Построение диаграмм в нотации idef0. Правила названия управляющих элементов и блоков

История возникновения стандарта IDEF0

Стандарт IDEF0

Методологию IDEF0 можно считать следующим этапом развития хорошо известного графического языка описания функциональных систем SADT (Structured Analysis and Design Teqnique). Исторически, IDEF0, как стандарт, был разработан в 1981 году департаментом Военно-Воздушных Сил США в рамках программы автоматизации промышленных предприятий, которая носила обозначение ICAM (Integrated Computer Aided Manufacturing). Набор стандартов IDEF унаследовал свое название от этой программы (IDEF=ICAM DEFinition). В процессе практической реализации, участники программы ICAM столкнулись с необходимостью разработки новых методов анализа процессов взаимодействия в промышленных системах. При этом кроме усовершенствованного набора функций для описания бизнес-процессов, одним из требований к новому стандарту было наличие эффективной методологии взаимодействия в рамках «аналитик-специалист». Другими словами, новый метод должен был обеспечить групповую работу над созданием модели, с непосредственным участием всех аналитиков и специалистов, занятых в рамках проекта.

В результате поиска соответствующих решений родилась методология функционального моделирования IDEF0. C 1981 года стандарт IDEF0 претерпел несколько незначительных изменений, в основном, ограничивающего характера, и последняя его редакция была выпущена в декабре 1993 года Национальным Институтом По Стандартам и Технологиям США (NIST).

Графический язык IDEF0 удивительно прост и гармоничен. В основе методологии лежат четыре основных понятия:

Функциональный блок (Activity Box);

Интерфейсная дуга (Arrow);

Декомпозиция (Decomposition);

Глоссарий (Glossary).

Рассмотрим эти основные понятия подробнее

Функциональный блок (Activity Box)

Функциональный блок графически изображается в виде прямоугольника (рис. 1) и олицетворяет собой некоторую конкретную функцию в рамках рассматриваемой системы. По требованиям стандарта название каждого функционального блока должно быть сформулировано в глагольном наклонении (например, “производить услуги”, а не “производство услуг”).

Каждая из четырех сторон функционального блока имеет своё определенное значение (роль), при этом:

Верхняя сторона имеет значение “Управление” (Control);

Левая сторона имеет значение “Вход” (Input);

Правая сторона имеет значение “Выход” (Output);

Нижняя сторона имеет значение “Механизм” (Mechanism).

Такое обозначение отражает определенные системные принципы: входы преобразуются в выходы, управление ограничивает или предписывает условия выполнения преобразований, механизмы показывают, что и как выполняет функция.

Каждый функциональный блок в рамках единой рассматриваемой системы должен иметь свой уникальный идентификационный номер.

Рис. 1. Функциональный блок.

IDEF0 требует, чтобы в диаграмме было не менее трех и не более шести блоков. Эти ограничения поддерживают сложность диаграмм и модели на уровне, доступном для чтения, понимания и использования.

Блоки в IDEF0 размещаются по степени важности, как ее понимает автор диаграммы. Этот относительный порядок называется доминированием. Доминирование понимается как влияние, которое один блок оказывает на другие блоки диаграммы. Например, самым доминирующим блоком диаграммы может быть либо первый из требуемой последовательности функций, либо планирующая или контролирующая функция, влияющая на все другие.

Наиболее доминирующий блок обычно размещается в верхнем левом углу диаграммы, а наименее доминирующий - в правом углу.

Расположение блоков на странице отражает авторское определение доминирования. Таким образом, топология диаграммы показывает, какие функции оказывают большее влияние на остальные. Чтобы подчеркнуть это, аналитик может перенумеровать блоки в соответствии с порядком их доминирования. Порядок доминирования может обозначаться цифрой, размещенной в правом нижнем углу каждого прямоугольника: 1 будет указывать на наибольшее доминирование, 2 - на следующее и т. д.

Интерфейсная дуга (Arrow)

Также интерфейсные дуги часто называют потоками или стрелками. Интерфейсная дуга отображает элемент системы, который обрабатывается функциональным блоком или оказывает иное влияние на функцию, отображенную данным функциональным блоком.

Графическим отображением интерфейсной дуги является однонаправленная стрелка. Каждая интерфейсная дуга должна иметь свое уникальное наименование (Arrow Label). По требованию стандарта, наименование должно быть оборотом существительного.

С помощью интерфейсных дуг отображают различные объекты, в той или иной степени определяющие процессы, происходящие в системе. Такими объектами могут быть элементы реального мира (детали, вагоны, сотрудники и т.д.) или потоки данных и информации (документы, данные, инструкции и т.д.).

В зависимости от того, к какой из сторон подходит данная интерфейсная дуга, она носит название “входящей”, “исходящей” или “управляющей”. Кроме того, “источником” (началом) и “приемником” (концом) каждой функциональной дуги могут быть только функциональные блоки, при этом “источником” может быть только выходная сторона блока, а “приемником” любая из трех оставшихся.

Имя стрелки обычно задается именем существительным.

В методологии IDEF0 требуется только пять типов взаимодействий между блоками для описания их отношений:

Связь по входу (output-input), когда выход вышестоящей работы соединяется с входом нижестоящей (рис. 2);

Рис. 2. Связь по входу

Связь по управлению (output-control), когда выход вышестоящей работы соединяется с управлением нижестоящей (рис. 3);

Рис. 3. Связь по управлению

Обратная связь по входу (output-input feedback), когда выход нижестоящей работы соединяется с входом вышестоящей;

Рис. 4. Обратная связь по входу

Обратная связь по управлению (output-control feedback), когда выход нижестоящей работы соединяется с входом по управлению вышестоящей работы;

Рис. 5. Обратная связь по управлению

Связь выход-механизм (output-mechanism), когда выход одной работы направляется на механизм другой.

Рис. 6. Связь выход-механизм

Связи по управлению и входу являются простейшими, поскольку они отражают прямые воздействия, которые интуитивно понятны и очень просты.

