ио­нов. Поэтому вещества с атом­ными и ионными кристаллическими решетками хрупкие. Наиболее пластичные металлы - это Au, Ag, Sn, Pb, Zn. Они легко вытягиваются в проволо­ку, поддаются ковке, прессованию, прокатыванию в листы. Например, из золота можно изготовить зо­лотую фольгу толщиной 0,003 мм, а из 0,5 г этого металла можно вытянуть нить длиной 1 км. Даже ртуть, которая при комнатной температу­ре жидкая, при низких температурах в твердом со­стоянии становится ковкой, как свинец. Не обла­дают пластичностью лишь Bi и Mn, они хрупкие.

Почему металлы имеют характерный блеск, а также непрозрачны?

Электроны, заполняющие межатомное про­странство, отражают световые лучи (а не пропу­скают, как стекло), причем большинство металлов в равной степени рассеивают все лучи видимой ча­сти спектра. Поэтому они имеют серебристо-белый или серый цвет. Стронций, золото и медь в боль­шей степени поглощают короткие волны (близкие к фиолетовому цвету) и отражают длинные волны светового спектра, поэтому имеют светло-желтый, желтый и «медный» цвета. Хотя на практике металл не всегда нам кажет­ся «светлым телом». Во-первых, его поверхность может окисляться и терять блеск. Поэтому само­родная медь выглядит зеленоватым камнем. А во- вторых, и чистый металл может не блестеть. Очень тонкие листки серебра и золота имеют совершенно неожиданный вид - они имеют голубовато-зеле­ный цвет. А мелкие порошки металлов кажутся темно-серыми, даже черными. Наибольшую отражательную способность име­ют серебро, алюминий, палладий. Их используют при изготовлении зеркал, в том числе и в прожек­торах.

Почему металлы имеют высокую электриче­скую проводимость и теплопроводны?

Хаотически движущиеся электроны в металле под воздействием приложенного электрического напряжения приобретают направленное движение, т. е. проводят электрический ток. При повышении температуры металла возрастают амплитуды ко­лебаний находящихся в узлах кристаллической решетки атомов и ионов. Это затрудняет переме­щение электронов, электрическая проводимость металла падает. При низких температурах ко­лебательное движение, наоборот, сильно умень­шается и электрическая проводимость металлов резко возрастает. Вблизи абсолютного нуля со­противление у металлов практически отсутству­ет, у большинства металлов появляется сверх­проводимость.

Следует отметить, что неметаллы, обладающие электрической проводимостью (например, графит), при низких температурах, наоборот, не проводят электрический ток из-за отсутствия свободных электронов. И только с повышением температуры и разрушением некоторых ковалентных связей их электрическая проводимость начинает возрастать. Наибольшую электрическую проводимость име­ют серебро, медь, а также золото, алюминий, наи­меньшую - марганец, свинец, ртуть.

Чаще всего с той же закономерностью, как и электрическая проводимость, изменяется тепло­проводность металлов. Она обусловлена большой подвижностью свобод­ных электронов, которые, сталкиваясь с колеблю­щимися ионами и атомами, обмениваются с ними энергией. Происходит выравнивание температуры по всему куску металла.

Механическая прочность, плотность, температу­ра плавления у металлов очень сильно отличаются . Причем с увеличением числа электронов, связы­вающих ион-атомы, и уменьшением межатомного расстояния в кристаллах показатели этих свойств возрастают.

Так, щелочные металлы (Li, K, Na, Rb, Cs), атомы которых имеют один валентный электрон , мягкие (режутся ножом), с небольшой плотностью (литий - самый легкий металл с р = 0,53 г/см 3) и плавятся при невысоких температурах (напри­мер, температура плавления цезия 29 °С). Един­ственный металл, жидкий при обычных усло­виях, - ртуть - имеет температуру плавления, равную -38,9 °С. Кальций, имеющий два электрона на внешнем энергетическом уровне атомов, гораздо более тверд и плавится при более высокой температуре (842 °С). Еще более прочной является кристаллическая решетка, образованная ионами скандия, который имеет три валентных электрона. Но самые прочные кристаллические решетки, большие плотности и температуры плавления на­блюдаются у металлов побочных подгрупп V, VI, VII, VIII групп. Это объясняется тем, что для ме­таллов побочных подгрупп, имеющих неспаренные валентные электроны на d-подуровне, характерно образование очень прочных ковалентных связей между атомами, помимо металлической, осущест­вляемой электронами внешнего слоя с s-орбиталей.

Самый тяжелый металл - это осмий (Os) с р = 22,5 г/см 3 (компонент сверхтвердых и износостойких сплавов), самый тугоплавкий металл - это вольфрам W с t = 3420 °С (применяется для изготовления нитей накаливания ламп), самый твердый металл - это хром Cr (царапает стекло). Они входят в состав материалов, из которых изго­тавливают металлорежущий инструмент, тормоз­ные колодки тяжелых машин и др. Металлы поразному взаимодействуют с магнит­ным полем. Такие металлы, как железо, кобальт, никель и гадолиний выделяются своей способно­стью сильно намагничиваться. Их называют фер­ромагнетиками. Большинство металлов (щелоч­ные и щелочноземельные металлы и значительная часть переходных металлов) слабо намагничивают­ся и не сохраняют это состояние вне магнитного поля - это парамагнетики. Металлы, выталкива­емые магнитным полем, - диамагнетики (медь, серебро, золото, висмут).

При рассмотрении электронного строения ме­таллов мы разделили металлы на металлы главных подгрупп (s- и p-элементы) и металлы побочных под­групп (переходные d- и f-элементы).

В технике принято классифицировать металлы по различным физическим свойствам:

1. Плотность - легкие (р < 5 г/см 3) и тяжелые (все остальные).

2. Температуре плавления - легкоплавкие и ту­гоплавкие.

