Поглотит ли чёрная дыра нашу галактику? Наша планета и черные дыры. Чем на самом деле являются чёрные дыры

Ученые подозревали, что мощность радиоизлучающих выбросов из черной дыры зависит от скорости аккреции, но ранее не наблюдали эту связь непосредственно.

Like Love Haha Wow Sad Angry

11 ноября 2014 года глобальная сеть телескопов получила сигналы от взрыва, возникшего в 300 миллионах световых лет от Земли в момент, когда черная дыра разорвала проходящую мимо нее звезду. Астрономы нацелились на событие другими телескопами, что позволило больше узнать о том, как черные дыры поглощают материю и регулируют рост галактик.

Ученые из Массачусетского технологического института (США) и Университета Джона Хопкинса (США) поймали радиосигналы, на 90% пересекающиеся с теми далекими рентгеновскими всплесками, но происходящие с задержкой в 13 дней от них. Они считают, что данные свидетельствуют о гигантской струе высокоэнергетических частиц, вытекающих из черной дыры в результате падения звездного материала.

Поглощение звезды черной дырой в представлении художника. Credit: ESO/L. Calçada

Ведущий автор исследования Дехей Пашам считает, что мощность струи, вылетающей из черной дыры, каким-то образом контролируется скоростью, с которой она питается разрушенной звездой. «Сытая» черная дыра создает сильную струю, в то время как недоедающая черная дыра производит слабый джет или вообще не имеет его. Ученые подозревали, что мощность выбросов зависит от скорости аккреции, но ранее не наблюдали эту связь непосредственно.

Предмет обсуждений

Основываясь на теоретических моделях эволюции черных дыр в сочетании с наблюдениями отдаленных галактик, ученые имеют общее понимание того, что происходит во время события приливного разрушения: когда звезда проходит близко к черной дыре, гравитационная тяга черной дыры возбуждает приливные силы на звезде, подобно тому, как Луна создает океанические приливы на Земле. Гравитация черной дыры настолько огромна, что она может разрушить звезду. Звездные обломки попадают в вихрь материала, который питает монстра.

Весь процесс генерирует колоссальные всплески энергии по всему электромагнитному спектру. Ученые наблюдали их на оптических, ультрафиолетовых и рентгеновских полосах, а также на радиоволнах. Источником рентгеновских излучений считается ультрахолодный материал внутренних областей аккреционного диска, который вот-вот упадет в черную дыру, а оптическое и ультрафиолетовое излучение, вероятно, поступает от внешних областей аккреционного диска.

Однако то, что порождает радиоизлучение в период приливного разрушения, еще обсуждается. Некоторые ученые предполагают, что в момент звездного взрыва ударная волна распространяется наружу и возбуждает частицы плазмы в окружающей среде, которая, в свою очередь, излучает радиоволны. При таком сценарии картина радиоволн будет радикально отличаться от картины рентгеновских лучей, исходящих от звездных обломков, и новое исследование бросает вызов этой парадигме.

Картина сдвига

Дехей Пашам и его коллега Сьорт ван Велцен из Университета Джона Хопкинса просмотрели данные, зарегистрированные в результате вспышки , обнаруженной в 2014 году глобальной сетью телескопов ASASSN (All-sky Automated Survey for Supernovae). Вскоре после этого открытия несколько телескопов сосредоточились на этом необычном событии. Ученые проследили радионаблюдения трех телескопов за 180 дней и обнаружили явное совпадение с рентгеновскими данными того же события, хотя и несколько смещенное по времени. Астрономы установили, что наборы данных обладают 90-процентным сходством при сдвиге на 13 дней. То есть флуктуации в рентгеновском спектре через 13 дней проявились в радиодиапазоне.

«Определить такую зависимость может только физический процесс, который каким-то образом связывает рентгеновское излучение потока аккреции с областью радиопроизводства», – объясняет Дехей Пашам.

Из этих же данных ученые подсчитали, что размер производящей рентгеновские лучи области примерно в 25 раз превышает размер Солнца, тогда как радиоизлучающая область примерно в 400 000 раз превышает радиус Солнца. Команда предполагает, что радиоволны испускаются струей частиц высоких энергий, которые начали вытекать из черной дыры вскоре после поглощения материала уничтоженной звезды.