Отношение управления возникает тогда, когда выход одного блока непосредственно влияет на блок с меньшим доминированием.

Обратная связь по управлению и обратная связь по входу являются более сложными, поскольку представляют собой итерацию или рекурсию. А именно выходы из одной работы влияют на будущее выполнение других работ, что впоследствии повлияет на исходную работу.

Обратная связь по управлению возникает тогда; когда выход некоторого блока влияет на блок с большим доминированием.

Связи «выход-механизм» встречаются нечасто. Они отражают ситуацию, при которой выход одной функции становится средством достижения цели для другой. Такие связи характерны при распределении источников ресурсов (например, требуемые инструменты, обученный персонал, физическое пространство, оборудование, финансирование, материалы).

В IDEF0 дуга редко изображает один объект. Обычно она символизирует набор объектов. Так как дуги представляют наборы объектов, они могут иметь множество начальных точек (источников) и конечных точек (назначений). Поэтому дуги могут разветвляться и соединяться различными способами. Вся дуга или ее часть может выходить из одного или нескольких блоков и заканчиваться в одном или нескольких блоках.

Разветвление дуг, изображаемое в виде расходящихся линий, означает, что все содержимое дуг или его часть может появиться в каждом ответвлении. Дуга всегда помечается до разветвления, чтобы дать название всему набору. Кроме того, каждая ветвь дуги может быть помечена или не помечена в соответствии со следующими правилами:

Непомеченные ветви содержат все объекты, указанные в метке дуги перед разветвлением;

Ветви, помеченные после точки разветвления, содержат все объекты или их часть, указанные в метке дуги перед разветвлением.

Слияния дуг в IDEFO, изображаемое как сходящиеся вместе линии, указывает, что содержимое каждой ветви идет на формирование метки для дуги, являющейся результатом слияния исходных дуг. После слияния результирующая дуга всегда помечается для указания нового набора объектов, возникшего после объединения. Кроме того, каждая ветвь перед слиянием может помечаться или не помечаться в соответствии со следующими правилами:

Непомеченные ветви содержат все объекты, указанные в общей метке дуги после слияния;

Помеченные перед слиянием ветви содержат все или некоторые объекты из перечисленных в общей метке после слияния,

Необходимо отметить, что любой функциональный блок по требованиям стандарта должен иметь по крайней мере одну управляющую интерфейсную дугу и одну исходящую. Это и понятно – каждый процесс должен происходить по каким-то правилам (отображаемым управляющей дугой) и должен выдавать некоторый результат (выходящая дуга), иначе его рассмотрение не имеет никакого смысла.

При построении IDEF0 – диаграмм важно правильно отделять входящие интерфейсные дуги от управляющих, что часто бывает непросто. К примеру, на рисунке 7 изображен функциональный блок “Обработать заготовку”.

В реальном процессе рабочему, производящему обработку, выдают заготовку и технологические указания по обработке (или правила техники безопасности при работе со станком). Ошибочно может показаться, что и заготовка и документ с технологическими указаниями являются входящими объектами, однако это не так. На самом деле в этом процессе заготовка обрабатывается по правилам отраженным в технологических указаниях, которые должны соответственно изображаться управляющей интерфейсной дугой.

Рис. 7. Функциональный блок «Обработать заготовку».

Другое дело, когда технологические указания обрабатываются главным технологом и в них вносятся изменения (рис. 8). В этом случае они отображаются уже входящей интерфейсной дугой, а управляющим объектом являются, например, новые промышленные стандарты, исходя из которых производятся данные изменения.

Рис. 8. Функциональный блок «Корректировать технологические указания»

Приведенные выше примеры подчеркивают внешне схожую природу входящих и управляющих интерфейсных дуг, однако для систем одного класса всегда есть определенные разграничения. Например, в случае рассмотрения предприятий и организаций существуют пять основных видов объектов: материальные потоки (детали, товары, сырье и т.д.), финансовые потоки (наличные и безналичные, инвестиции и т.д.), потоки документов (коммерческие, финансовые и организационные документы), потоки информации (информация, данные о намерениях, устные распоряжения и т.д.) и ресурсы (сотрудники, станки, машины и т.д.). При этом в различных случаях входящими и исходящими интерфейсными дугами могут отображаться все виды объектов, управляющими только относящиеся к потокам документов и информации, а дугами-механизмами только ресурсы.

Обязательное наличие управляющих интерфейсных дуг является одним из главных отличий стандарта IDEF0 от других методологий классов DFD (Data Flow Diagram) и WFD (Work Flow Diagram).

Декомпозиция (Decomposition)

Принцип декомпозиции применяется при разбиении сложного процесса на составляющие его функции. При этом уровень детализации процесса определяется непосредственно разработчиком модели.

Декомпозиция позволяет постепенно и структурированно представлять модель системы в виде иерархической структуры отдельных диаграмм, что делает ее менее перегруженной и легко усваиваемой.

Модель IDEF0 всегда начинается с представления системы как единого целого – одного функционального блока с интерфейсными дугами, простирающимися за пределы рассматриваемой области. Такая диаграмма с одним функциональным блоком называется контекстной диаграммой, и обозначается идентификатором “А-0” (рис. 9).

Рис. 9. Пример контекстной диаграммы

В пояснительном тексте к контекстной диаграмме должна быть указана цель (Purpose) построения диаграммы в виде краткого описания и зафиксирована точка зрения (Viewpoint).

Определение и формализация цели разработки IDEF0 – модели является крайне важным моментом. Фактически цель определяет соответствующие области в исследуемой системе, на которых необходимо фокусироваться в первую очередь. Например, если мы моделируем деятельность предприятия с целью построения в дальнейшем на базе этой модели информационной системы, то эта модель будет существенно отличаться от той, которую бы мы разрабатывали для того же самого предприятия, но уже с целью оптимизации логистических цепочек.