Существуют классификации металлов по хими­ческим свойствам. Металлы с низкой химической активностью на­зывают благородными (серебро, золото, платина и ее аналоги - осмий, иридий, рутений, палладий, родий). По близости химических свойств выделяют ще­лочные (металлы главной подгруппы I группы), щелочноземельные (кальций, стронций, барий, ра­дий), а также редкоземельные металлы (скандий, иттрий, лантан и лантаноиды, актиний и актино­иды).




Общие химические свойства металлов

Атомы металлов сравнительно легко отдают валентные электроны и переходят в положитель­но заряженные ионы, то есть окисляются. В этом заключается главное общее свойство и атомов, и простых веществ - металлов. Металлы в химических реакциях всегда восстано­вители. Восстановительная способность атомов простых веществ - металлов, образованных химическими элементами одного периода или одной главной подгруппы Периоди­ческой системы Д. И. Менделеева, изменяется за­кономерно.

Восстановительную активность металла в хи­мических реакциях, которые протекают в водных растворах, отражает его положение в электрохимическом ряду напряжений металлов.

На основании этого ряда напряжений можно сде­лать следующие важные заключения о химиче­ской активности металлов в реакциях, протекающих в водных растворах при стан­дартных условиях (t = 25 °С, р = 1 атм).

· Чем левее стоит металл в этом ряду, тем более силь­ным восстановителем он яв­ляется.

· Каждый металл спо­собен вытеснять (восстанав­ливать) из солей в растворе те металлы, которые в ряду напряжений стоят после него (правее).

· Металлы, находящиеся в ряду напряжений левее водорода, способны вытеснять его из кислот в растворе

· Металлы, являющиеся самыми сильными восстановителями (щелочные и щелочноземель­ные), в любых водных растворах взаимодействуют прежде всего с водой.

Восстановительная активность металла, опре­деленная по электрохимическому ряду, не всегда соответствует положению его в периодической си­стеме. Это объясняется тем, что при определении положения металла в ряду напряжений учитыва­ют не только энергию отрыва электронов от от­дельных атомов, но и энергию, затрачиваемую на разрушение кристаллической решетки, а также энергию, выделяющуюся при гидратации ионов. Например, литий более активен в водных раство­рах, чем натрий (хотя по положению в периодиче­ской системе Na - более активный металл). Дело в том, что энергия гидратации ионов Li + значительно больше, чем энергия гидратации Na + , поэтому первый процесс является энергетически более выгодным. Рассмотрев общие положения, характеризую­щие восстановительные свойства металлов, пере­йдем к конкретным химическим реакциям.

Взаимодействие металлов с неметаллами

· С кислородом большинство металлов образу­ют оксиды - основные и амфотерные. Кислотные оксиды переходных металлов, например оксид хро­ма (VI) CrO g или оксид марганца (VII) Mn 2 O 7 , не образуются при прямом окислении металла кисло­родом. Их получают косвенным путем.

Щелочные металлы Na, K активно реагируют с кислородом воздуха , образуя пероксиды:

Оксид натрия получают косвенным путем, при прокаливании пероксидов с соответствующими ме­таллами:

Литий и щелочноземельные металлы взаимодействуют с кислородом воздуха, образуя основные оксиды:

Другие металлы, кроме золота и платиновых металлов, которые вообще не окисляются кислоро­дом воздуха, взаимодействуют с ним менее актив­но или при нагревании:

· С галогенами металлы образуют соли галогеноводородных кислот , например:

· С водородом самые активные металлы образуют гидриды - ионные солеподобные вещества, в которых водород имеет степень окисления -1, например:

Многие переходные металлы образуют с водо­родом гидриды особого типа - происходит как бы растворение или внедрение водорода в кристаллическую решетку металлов между ато­мами и ионами, при этом ме­талл сохраняет свой внешний вид, но увеличивается в объ­еме. Поглощенный водород находится в металле, повидимому, в атомарном виде.

Существуют и гидриды металлов промежуточ­ного характера.

· С серые металлы образуют соли - сульфиды , например:

· С азотом металлы реагируют несколько труд­нее , т. к. химичес кая связь в молекуле азота N 2 очень прочна; при этом образуются нитриды. При обычной температуре взаимодействует с азотом только литий:

Взаимодействие металлов со сложными веществами

· С водой. Щелочные и щелочноземельные металлы при обычных условиях вытесняют водород из воды и образуют растворимые основания - щелочи, например:

Другие металлы, стоящие в ряду напряжений до водо­рода, тоже могут при опреде­ленных условиях вытеснять водород из воды. Но алюми­ний бурно взаимодействует с водой, только если удалить с его поверхности оксидную пленку:

Магний взаимодействует с водой только при кипячении, при этом также выделяется водород:

Если горящий магний внести в воду, то горение продолжается, т. к. протекает реакция:

Железо взаимодействует с водой только в рас­каленном виде:

· С кислотами в растворе (HCl, H 2 SO 4 ), CH 3 COOH и др., кроме HNO 3 ) взаимодействуют металлы, стоящие в ряду напряжений до водорода. При этом образуются соль и водород.

А вот свинец (и некоторые другие металлы), не­смотря на его положение в ряду напряжений (слева от водорода), почти не растворяется в разбавленной серной кислоте, т. к. образующийся сульфат свин­ца PbSO 4 нерастворим и создает на поверхности ме­талла защитную пленку.

· С солями менее активных металлов в рас­творе. В результате такой реакции образуется соль более активного металла и выделяется менее актив­ный металл в свободном виде.

Нужно помнить, что реакция идет в тех случа­ях, когда образующаяся соль растворима. Вытесне­ние металлов из их соединений другими металлами впервые подробно изучал Н. Н. Бекетов - великий русский ученый в области физической химии. Он расположил металлы по химической активности в «вытеснительный ряд», ставший прототипом ря­да напряжений металлов.