Поскольку область джета, в которой радиоволны были сформированы, невероятно плотно заполнена электронами, большая часть излучения была немедленно поглощена другими электронами. Только когда электроны продвинулись по джету, радиоволны были высвобождены. Это и был сигнал, который в конечном итоге обнаружили исследователи. Таким образом, мощность струи контролируется скоростью аккреции, с которой черная дыра поглощает звездные обломки, излучающие в рентгеновском диапазоне.

Астрофизики зафиксировали самую долгую за всю историю наблюдений гибель звезды в чёрной дыре - продолжительность процесса превысила аналогичные случаи более чем в 10 раз. Дело в том, что чёрная дыра поглощает звезду вдвое больше Солнца по массе. По словам учёных, за время активного наблюдения за Вселенной гибель такой крупной звезды в чёрной дыре наблюдается впервые. О том, сможет ли обнаруженный процесс пролить свет на образование чёрных дыр огромной массы через миллиард лет после возникновения Вселенной - в материале RT.

  • Гибель звезды у чёрной дыры XJ1500+0154 в представлении художника. В нижней части - фото происходящего: в видимом спектре (слева), в рентгеновском диапазоне
  • nasa.gov

Случайное открытие

Процесс зафиксировала международная группа учёных , работой которых руководил Дачен Лин из Космического научного центра университета Нью-Гемпшира. Аналогичные события на памяти учёных занимали максимум около года, в то время как процесс, происходящий у чёрной дыры под названием XJ1500+0154, начался ещё в 2005 году. Погибшую под действием приливных сил звезду разорвало на части, и сверхмассивная чёрная дыра продолжает поглощать её остатки.

Рентгеновское излучение, испускаемое разогретыми до миллионов градусов осколками звезды, астрофизики заметили случайно при помощи космического телескопа XMM-Newton. В тот момент они изучали скопление галактик под названием NGC 5813 в созвездии Девы в 105 миллионах световых лет от Земли. Сильное излучение привлекло внимание учёных на этапе анализа снимков NGC 5813. В 2008 году телескоп «Чандра» зафиксировал, что интенсивность излучения объекта, случайно попавшего на снимок и находившегося гораздо дальше изучаемого скопления галактик, превысила первые зафиксированные значения в 100 раз. В последующие годы, включая 2014-й и 2016-й, дополнительные данные получил телескоп Swift.

Главное — правильно питаться

«Большую часть времени наблюдения объект быстро растёт, — отметил Джеймс Гиллочон из Гарвард-Смитсоновского центра астрофизики. — Это говорит кое о чём необычном: чёрная дыра поглощает звезду вдвое больше Солнца по массе».

По словам учёных, за время активного наблюдения за Вселенной гибель такой крупной звезды в чёрной дыре наблюдается впервые.

Кроме того, исследователи отметили, что регистрируемое рентгеновское излучение регулярно выходит за допустимые рамки так называемого предела Эддингтона. Этот параметр указывает на соотношение испускаемого нагретого вещества и силы тяготения, которая притягивает вещество к центру объекта. Исходя из того, как нарушается это соотношение около наблюдаемой чёрной дыры, астрофизики пришли к выводу, что она растёт быстрее считавшегося нормальным темпа. По их словам, подобным образом могли появляться сверхмассивные чёрные дыры спустя всего миллиард лет после образования Вселенной. Это важный вывод, поскольку древние объекты такой огромной массы — в миллиарды раз больше Солнца — уже фиксировались, но их возникновение до конца не ясно.

С 1990 годов астрономы не раз наблюдали распад звезды и поглощение её чёрной дырой. При этом процессе, попав под действие силы притяжения массивного объекта, звезда распадается на фрагменты. Вещество, из которого она состояла, распределяется в виде плоского диска. Большую его часть и поглощает чёрная дыра, а остальное рассеивается в пространстве.

В зафиксированном случае помимо гибели массивной звезды есть и другой вариант, не менее интригующий. Если бы к чёрной дыре приблизилась звезда более скромных размеров и распалась бы полностью, наблюдаемый эффект был бы тот же. Обычно полного поглощения не происходит, так что это событие увидели бы впервые за время исследования космоса.