Точка зрения определяет основное направление развития модели и уровень необходимой детализации. Четкое фиксирование точки зрения позволяет разгрузить модель, отказавшись от детализации и исследования отдельных элементов, не являющихся необходимыми, исходя из выбранной точки зрения на систему. Например, функциональные модели одного и того же предприятия с точек зрения главного технолога и финансового директора будут существенно различаться по направленности их детализации. Это связано с тем, что в конечном итоге, финансового директора не интересуют аспекты обработки сырья на производственных станках, а главному технологу ни к чему прорисованные схемы финансовых потоков. Правильный выбор точки зрения существенно сокращает временные затраты на построение конечной модели.

В процессе декомпозиции, функциональный блок, который в контекстной диаграмме отображает систему как единое целое, подвергается детализации на другой диаграмме. Получившаяся диаграмма второго уровня содержит функциональные блоки, отображающие главные подфункции функционального блока контекстной диаграммы и называется дочерней (Child diagram) по отношению к нему (каждый из функциональных блоков, принадлежащих дочерней диаграмме соответственно называется дочерним блоком – Child Box). В свою очередь, функциональный блок - предок называется родительским блоком по отношению к дочерней диаграмме (Parent Box), а диаграмма, к которой он принадлежит – родительской диаграммой (Parent Diagram). Каждая из подфункций дочерней диаграммы может быть далее детализирована путем аналогичной декомпозиции соответствующего ей функционального блока. Важно отметить, что в каждом случае декомпозиции функционального блока все интерфейсные дуги, входящие в данный блок, или исходящие из него фиксируются на дочерней диаграмме. Этим достигается структурная целостность IDEF0 – модели. Наглядно принцип декомпозиции представлен на рисунке 10. Следует обратить внимание на взаимосвязь нумерации функциональных блоков и диаграмм - каждый блок имеет свой уникальный порядковый номер на диаграмме (цифра в правом нижнем углу прямоугольника), а обозначение под правым углом указывает на номер дочерней для этого блока диаграммы. Отсутствие этого обозначения говорит о том, что декомпозиции для данного блока не существует.

Часто бывают случаи, когда отдельные интерфейсные дуги не имеет смысла продолжать рассматривать в дочерних диаграммах ниже какого-то определенного уровня в иерархии, или наоборот - отдельные дуги не имеют практического смысла выше какого-то уровня. Например, интерфейсную дугу, изображающую “деталь” на входе в функциональный блок “Обработать на токарном станке” не имеет смысла отражать на диаграммах более высоких уровней – это будет только перегружать диаграммы и делать их сложными для восприятия. С другой стороны, случается необходимость избавиться от отдельных “концептуальных” интерфейсных дуг и не детализировать их глубже некоторого уровня. Для решения подобных задач в стандарте IDEF0 предусмотрено понятие туннелирования. Обозначение “туннеля” (Arrow Tunnel) в виде двух круглых скобок вокруг начала интерфейсной дуги обозначает, что эта дуга не была унаследована от функционального родительского блока и появилась (из “туннеля”) только на этой диаграмме. В свою очередь, такое же обозначение вокруг конца (стрелки) интерфейсной дуги в непосредственной близи от блока – приёмника означает тот факт, что в дочерней по отношению к этому блоку диаграмме эта дуга отображаться и рассматриваться не будет. Чаще всего бывает, что отдельные объекты и соответствующие им интерфейсные дуги не рассматриваются на некоторых промежуточных уровнях иерархии – в таком случае, они сначала “погружаются в туннель”, а затем, при необходимости “возвращаются из туннеля”.

Цель работы:

  • изучение основных принципов методологии IDEF0,
  • создание нового проекта в BPWin,
  • формирование контекстной диаграммы,
  • проведение связей.

Описание системы с помощью IDEF0 называется функциональной моделью. Функциональная модель предназначена для описания существу­ющих бизнес-процессов, в котором используются как естественный, так и графический языки. Для передачи информации о конкретной системе источником графического языка является сама методология IDEF0.

Методология IDEF0 предписывает построение иерархической системы диаграмм - единичных описаний фрагментов системы. Сначала проводит­ся описание системы в целом и ее взаимодействия с окружающим миром (контекстная диаграмма), после чего проводится функциональная деком­позиция - система разбивается на подсистемы и каждая подсистема опи­сывается отдельно (диаграммы декомпозиции). Затем каждая подсистема разбивается на более мелкие и так далее до достижения нужной степени подробности.

Каждая IDEF0-диаграмм а содержит блоки и дуги. Блоки изображают функции моделируемой системы. Дуги связывают блоки вместе и отобра­жают взаимодействия и взаимосвязи между ними.

Функциональные блоки (работы) на диаграммах изображаются прямоугольниками, означающими поименованные процессы, функции или задачи, которые происходят в течение определенного времени и имеют распознаваемые результаты. Имя работы должно быть выражено отглагольным существительным, обозначающим действие.

IDEF0 требует, чтобы в диаграмме было не менее трех и не более шести блоков. Эти ограничения поддерживают сложность диаграмм и модели на уровне, доступном для чтения, понимания и использования.

Каждая сторона блока имеет особое, вполне определенное назначение. Левая сторона блока предназначена для входов, верхняя - для управления, правая - для выходов, нижняя - для механизмов. Такое обозначение отражает определенные системные принципы: входы преобразуются в выходы управление ограничивает или предписывает условия выполнения преобразований, механизмы показывают, что и как выполняет функция.

Блоки в IDEF0 размещаются по степени важности, как ее понимает автор диаграммы. Этот относительный порядок называется доминированием. Доминирование понимается как влияние, которое один блок оказывает на другие блоки диаграммы. Например, самым доминирующим блоком диаграммы может быть либо первый из требуемой последовательности функций, либо планирующая или контролирующая функция, влияющая на все другие.

Наиболее доминирующий блок обычно размещается в верхнем левом углу диаграммы, а наименее доминирующий - в правом углу.