· С органическими веществами. Взаимодей­ствие с органическими кислотами аналогично ре­акциям с минеральными кислотами. Спирты же могут проявлять слабые кислотные свойства при взаимодействии со щелочными металлами:

Аналогично реагирует и фенол:

Металлы участвуют в реакциях с галогеналка­нами, которые используют для получения низших циклоалканов и для синтезов, в ходе которых про­исходит усложнение углеродного скелета молеку­лы (реакция А. Вюрца):

· Со щелочами в растворе взаимодействуют металлы, гидроксиды которых амфотерны. Например:

· Металлы могут образовывать друг с другом химические соединения, которые получили общее название интерметаллических соединений. В них чаще всего не проявляются степени окисления атомов, которые характерны для соединений металлов с неметаллами. Например:

Cu 3 Au, LaNi 5 , Na 2 Sb, Ca 3 Sb 2 и др.

Интерметаллические соединения обычно не имеют постоянного состава, химическая связь в них в основном металлическая. Образование этих соединений более характерно для металлов побочных подгрупп.

Металлы главных подгрупп I-III групп Периодической системы химических элементов Д. И. Менделеева

Общая характеристика

Это металлы главной подгруппы I группы. Их атомы на внешнем энергетическом уровне имеют по одному электрону. Щелочные металлы - сильные восстановители . Их восстановительная способность и химическая активность возрастают с увеличением порядкового номера элемента (т. е. сверху вниз в Периодической таблице). Все они обладают электронной проводимостью. Прочность связи между атомами щелочных металлов уменьшается с увеличением порядкового номера элемента. Также снижаются их температуры плавления и кипения. Щелочные металлы взаимодействуют со многими простыми веществами - окислителями . В реакциях с водой они образуют растворимые в воде основания (щелочи). Щелочноземельными элементами называются элементы главной подгруппы II группы. Атомы этих элементов содержат на внешнем энергетическом уровне по два электрона . Они являются сильнейшими восстановителями, имеют степень окисления +2. В этой главной подгруппе соблюдаются общие закономерности в изменении физических и химических свойств, связанные с увеличением размера атомов по группе сверху вниз, также ослабевает и химическая связь между атомами. С увеличением размера иона ослабевают кислотные и усиливаются основные свойства оксидов и гидроксидов.

Главную подгруппу III группы составляют эле­менты бор, алюминий, галлий, индий и таллий. Все элементы относятся к p-элементам. На внешнем энергетическом уровне они имеют по три (s 2 p 1 ) элек­трона , чем объясняется сходство свойств. Степень окисления +3. Внутри группы с увеличением заряда ядра металлические свойства увеличиваются. Бор - эле­мент-неметалл, а у алюминия уже металлические свойства. Все элементы образуют окси­ды и гидроксиды.

Большинство металлов находится в подгруппах Пе­риодической системы. В от­личие от элементов главных подгрупп, где происходит по­степенное заполнение элек­тронами внешнего уровня атомных орбиталей, у элементов побочных подгрупп заполняются d-орбитали предпоследнего энергетического уровня и s-орбитали последнего. Число электронов соответ­ствует номеру группы. Элементы с равным числом валентных электронов входят в группу под одним номером. Все элементы подгрупп - металлы.

Простые вещества, образованные металлами подгрупп, имеют прочные кристаллические решет­ки, устойчивые к нагреванию. Эти металлы самые прочные и тугоплавкие среди других металлов. У d-элементов ярко проявляется переход с увели­чением их валентности от основных свойств через амфотерные к кислотным.

Щелочные металлы (Na, K)

На внешнем энергетическом уровне атомы щелоч­ных металлов элементов содержат по одному элек­трону , находящемуся на большом удалении от ядра. Они легко отдают этот электрон, поэтому являются сильными восстановителями. Во всех соединениях щелочные металлы проявляют степень окисления +1. Их восстановительные свойства с ростом ради­уса атомов усиливаются от Li к Cs . Все они типич­ные металлы, имеют серебристо-белый цвет, мягкие (режутся ножом), легкие и легкоплавкие. Активно взаимодействуют со всеми неметаллами :

Все щелочные металлы при взаимодействии с кислородом (исключение Li) образуют перокси­ды. В свободном виде щелочные металлы не встре­чаются из-за их высокой химической активности.

Оксиды - твердые вещества, имеют основные свойства. Их получают, прокаливая пероксиды с соответствующими металлами:

Гидроксиды NaOH, KOH - твердые белые веще­ства, гигроскопичны, хорошо растворяются в воде с выделением теплоты, их относят к щелочам:

Соли щелочных металлов почти все растворимы в воде. Важнейшие из них: Na 2 CO 3 - карбонат натрия; Na 2 CO 3 10H 2 O - кристаллическая сода; NaHCO 3 - гидрокарбонат натрия, пищевая сода; K 2 CO 3 - карбо­нат калия, поташ; Na 2 SO 4 10H 2 O - глауберова соль; NaCl - хлорид натрия, пищевая соль.

Элементы I группы в таблицах

Щелочноземельные металлы (Ca, Mg)

Кальций (Ca) является пред­ставителем щелочноземельных металлов , которыми называют­ся элементы главной подгруппы II группы, но не все, а только начиная с кальция и вниз по группе. Это те химические элементы, которые, взаимодействуя с водой, образуют щело­чи. Кальций на внешнем энергетическом уровне содержит два электрона , степень окисления +2.

Физические и химические свойства кальция и его соединений представлены в таблице.

Магний (Mg) имеет такое же строение атома, как и кальций, степень его окисления также +2. Мягкий металл, но его поверхность на воздухе покрывается защитной пленкой, что немного снижает химическую актив­ность. Его горение сопровождается ослепительной вспышкой. MgO и Mg(OH) 2 проявляют основные свойства. Хотя Mg(OH) 2 и малорастворим, но окра­шивает раствор фенолфталеина в малиновый цвет.