Последние рентгеновские лучи

Место, где расположена чёрная дыра, которую в шутку уже называют самой прожорливой из когда-либо наблюдавшихся, совпадает с предположительным расположением космического объекта огромной массы в центре небольшой галактики, где активно идёт образование звёзд. О детальных снимках происходящего на таком расстоянии от Земли — 1,8 млрд световых лет — очевидно, говорить не приходится. Однако своё видение гибели огромной звезды из-за чёрной дыры представили художники.

В следующие несколько лет специалисты ожидают падения интенсивности излучения: осколки огромной звезды, которыми питается чёрная дыра, будут заканчиваться. Часть из них рассеется в космосе. Астрофизики отмечают, что излучение уже пошло на спад, однако объект всё еще сохраняет невероятную яркость.

Как заявили исследователи, зная о возможности процессов со свойствами, которые удалось установить, они приступят к поиску аналогичных случаев. Однако они отмечают, что продолжат следить и за XJ1500+0154. Во-первых, они смогут отследить изменения излучения, которое, по их прогнозам, будет продолжаться ещё около 10 лет. Во-вторых, их собственные выводы пока ещё нуждаются в дополнительной проверке.

Случайно оказавшись слишком близко к черной дыре, вас растянет, как спагетти
Мощное излучение поджарит вас, прежде чем вы «спагеттизируетесь»
Вы даже не успеете заметить, как черная дыра поглотит Землю
И вместе с этим, черная дыра может создать голограмму всей планеты

Черные дыры давно уже вызывают большое волнение и интриги.

После обнаружения гравитационных волн, интерес к черным дырам, безусловно, теперь возрастет.

Неизменным остается один вопрос – что же произойдет с планетой и человечеством, если теоретически предположить, что черная дыра окажется рядом с Землей?

Самым известным последствием соседства черной дыры станет явление под названием «спагеттификация». Короче говоря, если вы окажетесь слишком близко к черной дыре, вас растянет, как спагетти. Этот эффект вызван действием гравитации на ваше тело.

Представьте, что сначала в направлении черной дыры оказались ваши ноги.

Так ваши ноги находятся ближе к черной дыре, они будут чувствовать более сильное притяжение, чем ваша голова.

Хуже того, ваши руки из-за того, что они находятся не в центре вашего тела, будут растянуты в другом направлении, чем ваша голова. Края вашего тела втянутся внутрь. В конечном итоге ваше тело не только растянется, но и станет тонким посредине.

Следовательно, любое тело или другой объект, такой как Земля, станет напоминать спагетти задолго до того, как попадет в центр черной дыры.

Что случилось бы, гипотетически, если черная дыра вдруг оказалась бы рядом с Землей?

Те же гравитационные эффекты, которые могут привести к «спагеттификации», тут же начнут вступать в силу. На ту сторону Земли, которая окажется ближе к черной дыре, гравитационные силы будут действовать сильнее, чем на противоположную сторону. Таким образом, гибель всей планеты была бы неминуемой. Ее разорвало бы.

Если бы планета оказалась в радиусе действия сверхмощной черной дыры, мы даже не успели бы ничего заметить, так как она проглотила бы нас в одно мгновение.

Но, прежде чем гром грянет, у нас еще есть время.

Если бы случилась такая неудача, и мы провалились бы в черную дыру, то могли бы оказаться на голографическом подобии нашей планеты.

Интересно, что черные дыры не обязательно черные.

Квазары – это яркие ядра далеких галактик, питающиеся энергией излучения черных дыр.

Они бывают настолько яркими, что превышают мощность излучения всех звезд своих собственных галактик.

Такое излучение проявляется, когда черная дыра пирует над новой материей.

Чтобы было понятно: то, что мы до сих пор можем видеть, это материя, находящаяся вне радиуса действия черной дыры. В радиусе ее действия нет ничего, даже света.

Во время поглощения материи, излучается колоссальная энергия. Именно это свечение видно при наблюдении за квазарами.

Поэтому, объектам, оказавшимся в непосредственной близости к черной дыре, будет очень жарко.

Задолго до «спагеттификации» мощное излучение поджарит вас.

Для тех, кто смотрел фильм Кристофера Нолана «Интерстеллар», перспектива планеты, вращающейся вокруг черной дыры, может быть привлекательна только в одном случае.