Расположение блоков на странице отражает авторское определение доминирования. Таким образом, топология диаграммы показывает, какие функции оказывают большее влияние на остальные. Чтобы подчеркнуть это, аналитик может перенумеровать блоки в соответствии с порядком их доминирования. Порядок доминирования может обозначаться цифрой, размещенной в правом нижнем углу каждого прямоугольника: 1 будет указывать на наибольшее доминирование, 2 - на следующее и т. д.

Взаимодействие работ с внешним миром и между собой описывается в виде стрелок, изображаемых одинарными линиями со стрелками на концах. Стрелки представляют собой некую информацию и именуются существительными.

Типы стрелок

В IDEF0 различают пять типов стрелок.

Вход - объекты, используемые и преобразуемые работой для получения результата (выхода). Допускается, что работа может не иметь ни одной стрелки входа. Стрелка входа рисуется как входящая в левую грань работы.

Управление -.информация, управляющая действиями работы. Обычно управляющие стрелки несут информацию, которая указывает, что должна выполнять работа. Каждая работа должна иметь хотя бы одну стрелку управления, которая изображается как входящая в верхнюю грань работы.

Выход - объекты, в которые преобразуются входы. Каждая работа должна иметь хотя бы одну стрелку выхода, которая рисуется как исходящая из правой грани работы.

Механизм - ресурсы, выполняющие работу. Стрелка механизма рисуется как входящая в нижнюю грань работы. По усмотрению аналитика стрелки механизма могут не изображаться на модели.

Вызов - специальная стрелка, указывающая на другую модель работы. Стрелка вызова рисуется как исходящая из нижней части работы и используется для указания того, что некоторая работа выполняется за пределами моделируемой системы.

Рис. 2.1 Типы стрелок

В методологии IDEF0 требуется только пять типов взаимодействий между блоками для описания их отношений: управление, вход, обратная связь по управлению, обратная связь по входу, выход-механизм. Связи по управлению и входу являются простейшими, поскольку они отражают прямые воздействия, которые интуитивно понятны и очень просты.

Рис. 2.2. Связь по выходу

Рис. 2.3. Связь по управлению

Отношение управления возникает тогда, когда выход одного блока непосредственно влияет на блок с меньшим доминированием.

Обратная связь по управлению и обратная связь по входу являются более сложными, поскольку представляют собой итерацию или рекурсию. А именно выходы из одной работы влияют на будущее выполнение других работ, что впоследствии повлияет на исходную работу.

Обратная связь по управлению возникает тогда; когда выход некоторого блока влияет на блок с большим доминированием.

Связи «выход-механизм» встречаются нечасто. Они отражают ситуацию, при которой выход одной функции становится средством достижения цели для другой.

Рис. 2.4. Обратная связь по входу

Рис. 2.5. Обратная связь по управлению

Связи «выход-механизм» характерны при распределении источников ресурсов (например, требуемые инструменты, обученный персонал, физическое пространство, оборудование, финансирование, материалы).

В IDEF0 дуга редко изображает один объект. Обычно она символизирует набор объектов. Так как дуги представляют наборы объектов, они могут иметь множество начальных точек (источников) и конечных точек (назначений). Поэтому дуги могут разветвляться и соединяться различными способами. Вся дуга или ее часть может выходить из одного или нескольких блоков и заканчиваться в одном или нескольких блоках.

Разветвление дуг, изображаемое в виде расходящихся линий, означает, что все содержимое дуг или его часть может появиться в каждом ответвлении. Дуга всегда помечается до разветвления, чтобы дать название всему набору. Кроме того, каждая ветвь дуги может быть помечена или не помечена в соответствии со следующими правилами:

  • непомеченные ветви содержат вес объекты, указанные в метке дугиперед разветвлением;
  • ветви, помеченные после точки разветвления, содержат все объектыили их часть, указанные в метке дуги перед разветвлением.

Слияния дуг в IDEFO, изображаемое как сходящиеся вместе линии, указывает, что содержимое каждой ветви идет на формирование метки для дуги, являющейся результатом слияния исходных дуг. После слияния результирующая дуга всегда помечается для указания нового набора объектов, возникшего после объединения. Кроме того, каждая ветвь перед слиянием может помечаться или не помечаться в соответствии со следующими правилами:

Рис. 2.6. Связь выход-механизм

  • непомеченные ветви содержат вес объекты, указанные в общей меткедуги после слияния;
  • помеченные перед слиянием ветви содержат все или некоторые объекты из перечисленных в общей метке после слияния,

Количественный анализ диаграмм

Для проведения количественного анализа диаграмм перечислим показатели модели:

  • количество блоков на диаграмме - N;
  • уровень декомпозиции диаграммы - L ;
  • сбалансированность диаграммы - В;
  • число стрелок, соединяющихся с блоком, - А

Данный набор факторов относится к каждой диаграмме модели. Далее будут перечислены рекомендации по желательным значениям факторов диаграммы.

Необходимо стремиться к тому, чтобы количество блоков на диаграммах нижних уровней было бы ниже количества блоков на родительских диаграммах, т. е. с увеличением уровня декомпозиции убывал бы коэффициент. Таким образом, убывание этого коэффициента говорит о том. что по мере декомпозиции модели функции должны упрощаться, следовательно, количество блоков должно убывать.

Диаграммы должны быть сбалансированы. Это означает, что в рамках одной диаграммы не должно происходить ситуации, изображенной на рис. 2.7: у работы 1 входящих стрелок и стрелок управления значительно больше, чем выходящих. Следует отметить, что данная рекомендация может не выполняться в моделях, описывающих производственные процессы. Например, при описании процедуры сборки в блок может входить множество стрелок, описывающих компоненты изделия, а выходить одна стрелка -- готовое изделие.

Рис. 2.7. Пример несбалансированной диаграммы

Введем коэффициент сбалансированности диаграммы

Необходимо стремиться, чтобы Кь был минимален для диаграммы.