Mg + O 2 = MgO 2

Оксиды MO - твердые белые тугоплавкие веще­ства. В технике CaO называют негашеной известью, а MgO - жженой магнезией, эти оксиды используют в про­изводстве строительных ма­териалов. Реакция оксида кальция с водой сопровождается выде­лением теплоты и называется гашением извести, а образу­ющийся Ca(OH) 2 - гашеной известью. Прозрачный рас­твор гидроксида кальция называется известковой водой, а белая взвесь Ca(OH) 2 в воде - известковым молоком.

Соли магния и кальция получают взаимодей­ствием их с кислотами.

CaCO 3 - карбонат кальция, мел, мрамор, из­вестняк. Применяется в строительстве. MgCO 3 - карбонат магния - применяется в металлургии для освобождения от шлаков.

CaSO 4 2H 2 O - гипс. MgSO 4 - сульфат магния - называют горькой, или английской, со­лью, содержится в морской воде. BaSO 4 - сульфат ба­рия - благодаря нераство­римости и способности задерживать рентгеновские лучи применяется в диагностике («баритовая ка­ша») желудочно-кишечного тракта.

На долю кальция приходится 1,5 % массы тела человека, 98 % кальция содержится в костях. Маг­ний является биоэлементом, его в теле человека около 40 г, он участвует в образовании белковых молекул.

Щелочноземельные металлы в таблицах


Алюминий

Алюминий (Al) - элемент главной подгруппы III группы периодической системы Д. И. Менделеева. Атом алюминия содержит на внешнем энергетическом уровне три электрона , которые он легко отдает при химических взаимодействиях. У родоначальника подгруппы и верхнего соседа алюминия - бора - радиус атома меньше (у бора он равен 0,080 нм, у алюминия - 0,143 нм). Кроме того, у атома алюминия появляется один промежуточный восьмиэлектронный слой (2е; 8е; 3е), который препятствует протяжению внешних электронов к ядру. Поэтому у атомов алюминия восстановительные свойства выражены достаточно сильно.

Почти во всех своих соединениях алюминий имеет степень окисления +3 .

Алюминий простое вещество

Серебристо-белый легкий металл. Плавится при 660 °С. Очень пластичен, легко вытя­гивается в проволоку и прока­тывается в фольгу толщиной до 0,01 мм. Обладает очень большой электрической проводимостью и теплопро­водностью. Образуют с другими металлами легкие и прочные сплавы. Алюминий - очень активный металл. Если порошок алюминия или тонкую алюминиевую фольгу сильно нагреть, то они воспламеняются и сгорают ослепительным пламенем :

Эту реакцию можно наблюдать при горении бен­гальских огней и фейерверков. Алюминий, как и все металлы, легко реагирует с неметаллами , особенно в порошкообразном состо­янии. Для того чтобы началась реакция, необхо­димо первоначальное нагревание, за исключением реакций с галогенами - хлором и бромом, зато потом все реакции алюминия с неметаллами идут очень бурно и сопровождаются выделением боль­шого количества теплоты:

Алюминий хорошо растворяется в разбавлен­ных серной и соляной кислотах :

А вот концентрированные серная и азотная кис­лоты пассивируют алюминий , образуя на поверх­ности металла плотную прочную оксидную пленку , которая препятствует дальнейшему протеканию ре­акции. Поэтому эти кислоты перевозят в алюмини­евых цистернах.

Оксид и гидроксид алюминия обладают амфо­терными свойствами , поэтому алюминий растворя­ется в водных растворах щелочей, образуя соли - алюминаты:

Алюминий широко используется в металлур­гии для получения металлов - хрома, марганца, ванадия, титана, циркония из их оксидов. Этот способ носит название алюмотермия. На практике часто применяют термит - смесь Fe 3 O 4 с порош­ком алюминия. Если эту смесь поджечь, например, с помощью магниевой ленты, то происходит энер­гичная реакция с выделением большого количества теплоты:

Выделяющейся теплоты вполне достаточно для полного расплавления образующегося железа, по­этому этот процесс используют для сварки сталь­ных изделий.

Алюминий можно получить электролизом - разложением расплава его оксида Al 2 O 3 на состав­ные части с помощью электрического тока. Но температура плавления оксида алюминия около 2050 °С, поэтому для проведения электролиза не­обходимы большие затраты энергии.

Соединения алюминия

Алюмосиликаты . Эти соединения можно рас­сматривать как соли, образованные оксидом алю­миния, кремния, щелочных и щелочноземельных металлов. Они и составляют основную массу земной коры. В частности, алюмосиликаты входят в состав полевых шпатов - наиболее распространенных ми­нералов и глин.

Боксит - горная порода, из которой получают алюминий. Она содержит оксид алюминия Al 2 O 3 .

Корунд - минерал состава Al 2 O 3 , обладает очень высокой твердостью, его мелкозернистая разновид­ность, содержащая примеси, - наждак, применя­ется как абразивный (шлифовочный) материал. Эту же формулу имеет и другое природное со­единение - глинозем.

Хорошо известны прозрачные, окрашенные примесями, кристаллы корунда: красные - руби­ны и синие - сапфиры, которые используют как драгоценные камни. В настоящее время их получа­ют искусственно и применяют не только для укра­шений, но и для технических целей, например, для изготовления деталей часов и других точных при­боров. Кристаллы рубинов применяются в лазерах.

Оксид алюминия Al 2 O 3 - белое вещество с очень высокой температурой плавления. Может быть по­лучен разложением при нагревании гидроксида алюминия:

Гидроксид алюминия Al(OH) 3 выпадает в виде студенистого осадка при действии щелочей на рас­творы солей алюминия:

Как амфотерный гидроксид он легко растворяется в кислотах и растворах щелочей:

Алюминатами называют соли неустойчивых алюминиевых кислот - ортоалюминиевой H 2 AlO 3 , метаалюминиевой HAlO 2 (ее можно рассматривать как ортоалюминиевую кислоту, от молекулы кото­рой отняли молекулу воды). К природным алюми­натам относится благородная шпинель и драгоцен­ный хризоберилл. Соли алюминия, кроме фосфатов, хорошо растворимы в воде. Некоторые соли (сульфиды, суль­фиты) разлагаются водой. Хлорид алюминия AlCl 3 применяют в качестве катализатора в производстве очень многих органи­ческих веществ.