Для развития жизни необходим источник энергии или перепад температур. И черная дыра может оказаться таким источником.

Однако, есть одно условие.

Черная дыра должна прекратить поглощать любую материю. Иначе она будет испускать слишком много энергии, чтобы поддерживать жизнь на соседних мирах. На что будет похожа жизнь в таком мире (при условии, что он будет находиться не слишком близко, иначе «спагеттизируется»), но это уже другой вопрос.

Количество энергии, которую будет получать планета, скорее всего, будет крошечным по сравнению с тем, что получает Земля от Солнца.

И среда обитания на такой планете будет довольно странной.

Вот поэтому, при создании фильма «Интерстеллар», Торн консультировался с учеными для обеспечения точности изображения черной дыры.

Все эти факторы не исключают жизнь, просто у нее довольно жесткая перспектива и очень трудно предсказать, как она будет выглядеть.

Черные дыры — единственные космические тела, способные притягивать силой гравитации свет. Они же являются самыми большими объектами Вселенной. Мы вряд ли в ближайшее время узнаем, что происходит возле их горизонта событий (известного как «точка невозврата»). Это самые таинственные места нашего мира, о которых, несмотря на десятилетия исследований, до сих пор известно очень мало. В этой статье собраны 10 фактов, которые можно назвать наиболее интригующими.

Черные дыры не втягивают в себя материю

Многие представляют черную дыру своеобразным «космическим пылесосом», втягивающим в себя окружающее пространство. На самом деле, черные дыры — это обычные космические объекты, обладающие исключительно сильным гравитационным полем.

Если бы на месте Солнца возникла черная дыра таких же размеров, Земля не была бы втянута внутрь, она вращалась бы по той же орбите, что и сегодня. Расположенные рядом с черными дырами звезды теряют часть массы в виде звездного ветра (это происходит в процессе существования любой звезды) и черные дыры поглощают только эту материю.

Существования черных дыр было предсказано Карлом Шварцшильдом

Карл Шварцшильд был первым, кто применил общую теорию относительности Эйнштейна, для того, чтобы обосновать существование «точки невозврата». Сам Эйнштейн не задумывался о черных дырах, хотя его теория позволяет предсказать их существование.

Шварцшильд сделал свое предположение в 1915 году, сразу вслед за тем, как Эйнштейн опубликовал общую теорию относительности. Тогда же возник термин «радиус Шварцшильда» - это величина, которая показывает, как сильно вам придется сжать объект, чтобы он стал черной дырой.

Теоретически, черной дырой может стать все, что угодно, при достаточной степени сжатия. Чем плотнее объект, тем более сильное гравитационное поле он создает. Например, Земля стала бы черной дырой, если бы ее массой обладал объект величиной с арахис.

Черные дыры могут порождать новые вселенные


Мысль о том, что черные дыры могут порождать новые вселенные кажется абсурдной (тем более, что мы все еще не уверены в существовании других вселенных). Тем не менее, подобные теории активно разрабатываются учеными.

Очень упрощенная версия одной из этих теорий заключается в следующем. Наш мир обладает исключительно благоприятными условиями для появления в нем жизни. Если бы какие-либо из физических констант изменились хотя бы чуть-чуть, нас бы не было в этом мире. Сингулярность черных дыр отменяет обычные законы физики и может (по крайней мере, в теории) породить новую вселенную, которая будет отличаться от нашей.

Черные дыры могут превратить вас (и все, что угодно) в спагетти


Черные дыры растягивают предметы, которые находятся рядом с ними. Эти предметы начинают напоминать спагетти (есть даже специальный термин - «спагеттификация»).

Это происходит благодаря тому, как работает сила притяжения. В настоящий момент ваши ноги находятся к центру Земли ближе, чем голова, поэтому они притягиваются сильнее. На поверхности черной дыры разница в силе притяжении начинает работать против вас. Ноги притягиваются к центру черной дыры все быстрее, так, что верхняя половина туловища не успевает за ними. Результат: спагеттификация!

Черные дыры испаряются со временем


Черные дыры не только поглощают звездный ветер, но и испаряются. Это явление было открыто в 1974 году и было названо излучением Хокинга (по имени Стивена Хокинга, сделавшего открытие).