Помимо анализа графических элементов диаграммы необходимо рассматривать наименования блоков. Для оценки имен составляется словарь элементарных (тривиальных) функций моделируемой системы. Фактически в данный словарь должны попасть функции нижнего, уровня декомпозиции диаграмм. Например, для модели БД элементарными могут являться функции «найти запись», «добавить запись в БД», в то время как функция «регистрация пользователя» требует дальнейшего описания.

После формирования словаря и составления пакета диаграмм системы необходимо рассмотреть нижний уровень модели. Если на нем обнаружатся совпадения названий блоков диаграмм и слов из словаря, то это говорит, что достаточный уровень декомпозиции достигнут. Коэффициент, количественно отражающий данный критерий, можно записать как L*C - произведение уровня модели на число совпадений имен блоков со словами из словаря. Чем ниже уровень модели (больше L), тем ценнее совпадения.

Инструментарий BPWin

При запуске BPWin по умолчанию появляется основная панель инструментов, палитра инструментов и Model Explorer.

При создании новой модели возникает диалог, в котором следует указать, будет ли создана модель заново, или она будет открыта из репозитария ModelMart, внести имя модели и выбрать методологию, в которой будет построена модель (рис. 2.8).

Рис.2.8 Диалог создания модели

BPWin поддерживает три методологии - IDEF0, IDEF3 и DFD. В BPWin возможно построение смешанных моделей, т. е. модель может содержать одновременно как диаграммы IDEF0, так и IDEF3 и DFD. Состав палитры инструментов изменяется автоматически, когда происходит переключение с одной нотации на другую.

Модель в BPWin рассматривается как совокупность работ, каждая из которых оперирует с некоторым набором данных. Если щелкнуть по любому объекту модели левой кнопкой мыши, появляется всплывающее контекстное меню, каждый пункт которого соответствует редактору какого-либо свойства объекта.

Пример

Построение модели системы должно начинаться с изучения всех документов, описывающих ее функциональные возможности. Одним из таких документов является техническое задание, а именно разделы "Назначение разработки", "Цели и задачи системы" и "Функциональные характеристики системы " .

После изучения исходных документов и опроса заказчиков и пользователей системы необходимо сформулировать цель моделирования и определить точку зрения на модель. Рассмотрим технологию ее построения на примере системы "Служба занятости в рамках вуза", основные возможности которой были описаны в лабораторной работе № 1.

Сформулируем цель моделирования: описать функционирования системы, которое было бы понятно ее пользователю, не вдаваясь в подробности, связанные с реализацией. Модель будем строить с точки зрения пользователей (студент, преподаватель, администратор, деканат, фирма).

Начнем с построения контекстной IDEF0-диаграммы- Согласно описанию системы основной функцией является обслуживание ее клиентов посредством обработки запросов, от них поступающих. Таким образом, определим единственную работу контекстной диаграммы как «Обслужить клиента системы». Далее определим входные и выходные данные, а также механизмы и управление.

Для того чтобы обслужить клиента, необходимо зарегистрировать его в системе, открыть доступ к БД и обработать его запрос. В качестве входных данных будут использоваться «имя клиента», «пароль клиента», «исходная БД», «запрос клиента». Выполнение запроса ведет либо к получению информации от системы, либо к изменению содержимого БД (например, при составлении экспертных оценок), поэтому выходными данными будут являться «отчеты» и «измененная БД». Процесс обработки запросов будет выполняться монитором системы под контролем администратора.

Контекстная диаграмма

Таким образом, определим контекстную диаграмму системы (рис. 2.9).

Рис 2.9. Контекстная диаграмма системы

Проведем декомпозицию контекстной диаграммы, описав последовательность обслуживания клиента:

  • Определение уровня доступа в систему.
  • Выбор подсистемы.
  • Обращение к подсистеме.
  • Изменение БД (при необходимости).

Получим диаграмму, изображенную на рис. 2.10.

Закончив декомпозицию контекстной диаграммы, переходят к декомпозиции диаграммы следующего уровня. Обычно при рассмотрении третьего и более нижних уровней модели возвращаются к родительским диаграммам и корректируют их.

Рис. 2.10. Декомпозиция работы «Обслуживание, клиента системы»

Декомпозируем последовательно все блоки полученной диаграммы. Первым этапом при определении уровня доступа в систему является определение категории пользователя. По имени клиента осуществляется поиск в базе пользователей, определяя его категорию. Согласно определенной категории выясняются полномочия, предоставляемые пользователю системы. Далее проводится процедура доступа в систему, проверяя имя и пароль доступа. Объединяя информацию о полномочиях и уровне доступа в систему, для пользователя формируется набор разрешенных действий. Таким образом, определение уровня доступа в систему будет выглядеть как показано на рис. 2.11.

Рис. 2.11. Декомпозиция работы «Определение уровня доступав систему»

После прохождения процедуры доступа в систему монитор анализирует запрос клиента, выбирая подсистему, которая будет обрабатывать запрос. Декомпозиция работы «Обращение к подсистеме» не отвечает цели и точке зрения модели. Пользователя системы не интересуют внутренние алгоритмы ее работы. В данном случае ему важно, что выбор подсистемы будет произведен автоматически, без его вмешательства, поэтому декомпозиция обращения к подсистеме только усложнит модель.

Декомпозируем работу «Обработка запроса клиента», выполняемую подсистемой обработки запросов, определения категорий и полномочий пользователей. Перед осуществлением поиска ответа на запрос необходимо открыть БД (подключиться к ней). В общем случае БД может находиться на удаленном сервере, поэтому может потребоваться установление соединения с ней. Определим последовательность работ:

  • Открытие БД.
  • Выполнение запроса.
  • Генерация отчетов.

После открытия БД необходимо сообщить системе об установлении соединения с БД, после чего выполнить запрос и сгенерировать отчеты для пользователя (рис. 2.12).