Элементы III группы в таблицах

Характеристика переходных элементов - меди, цинка, хрома, железа

Медь (Cu) - элемент побоч­ной подгруппы первой груп­пы. Электронная формула: (…3d 10 4s 1). Десятый d-электрон у нее подвижный, т. к. он пере­местился с 4S-подуровня. Медь в соединениях про­являет степени окисления +1 (Cu 2 O) и +2 (CuO). Медь - металл светло-розового цвета, тягучий, вязкий, отличный проводник электричества. Тем­пература плавления 1083 °С.

Как и другие металлы подгруппы I группы пе­риодической системы, медь стоит в ряду активно­сти правее водорода и не вытесняет его из кислот, но реагирует с кислотами-окислителями:

Под действием щелочей на растворы солей меди выпадает осадок слабого основания голубого цвета - гидроксида меди (II), который при нагревании разла­гается на основный оксид CuO черного цвета и воду:

Химические свойства меди в таблицах

Цинк (Zn) - элемент по­бочной подгруппы II группы. Его электронная формула сле­дующая: (…3d 10 4s 2). Так как в атомах цинка предпоследний d-подуровень полностью завершен, то цинк в соединениях проявляет степень окисления +2.

Цинк - металл серебристо-белого цвета, практически не изменяющийся на воздухе. Обладает коррозионной стойкостью, что объясняется наличием на его поверхности оксидной пленки. Цинк - один из активнейших металлов, при повышенной температуре реагирует с простыми веществами :

вытесняет водород из кислот :

Цинк как и другие металлы вытесняет менее активные металлы из их солей :

Zn + 2AgNO 3 = 2Ag + Zn(NO 3) 2

Гидроксид цинка амфотерен , т. е. проявляет свойства и кислоты, и основания. При постепенном приливании раствора щелочи к раствору соли цинка выпавший вначале осадок растворяется (аналогично происходит и с алюминием):

Химические свойства цинка в таблицах

На примере хрома (Cr) можно показать, что свойства переходных элементов меняются вдоль периода не принципиально : происходит количественное изменение, связанное с изменением числа электронов на валентных орбиталях. Максимальная степень окисления хрома +6. Металл в ряду активности стоит левее водорода и вытесняет его из кислот:

При добавлении раствора щелочи к такому рас­твору образуется осадок Me(OH) 2 , который быстро окисляется кислородом воздуха:

Ему соответствует амфотерный оксид Cr 2 O 3 . Ок­сид и гидроксид хрома (в высшей степени окисле­ния) проявляют свойства кислотных оксидов и кис­лот соответственно. Соли хромовой кислоты (H 2 Cr O 4 ) в кислой среде превращаются в дихроматы - соли дихромовой кислоты (H 2 Cr 2 O 7). Соединения хрома обладают высокой окислительной способностью.

Химические свойства хрома в таблицах

Железо Fe - элемент побочной подгруппы VIII группы и 4-го периода периодической системы Д. И. Менделеева. Атомы железа устроены несколько отлично от атомов элементов главных подгрупп. Как и положено элементу 4-го периода, атомы железа имеют четыре энергетических уровня, но заполняется из них не последний, а предпоследний, третий от ядра, уровень. На последнем же уровне атомы железа содержат два электрона. На предпоследнем уровне, который может вместить 18 электронов, у атома железа находятся 14 элекронов. Следовательно, распределение электронов по уровням в атомах железа таково: 2е; 8e ; 14е; 2е. Подобно всем металлам, атомы железа проявляют вос­становительные свойства , от­давая при химических вза­имодействиях не только два электрона с последнего уровня, и приобретая степень окисления +2, но и электрон с предпоследнего уровня, при этом степень окисления атома повышается до +3.

Железо простое вещество

Это серебристо-белый бле­стящий металл с температу­рой плавления 1539 °С. Очень пластичный, поэтому легко обрабатывается, куется, про­катывается, штампуется. Же­лезо обладает способностью намагничиваться и размагни­чиваться. Ему можно придать большую прочность и твер­дость методами термического и механического воздействия. Различают технически чистое и химически чистое железо. Технически чистое железо, по сути, представляет собой низкоуглеродис­тую сталь, оно содержит 0,02-0,04 % углерода, а кислорода, серы, азота и фосфора - еще меньше. Химически чистое железо содержит менее 0,01 % примесей. Из технически чистого железа сделаны, например, канцелярские скрепки и кнопки. Такое железо легко корродирует, в то время как химичес­ки чистое железо почти не подвергается коррозии. В настоящее время железо - это основа совре­менной техники и сельскохозяйственного машино­строения, транспорта и средств связи, космических кораблей и вообще всей современной цивилизации. Большинство изделий, начиная от швейной иглы, и заканчивая космическими аппаратами, не может быть изготовлено без применения железа.

Химические свойства железа

Железо может проявлять степени окисления +2 и +3 , соответственно, железо дает два ряда соеди­нений. Число электронов, которое атом железа от­дает при химических реакциях, зависит от окисли­тельной способности реагирующих с ним веществ.

Например, с галогенами железо образует галоге­ниды, в которых оно имеет степень окисления +3:

а с серой - сульфид железа (II):

Раскаленное железо сгорает в кислороде с об­разованием железной окалины:

При высокой температуре (700-900 °С) железо реагирует с парами воды :

В соответствии с положением железа в электро­химическом ряду напряжений оно может вытес­нить металлы, стоящие правее него, из водных растворов их солей , например:

В разбавленных соляной и серной кислотах же­лезо растворяется , т. е. окисляется ионами водорода:

Растворяется железо и в разбавленной азотной кислоте , при этом образуется нитрат железа (III), вода и продукты восстановления азотной кисло­ты - N 2 , NO или NH 3 (NH 4 NO 3) в зависимости от концентрации кислоты.