Со временем черная дыра может отдать всю свою массу в окружающее пространство вместе с этим излучением и исчезнуть.

Черные дыры замедляют время вблизи себя


По мере приближения к горизонту событий время замедляется. Чтобы понять, почему это происходит, нужно обратиться к «парадоксу близнецов», мысленному эксперименту, часто используемому для иллюстрации основных положений общей теории относительности Эйнштейна.

Один из братьев-близнецов остается на Земле, а второй улетает в космическое путешествие, двигаясь со скоростью света. Вернувшийся на Землю близнец обнаруживает, что его брат постарел больше, чем он, потому что при движении на скорости, близкой к скорости света, время идет медленнее.

Приближаясь к горизонту событий черной дыры, вы будете двигаться с такой высокой скоростью, что время для вас замедлится.

Черные дыры являются самыми совершенными энергетическими установками


Черные дыры генерируют энергию лучше, чем Солнце и другие звезды. Это связано с материей, вращающейся вокруг них. Преодолевая горизонт событий на огромной скорости, материя на орбите черной дыры разогревается до крайне высоких температур. Это называется излучением абсолютно черного тела.

Для сравнения, при ядерном синтезе в энергию превращается 0,7% материи. Вблизи черной дыры энергией становятся 10% материи!

Черные дыры искривляют пространство рядом с собой

Пространство можно представить себе как растянутую резиновую пластинку с нарисованными на ней линиями. Если на пластинку положить какой-нибудь объект, она изменит свою форму. Так же работают и черные дыры. Их экстремальная масса притягивает к себе все, включая свет (лучи которого, продолжая аналогию, можно было бы назвать линиями на пластинке).

Черные дыры ограничивают количество звезд во Вселенной


Звезды возникают из газовых облаков. Для того, чтобы началось формирование звезды, облако должно остыть.

Излучение абсолютно черных тел мешает газовым облакам остывать и предотвращает появление звезд.

Теоретически, любой объект может стать черной дырой


Единственное отличие нашего Солнца от черной дыры — сила гравитации. В центре черной дыры она намного сильнее, чем в центре звезды. Если бы наше Солнце было сжато до примерно пяти километров в диаметре, оно могло бы быть черной дырой.

Теоретически, черной дырой может стать все, что угодно. На практике же мы знаем, что черные дыры возникают только в результате коллапса огромных звезд, превышающих Солнце по массе в 20-30 раз.

Доктор Джейн Лисин Дай и профессор Энрико Рамирес-Руис из Института Нильса Бора представили важную компьютерную модель. С ее помощью можно изучить событие приливного разрушения – редкие, но крайне мощные события в галактических центрах.

Приливные разрушения

В центре каждой крупной галактики скрывается сверхмассивная черная дыра, которая по массе превосходит солнечную в миллионы и миллиарды раз. Но большую часть сложно наблюдать, потому что они не выделяют излучения. Это случается того, когда определенная форма материала втягивается в крайне мощное гравитационное поле черной дыры. Примерно каждые 10000 лет в одной галактике звезда приближается на опасную дистанцию к дыре, и гравитация последней разрывает объект. Это событие называют гравитационным приливом.

При этом процессе черная дыра переполняется звездными осколками на определенное время. При поглощении звездного газа высвобождается огромное количество излучения. Благодаря этому можно изучить характеристики дыры.

Объединенная модель

В период прилива некоторые дыры излучают рентгеновские лучи, а другие – видимый свет и УФ. Важно разобраться в этом разнообразии и сложить целый пазл. В новой модели постарались учесть угол обзора земного наблюдателя. Ученые изучают Вселенную, но галактики ориентированы случайным образом.

Новая модель объединяет элементы из общей теории относительности, магнитного поля, излучения и газа, благодаря чему удается рассмотреть приливное событие с разных точек зрения и собрать все действия в единую структуру.

Сотрудничество и перспективы

Работа стала возможной благодаря сотрудничеству Института Нильса Бора и Калифорнийского университета в Санта-Крус. Подключились и исследователи из Университета штата Мэриленд. Для решения задачи использовались современные вычислительные инструменты. Прорыв обеспечил перспективу для быстрорастущей области исследований.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...