Необходимо отметить, что в «Выполнение запроса» включается работа различных подсистем. Например, если запрос включает в себя тестирование, то его будет исполнять подсистема профессиональных и психологических тестов. На этапе выполнения запроса может потребоваться изменениесодержимого БД, например при составлении экспертных оценок. Поэтому, на диаграмме необходимо предусмотреть такую возможность.

Рис. 2.12.

Корректировка диаграммы

При анализе полученной диаграммы возникает вопрос, по каким правилам происходит генерация отчетов? Необходимо наличие заранее сформированных шаблонов, по которым будет производиться выборка из БД, причем эти шаблоны должны соответствовать запросам и должны быть заранее определены. Кроме того, клиенту должна быть предоставлена возможность выбора формы отчета.

Скорректируем диаграмму, добавив в нее стрелки «Шаблоны отчетов» и «Запросы на изменение БД» и туннельную стрелку «Клиент системы». Туннелирование «Клиента системы» применено для того, чтобы не выносить стрелку на диаграмму верхнего, так как функция выбора формы отчета не является достаточно важной для отображения ее на родительской диаграмме.

Изменение диаграммы потянет за собой корректировку всех родительских диаграмм (рис. 2.13 - 2.15).

Декомпозицию работы «Выполнение запроса» целесообразно провести при помощи диаграммы DFD (лабораторная работа № 3), так как методология IDEF0 рассматривает систему как совокупность взаимосвязанных работ, что плохо отражает процессы обработки информации.

Рис. 2.13. Декомпозиция работы «Обработка запроса клиента»

Рис. 2.14. Декомпозиция работы «Обслуживание клиента системы»(вариант 2)

Рис. 2.15. Контекстная диаграмма системы (вариант 2)

Перейдем к декомпозиции последнего блока «Изменение БД». С точки зрения клиента, данные системы располагаются в одной БД. Реально в системе присутствует шесть БД:

  • БД пользователей,
  • БД студентов,(вариант 2)
  • БД вакансий,
  • БД успеваемости,
  • БД тестов,
  • БД экспертных оценок,
  • БД резюме.

Согласно цели моделирования клиенту важно понимать, что поступившие данные не сразу обновляются в системе, а проходят дополнительный этап обработки и контроля. Алгоритм изменения можно сформулировать следующим образом:

  • Определяется БД, в которой будет изменяться информация.
  • Оператором формируется временный набор данных и предоставляется администратору.
  • Администратор осуществляет контроль данных и вносит их в БД.

Данную модель реализовать другим способом, предоставив возможность обновления БД непосредственно по запросам, минуя процесс контроля данных. В этом случае необходимо обеспечить контроль целостности БД для избежания ее повреждения. В этом случае диаграмма будет выглядеть следующим образом (рис. 2.17).

Рис. 2.16. Декомпозиция работы «Изменение БД»

Рис. 2.17. Декомпозиция работы «Изменение БД» (вариант 2) Для первого варианта, изображенного нарис. 2.12

Проведение дальнейшей декомпозиции «Изменения БД» будет усложнять модель, объясняя, как осуществляется физическое изменение БД в системе. При этом пользователь не получит никакой дополнительной информации о работе системы службы занятости. Декомпозицию этой работы целесообразно проводить в процессе проектирования БД системы на этапе создания логической модели БД.

Декомпозиция работы «Выполнение запроса» будет проведена в следующей лабораторной работе, иллюстрируя применение диаграмм DFD для описания процессов обработки информации.

Проведем количественный анализ моделей, изображенных на рис. 2.12 и 2.13, согласно вышеописанной методике. Рассмотрим поведение коэффициента ^ у этих моделей. У родительской диаграммы «Обработка запроса клиента» коэффициент равен 4/2 = 2, а диаграммы декомпозиции 3/3 = 1. Значение коэффициента убывает, что говорит об упрощении описания функций с понижением уровня модели.

Рассмотрим изменение коэффициента К b у двух вариантов моделей.

для второго варианта

Коэффициент К b не меняет своего значения, следовательно, сбалансированность диаграммы не меняется.

Будем считать, что уровень декомпозиции рассмотренных диаграмм достаточен для отражения цели моделирования, и на диаграммах нижнего Уровня в качестве наименований работ используются элементарные функции (с точки зрения пользователя системы).

Подводя итоги рассмотренного примера необходимо отметить важность рассмотрения нескольких вариантов диаграмм при моделировании системы. Такие варианты могут возникать при корректировке диаграмм, как это было сделано с «Обработкой запроса клиента» или при создании альтернативных реализаций функций системы (декомпозиция работы «Изменение БД»). Рассмотрение вариантов позволяет выбрать наилучший и включить его в пакет диаграмм для дальнейшего рассмотрения.

Контрольные вопросы

Список Контрольных вопросов :

  1. Что представляет собой модель в нотации IDEF0?
  2. Что обозначают работы в IDEF0?
  3. Назовите порядок наименования работ?
  4. Какое количество работ должно присутствовать на одной диаграмме?
  5. Что называется порядком доминирования?
  6. Как располагаются работы по принципу доминирования?
  7. Каково назначение сторон прямоугольников работ на диаграммах?
  8. Перечислите типы стрелок.
  9. Назовите виды взаимосвязей.
  10. Что называется граничными стрелками?
  11. Объясните принцип именования разветвляющихся и сливающихся стрелок.
  12. Какие методологии поддерживаются BPWin?
  13. Перечислите основные элементы главного окна BPWin.
  14. Опишите процесс создания новой модели в BPWin.
  15. Как провести связь между работами?
  16. Как задать имя работы.
  17. Опишите процесс декомпозиции работы.
  18. Как добавить работу на диаграмму?
  19. Как разрешить туннелированные стрелки?
  20. Может ли модель BPWin содержать диаграммы нескольких методологий?