Соединения железа

В природе железо образует ряд минералов. Это магнитный железняк (магнетит) Fe 3 O 4 , красный железняк (гематит) Fe 2 O 3 , бурый железняк (лимо­нит) 2Fe 2 O 3 3H 2 O. Еще одно природное соединение железа - же­лезный, или серный, колчедан (пирит) FeS 2 , не служит железной рудой для получения металла, но применяется для производства серной кислоты.

Для железа характерны два ряда соединений: соединения железа (II) и железа (III). Оксид железа (II) FeO и соответствующий ему гидроксид железа (II) Fe(OH) 2 получают косвенно, в частности, по следующей цепи превращений:

Оба соединения имеют ярко выраженные основ­ные свойства.

Катионы железа (II) Fe 2 + легко окисляются кис­лородом воздуха до катионов железа (III) Fe 3 + . По­этому белый осадок гидроксида железа (II) приоб­ретает зеленую окраску, а затем становится бурым, превращаясь в гидроксид железа (III):

Оксид железа (III) Fe 2 O 3 и соответствующий ему гидроксид железа (III) Fe(OH) 3 также получают косвенно, например, по цепочке:

Из солей железа наибольшее техническое зна­чение имеют сульфаты и хлориды.

Кристаллогидрат сульфата железа (II) FeSO 4 7H 2 O, известный под названием железный ку­порос, применяют для борьбы с вредителями рас­тений, для приготовления минеральных красок и в других целях. Хлорид железа (III) FeCl 3 ис­пользуют в качестве протравы при крашении тка­ней. Сульфат железа (III) Fe 2 (SO 4) 3 9H 2 O применя­ется для очистки воды и в других целях.

Физические и химические свойства железа и его соединений обобщены в таблице:

Химические свойства железа в таблицах

Качественные реакции на ионы Fe 2+ и Fe 3+

Для распознавания соединений железа (II) и (III) проводят качественные реакции на ионы Fe 2+ и Fe 3+ . Качественной реакцией на ионы Fe 2+ служит реакция солей железа (II) с соединением K 3 , называемым красной кровяной солью. Это особая группа солей, которые называются ком­плексными, с ними вы познакомитесь в дальней­шем. Пока же нужно усвоить, как диссоциируют такие соли:

Реактивом на ионы Fe 3+ является другое ком­плексное соединение - желтая кровяная соль - K 4 , которая в растворе диссоциирует ана­логично:

Если в растворы, содержащие ионы Fe 2+ и Fe 3+ , добавить, соответственно, растворы красной кро­вяной соли (реактив на Fe 2+) и желтой кровяной соли (реактив на Fe 3+), то в обоих случаях выпада­ет одинаковый синий осадок:

Для обнаружения ионов Fe 3+ еще используют взаимодействие солей железа (III) с роданидом ка­лия KNCS или аммония NH 4 NCS. При этом образу­ется ярко окрашенный ион FeNCNS 2+ , в результате чего весь раствор приобретает интенсивно красный цвет:

Таблица растворимости

Состоящие из атомов одного химического элемента. В таблице Менделеева металлические свойства элементов возрастают справа налево. Все чистые металлы (как элементы) - являютя простыми веществами.

Кристаллический кремний - полупроводник Фотоэффект

Различают физические и химические свойства металлов . В общем случае, свойства металлов достаточно разнообразны. Различают металлы щелочные , щелочноземельные , чёрные , цветные , лантаноиды (или редкоземельные - близкие по химическим свойствам к щелочноземельным), актиноиды (большинство из них - радиоактивные элементы), благородные и платиновые металлы. Кроме того, отдельные металлы проявляют как металлические, так и неметаллические свойства. Такие металлы - амфотерные (или как говорят - переходные).

Практически все металлы имеют некоторые общие свойства: металлический блеск, строение кристаллической решётки, способность в химических реакциях проявлять свойства восстановителя, при этом окисляясь. В химических реакциях ионы растворённых металлов при взаимодействии с кислотами образуют соли, при взаимодействии с водой (в зависимости от активности металла) образуют щёлочь или основание.

Почему блестят металлы

В узлах кристаллической решётки металлов содержатся атомы. Электроны, движущиеся вокруг атомов, образуют "электронный газ" который свободно может перемещаться в разных направлениях. Это свойство объясняет высокую электропроводность и теплопроводность металлов.

Электронный газ отражает почти все световые лучи. Именно поэтому металлы так сильно блестят и чаще всего имеют серый или белый цвет. Связи между отдельными слоями металла невелики, что позволяет перемещать эти слои под нагрузкой в разных направлениях (по-другому - деформировать металл). Уникальным металлом является чистое золото. С помощью ковки из чистого золота можно сделать фольгу толщиной 0,002 мм! такой тончайший листочек металла полупрозрачен и имеет зелёный оттенок если смотрень через него на солнечный свет.

Электрофизическое свойство металлов выражено в его электропроводности. Принято считать, что все металлы имеют высокую электропроводность , то есть хорошо проводят ток! Но это не так, да и к тому же, всё зависит от температуры, при которой замеряют ток. Представим себе кристаллическую решётку металла, в которой ток передаётся с помощью движения электронов. Электроны движутся от одного узла кристаллическрой решётки к другому. Один электрон "выталкивает" из узла решётки другой электрон, который продолжает двигаться к другому узлу решётки и т.д. То есть электропроводность также зависит от того, насколько легко электроны могут перемещаться между узлов решётки. Можно сказать, что электропроводность металла зависит от кристаллического строения решётки и плотности расположения в ней частиц. Частицы в узлах решётки имеют колебания, и эти колебания тем больше, чем выше температура металла. Такие кролебания значительно препятствуют перемещению электронов в кристаллической решётке. Таким образом, чем ниже температура металла, тем выше его способность проводить ток!

Отсюда вытекает понятие сверхпроводимости , которое наступает в металле при температуре близкой к абсолютному нулю! При абсолютном нуле (-273 0 C) колебания частиц в кристаллической решётке металла полностью затухают!

Электрофизическое свойство металлов , связанное с прохождением тока, называют температурным коэффициентом электросопротивления !

Электрофизическое свойство металлов

Электрофизическое свойство металлов

Установлен интересный факт, что, например у свинца (Pb) и ртути (Hg) при температуре, которая выше абсолютного нуля всего на несколько градусов, почти полностью исчезает электросопротивление, то есть наступает условие сверхпроводимости.

Самую высокую электропроводность имеет серебро (Ag), затем медь (Cu), далее идёт золото (Au) и алюминий (Al). С высокой электропроводностью этих металлов связано их использование в электротехнике. Иногда, для обеспечения химической стойкости и антикоррозионных свойств используют именно золото (позолоченные контакты).

Надо отметить, что электропроводность металлов значительно выше, чем электропроводность неметаллов. Вот например, углерод (С - графит) или кремний (Si) имеют электропроводность в 1000 раз меньше, чем, например, у ртути. Кроме того, неметаллы , в своём большинстве не являются проводниками электричества. Но среди неметаллов встречаются полупроводники: германий (Ge), кремний кристаллический, а также некоторые оксиды, фосфиты (химические соединения металла с фосфором) и сульфиды (химические соединения металла и серы).

Вам, наверное, знакомо явление - это свойство металлов под действием температуры или света отдавать электроны.

Что касается теплопроводности металлов, то её можно оценить из таблицы Менделеева, - она распределяется точно также, как электроотрицательность металлов. (Металлы, находящиеся слева вверху имеют наибольшую электроотрицательность, например, электроотрицательность натрия Na равна -2,76 В). В вою очередь, теплопроводность металлов объясняется наличием свободных электронов, которые переносят тепловую энергию.

Металлы

Металлы относятся к основным природным материалам используемым человечеством.

Металлургия – одна из базовых отраслей промышленности, определяющих экономический и военный потенциал страны. Создаются новые сплавы с заданными свойствами, в качестве добавок используются различные металлы.

Около 80% всех известных химических элементов ПСЭ составляют металлы. Наиболее распространенными металлами являются: Al – 8,8%; Fe – 4,0%; Ca – 3,6%; Na – 2,64%; K – 2,6%; Mg – 2,1%; Ti – 0,64%.

Для металлов характерны свой специфические свойства, отличающие их от металлоидов: пластичность, высокая тепло - и электропроводность , твердость, для большинства металлов высокая температура плавления и кипения, металлический блеск.

Пластичностью называется способность металлов под действием внешних сил подвергаться деформации, которая остается и после прекращения этого действия. Благодаря пластичности металлы подвергаются ковке, прокатке, штамповке. Металлы имеют различную пластичность.

Металлический блеск. Гладкая поверхность металлов отражает световые лучи. Чем меньше она эти лучи поглощает, тем больше металлический блеск. По блеску металлы можно расположить в следующий ряд: Ag, Pd, Cu, Au, Al, Fe.

На этом свойстве металлов основано производство зеркал.

Металлы характеризуются также высокой тепло - и электропроводностью . По электропроводности I место занимает Ag, Cu, Al.

С повышением температуры электропроводность уменьшается , так как усиливается колебательное движение ионов в узлах кристаллической решетки, что препятствует направленному движению электронов.

С понижением температуры электропроводность увеличивается и в области близкой к абсолютному нулю у многих металлов наблюдается сверхпроводимость.

Причиной общности физических и химических свойств металлов объясняется общностью строения их атомов и природой кристаллических решеток металлов.

Атомы металлов имеют большее, по сравнению с неметаллами размеры. Внешние электроны атомов металлов значительно удалены от ядра и связаны с ним слабо, поэтому металлы имеют низкие потенциалы ионизации (являются восстановителями).

Специфические свойства металлов – пластичность, тепло - и электропроводность, блеск объясняются тем, что в металлах имеются «свободные» электроны, способные перемещаться по всему кристаллу.

Для металлов характерна металлическая связь (она объясняется на основе метода МО).

Физические свойства металлов.

Все металлы, за исключением ртути, при обыкновенной температуре являются твердыми веществами с характерным металлическим блеском.

Большинство металлов имеют цвет от темно-серого, до серебристо-белого. Золото и цезий имеют желтый цвет, совершенно чистая медь – светло-розовый, некоторые металлы обладают красноватым оттенком (висмут).

Плотность металлов может колебаться в широких пределах; например плотность Li = 0,53г/см3 (самый легкий), а Os является самым тяжелым металлом 22,48г/см3.

В пределах одной подгруппы аналогов величины плотностей, как правило, растут с возрастанием заряда ядра атома.

В технике металлы классифицируются по плотности: легкие, тяжелые, легкоплавкие и тугоплавкие.

Нахождение в природе.

В природе металлы встречаются как в самородном состоянии, так и в виде различных соединений. В самородном состоянии находятся только химически малоактивные металлы – Pt, Ag, Au. Химически активные металлы встречаются только в виде различных соединений – руд.

Руды бывают: окисные, сульфидные и соли.

Предварительно руду обогащают, то есть отделяют от пустой породы. Самый распространенный метод – флотационный , он основан на различной смачиваемости поверхности минералов водой.

Методы извлечения минералов из руд определяются их химическим составом. Все способы получения металлов сводятся к реакциям окисления – восстановления.

Карботермия. В этом методе получения металлов восстановителем служит углерод - самый дешевый и самый доступный. Углерод применяют в виде кокса, а окисленный углерод легко удаляется в виде СО2.

Углерод применяется для восстановления сравнительно малоактивных металлов: Fe, Cu, Zn, Pb.