Построение модели IDEF0

На начальных этапах создания ИС необходимо понять, как работает организация, которую собираются автоматизировать. Руководитель хорошо знает работу в целом, но не в состоянии вникнуть в детали работы каждого рядового сотрудника. Рядовой сотрудник хорошо знает, что творится на его рабочем месте, но может не знать, как работают коллеги. Поэтому для описания работы предприятия необходимо построить модель, которая будет адекватна предметной области и содержать в себе знания всех участников бизнес-процессов организации.

Наиболее удобным языком моделирования бизнес-процессов является IDEF0, где система представляется как совокупность взаимодействующих работ или функций. Такая чисто функциональная ориентация является принципиальной - функции системы анализируются независимо от объектов, которыми они оперируют. Это позволяет более четко смоделировать логику и взаимодействие процессов организации.

Процесс моделирования системы в IDEF0 начинается с создания контекстной диаграммы - диаграммы наиболее абстрактного уровня описания системы в целом, содержащей определение субъекта моделирования, цели и точки зрения на модель.

Под субъектом понимается сама система, при этом необходимо точно установить, что входит в систему, а что лежит за ее пределами, другими словами, определить, что будет в дальнейшем рассматриваться как компоненты системы, а что как внешнее воздействие. На определение субъекта системы будут существенно влиять позиция, с которой рассматривается система, и цель моделирования - вопросы, на которые построенная модель должна дать ответ. Другими словами, в начале необходимо определить область моделирования. Описание области как системы в целом, так и ее компонентов является основой построения модели. Хотя предполагается, что в ходе моделирования область может корректироваться, она должна быть в основном сформулирована изначально, поскольку именно область определяет направление моделирования. При формулировании области необходимо учитывать два компонента - широту и глубину. Широта подразумевает определение границ модели - что будет рассматриваться внутри системы, а что снаружи. Глубина определяет, на каком уровне детализации модель является завершенной. При определении глубины системы необходимо помнить об ограничениях времени - трудоемкость построения модели растет в геометрической прогрессии с увеличением глубины декомпозиции. После определения границ модели предполагается, что новые объекты не должны вноситься в моделируемую систему.

Цель моделирования

Цель моделирования определяется из ответов на следующие вопросы:

  • Почему этот процесс должен быть смоделирован?
  • Что должна показывать модель?
  • Что может получить клиент?

Точка зрения (Viewpoint).

Под точкой зрения понимается перспектива, с которой наблюдалась система при построении модели. Хотя при построении модели учитываются мнения различных людей, все они должны придерживаться единой точки зрения на модель. Точка зрения должна соответствовать цели и границам моделирования. Как правило, выбирается точка зрения человека, ответственного за моделируемую работу в целом.

IDEF0-модель предполагает наличие четко сформулированной цели, единственного субъекта моделирования и одной точки зрения. Для внесения области, цели и точки зрения в модели IDEF0 в BPwin следует выбрать пункт меню Model/Model Properties, вызывающий диалог Model Properties (рис. П2.3). В закладке Purpose следует внести цель и точку зрения, а в закладку Definition - определение модели и описание области.

Рис. П2.3. Диалог задания свойств модели

В закладке Status того же диалога можно описать статус модели (черновой вариант, рабочий, окончательный и т. д.), время создания и последнего редактирования (отслеживается в дальнейшем автоматически по системной дате). В закладке Source описываются источники информации для построения модели (например, "Опрос экспертов предметной области и анализ документации"). Закладка General служит для внесения имени проекта и модели, имени и инициалов автора и временных рамок модели - AS-IS и ТО-ВЕ.

Модели AS-IS и ТО-ВЕ. Обычно сначала строится модель существующей организации работы - AS-IS (как есть). Анализ функциональной модели позволяет понять, где находятся наиболее слабые места, в чем будут состоять преимущества новых бизнес-процессов и насколько глубоким изменениям подвергнется существующая структура организации бизнеса. Детализация бизнес-процессов позволяет выявить недостатки организации даже там, где функциональность на первый взгляд кажется очевидной. Найденные в модели AS-IS недостатки можно исправить при создании модели ТО-ВЕ (как будет) - модели новой организации бизнес-процессов.

Технология проектирования ИС подразумевает сначала создание модели AS-IS, ее анализ и улучшение бизнес-процессов, то есть создание модели ТО-ВЕ, и только на основе модели ТО-ВЕ строится модель данных, прототип и затем окончательный вариант ИС.

Иногда текущая AS-IS и будущая ТО-ВЕ модели различаются очень сильно, так что переход от начального к конечному состоянию становится неочевидным. В этом случае необходима третья модель, описывающая процесс перехода от начального к конечному состоянию системы, поскольку такой переход - это тоже бизнес-процесс.

Результат описания модели можно получить в отчете Model Report. Диалог настройки отчета по модели вызывается из пункта меню Tools/Reports/Model Report.

В диалоге настройки следует выбрать необходимые поля, при этом автоматически отображается очередность вывода информации в отчет (рис. П2.4).

Рис. П2.4. Диалоговое окно для формирования отчета по модели

На рис. П2.5 представлен отчет, сформированный по вышеуказанным полям.

Рис. П2.5. Предварительный просмотр отчета

Основу методологии IDEF0 составляет графический язык описания бизнес-процессов. Модель в нотации IDEF0 представляет собой совокупность иерархически упорядоченных и взаимосвязанных диаграмм. Каждая диаграмма является единицей описания системы и располагается на отдельном листе.

Модель может содержать четыре типа диаграмм:

  • контекстную диаграмму (в каждой модели может быть только одна контекстная диаграмма);
  • диаграммы декомпозиции;
  • диаграммы дерева узлов;
  • диаграммы только для экспозиции (FEO).