При восстановлении углеродом смеси железной руды с оксидами Cr, Mo, W или Mn в промышленности получают сплавы, содержащие примерно 70% указанных металлов и очень небольшое количество углерода. Это ферросплавы, служат для получения специальных легированных сталей . Для восстановления углеродом пригодны только окиси.

Сульфидные руды (цинковые, свинцовые, медные) сначала подвергают окислительному прокаливанию:

2ZnS + 2O2 → 2ZnO + SO2

Li, Ca, Ba также, как и металлы III группы, не могут быть получены восстановлением углеродом, так как они сразу же после выделения в свободном состоянии с избытком углерода образуют карбиды.

Металлотермия. Основана на процессах вытеснения одного металла (менее активного) другим (более активным) из соответствующих окислов, хлоридов, сульфидов.

Очень хорошим восстановителем окислов металлов вследствие большого сродства к кислороду является алюминий . Процесс называется алюминотермия.

Fe2O3 + 2Al = Al2O3 + 2Fe

Алюминотермией получают и другие металлы (Mn, Cr, Ti), которые не могут быть получены в чистом виде восстановлением их окисей углем из-за образования карбидов. В алюмотермической реакции выделяется большое количество тепла за очень короткое время, вследствие чего развивается высокая температура.

Электролитическое или катодное восстановление металлов. Для трудновосстанавливаемых металлов уголь как восстановитель непригоден и в этом случае применяют катодное восстановление, то есть выделение путем электролиза. Такие металлы могут окисляться водой, поэтому их соединения подвергаются электролизу не в водных растворах, а в расплавах или растворах других растворителей.

Например, металлические Na, K, Ba, Ca, Mg, Be получают электролизом расплавов соответствующих хлоридов.

Получение металлов высокой чистоты.

В связи с бурным развитием техники потребовались металлы, обладающие очень высокой чистотой. Например, для надежной работы ядерного реактора необходимо, чтобы в расщепляющихся материалах такие примеси как бор, кадмий и др., содержались в количестве, не превышающих миллионных долей процента. Чистый цирконий – один из лучших конструкционных материалов для атомных реакторов – становится совершенно непригодным для этой цели, если в нем содержится даже ничтожная примесь гафния.

Перегонка в вакууме . Этот метод основан на различной летучести очищаемого металла и имеющихся в нем примесей. Исходный металл загружается в специальный сосуд, соединенный с вакуумным насосом и в сосуде создают вакуум, после чего нижняя часть сосуда нагревается. На холодных частях сосуда осаждаются либо примеси, либо чистый металл, в зависимости от того, что является более летучим.

Термическое разложение.

1. Карбонильный процесс. Этот процесс используют в основном для получения чистого никеля и чистого железа. Металл содержащий примеси, нагревают в присутствии СО (окиси углерода) и получающийся летучий карбонил отгоняют от нелетучих примесей. Затем карбонилы разлагают при более высоких температурах с образованием высокочистых металлов.

2. Йодистый процесс дает возможность получать такие металлы, как цирконий, титан.

3. Очистка металла (обычно содержащего в качестве примесей окисел) в вакууме при нагревании его до очень высокой температуры при помощи электрической дуги.

Зонная плавка. Этот метод заключается в протягивании бруска неочищенного Германия через узкую печь; образующаяся при этом расплавленная зона, по мере продвижения бруска через нее перемещается вдоль него и уносит за собой примеси.

Многократным повторением этого процесса можно достигнуть высокой степени чистоты.

Химические свойства металлов.

У металлов отсутствует способность присоединять электроны, следовательно металлы являются восстановителями. Мерой химической активности металлов является энергия ионизации J.

Окислителями металлов могут быть: элементарные вещества, кислоты, соли менее активных металлов и т. д.

1. Взаимодействие с элементарными веществами.

2. Взаимодействие с кислотами:

а) Окислитель – ион Н+ (HCl, H2SO4 (разб.) и т. д.);

б) Окислитель анион кислоты (к таким кислотам относятся HNO3 и H2SO4 (конц.);

в) Взаимодействие с водой;

г) Взаимодействие со щелочами;

д) Взаимодействие с растворами солей.

Оксиды металлов

Все атомы кислорода непосредственно связаны с атомами металла и не связаны друг с другом: Ме * О2.

Классификация оксидов металлов

Основные – оксиды наиболее активных металлов (s - элементы I и II групп) – связь ионная: Na2O, K2O, CaO, MgO и т. д.

Их свойства: а) взаимодействуют с кислотами; б) с кислотными оксидами; в) с водой.

Амфотерные оксиды (менее активных металлов и d - элементов): Al2O3, ZnO, Cr2O3 и т. д.

Их свойства: а) взаимодействие с кислотами; б) взаимодействие со щелочами.

Кислотные – оксида малоактивных металлов в высших степенях окисления (CrO3, Mn2O7 и др.). Их свойства: а) взаимодействие с водой, образуя кислоты; б) взаимодействуют с основаниями (щелочами).

Характер изменения свойств оксидов

В пределах одного периода происходит ослабление основных свойств через амфотерные и усиление кислотных слева на право.

В группе у одного и того же элемента наблюдается такое же изменение свойств.

Получение оксидов.

1. Непосредственное окисление металлов – горение.

Са + О = СаО

4Na + O2 = 2Na2O

2. Окисление сульфидов.

ZnS + O2 = ZnO + SO2

3. Окисление оксидами других элементов, если теплота образования получающегося оксида больше теплоты образования исходного (металлотермия).

Al + Cr2O3 = Cr + Al2O3 + Q

4. Обезвоживание соответствующих гидроксидов.

Al(OH)3 Al2O3 + H2O

5. Термическое разложение карбонатов, нитратов, сульфатов и других солей.

СаСО3 СаО + СО2

Гидроксиды металлов.

Классификация: основные, амфотерные, кислотные (соответствуют оксидам).

Характер изменения свойств в природе – аналогично оксидам.



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...