Контекстная диаграмма является вершиной древовидной структуры диаграмм и представляет собой самое общее описание системы и ее взаимодействия с внешней средой. После описания системы в целом проводится разбиение ее на крупные фрагменты. Этот процесс называется функциональной декомпозицией, а диаграммы, которые описывают каждый фрагмент и взаимодействие фрагментов, называются диаграммами декомпозиции. После декомпозиции контекстной диаграммы проводится декомпозиция каждого большого фрагмента системы на более мелкие и так далее, до достижения нужного уровня подробности описания. После каждого сеанса декомпозиции проводятся сеансы экспертизы - эксперты предметной области указывают на соответствие реальных бизнес-процессов созданным диаграммам. Найденные несоответствия исправляются, и только после прохождения экспертизы без замечаний можно приступать к следующему сеансу декомпозиции. Так достигается соответствие модели реальным бизнес-процессам на любом и каждом уровне модели. Синтаксис описания системы в целом и каждого ее фрагмента одинаков во всей модели.

Диаграмма дерева узлов показывает иерархическую зависимость работ, но не взаимосвязи между работами. Диаграмм деревьев узлов может быть в модели сколь угодно много, поскольку дерево может быть построено на произвольную глубину и не обязательно с корня.

диаграммы для экспозиции (FEO) строятся для иллюстрации отдельных фрагментов модели, для иллюстрации альтернативной точки зрения, либо для специальных целей.

Работы (Activity) обозначают поименованные процессы, функции или задачи, которые происходят в течение определенного времени и имеют распознаваемые результаты. Работы изображаются в виде прямоугольников. Все работы должны быть названы и определены. Имя работы должно быть выражено отглагольным существительным, обозначающим действие (например, "Деятельность компании", "Прием заказа" и т.д.). Работа "Деятельность компании" может иметь, например, следующее определение: "Это учебная модель, описывающая деятельность компании". При создании новой модели (меню File/New) автоматически создается контекстная диаграмма с единственной работой, изображающей систему в целом (рис. П2.6).

Рис. П2.6. Пример контекстной диаграммы

Для внесения имени работы следует щелкнуть по работе правой кнопкой мыши, выбрать в меню Name Editor и в появившемся диалоге внести имя работы. Для описания других свойств работы служит диалог Activity Properties (рис. П2.7).

Рис. П2.П2. Редактор задания свойств работы

Диаграммы декомпозиции содержат родственные работы, т. е. дочерние работы, имеющие общую родительскую работу. Для создания диаграммы декомпозиции следует щелкнуть по кнопке на панели инструментов.

Возникает диалог Activity Box Count (рис. П2.8), в котором следует указать нотацию новой диаграммы и количество работ на ней. Остановимся пока на нотации IDEF0 и щелкнем на ОК. Появляется диаграмма декомпозиции (рис. П2.9). Допустимый интервал числа работ - 2-8. Декомпозировать работу на одну работу не имеет смысла: диаграммы с количеством работ более восьми получаются перенасыщенными и плохо читаются. Для обеспечения наглядности и лучшего понимания моделируемых процессов рекомендуется использовать от трех до шести блоков на одной диаграмме.

Рис. П2.8. Диалог Activity Box Count

Рис. П2.9. Пример диаграммы декомпозиции

Если оказывается, что количество работ недостаточно, то работу можно добавить в диаграмму, щелкнув сначала по кнопке на палитре инструментов, а затем по свободному месту на диаграмме.

Работы на диаграммах декомпозиции обычно располагаются по диагонали от левого верхнего угла к правому нижнему.

Такой порядок называется порядком доминирования. Согласно этому принципу расположения в левом верхнем углу помещается самая важная работа или работа, выполняемая по времени первой. Далее вправо вниз располагаются менее важные или выполняемые позже работы. Такое размещение облегчает чтение диаграмм, кроме того, на нем основывается понятие взаимосвязей работ (см. ниже).

Каждая из работ на диаграмме декомпозиции может быть в свою очередь декомпозирована. На диаграмме декомпозиции работы нумеруются автоматически слева направо. Номер работы показывается в правом нижнем углу. В левом верхнем углу изображается небольшая диагональная черта, которая показывает, что данная работа не была декомпозирована. Так, на рис. П2.9 все работы еще не были декомпозированы.

Стрелки(Arrow) описывают взаимодействие работ и представляют собой некую информацию, выраженную существительными.(Например, "Звонки клиентов", "Правила и процедуры", "Бухгалтерская система".)

В IDEF0 различают пять типов стрелок:

Вход (Input ) - материал или информация, которые используются или преобразуются работой для получения результата (выхода). Допускается, что работа может не иметь ни одной стрелки входа. Каждый тип стрелок подходит к определенной стороне прямоугольника, изображающего работу, или выходит из нее. Стрелка входа рисуется как входящая в левую грань работы. При описании технологических процессов (для этого и был придуман IDEF0) не возникает проблем определения входов. Действительно, "Звонки клиентов" на рис. П2.6 - это нечто, что перерабатывается в процессе "Деятельность компании" для получения результата. При моделировании ИС, когда стрелками являются не физические объекты, а данные, не все так очевидно. Например, при "Приеме пациента" карта пациента может быть и на входе и на выходе, между тем качество этих данных меняется. Другими словами, в нашем примере для того, чтобы оправдать свое назначение, стрелки входа и выхода должны быть точно определены с тем, чтобы указать на то, что данные действительно были переработаны (например, на выходе - "Заполненная карта пациента"). Очень часто сложно определить, являются ли данные входом или управлением. В этом случае подсказкой может служить информация о том, перерабатываются/изменяются ли данные в работе или нет. Если изменяются, то, скорее всего, это вход, если нет - управление.

Управление (Control ) - правила, стратегии, процедуры или стандарты, которыми руководствуется работа. Каждая работа должна иметь хотя бы одну стрелку управления. Стрелка управления рисуется как входящая в верхнюю грань работы. На рис. П2.6 стрелка "Правила и процедуры" - управление для работы "Деятельность компании". Управление влияет на работу, но не преобразуется работой. Если цель работы - изменить процедуру или стратегию, то такая процедура или стратегия будет для работы входом. В случае возникновения неопределенности в статусе стрелки (управление или вход) рекомендуется рисовать стрелку управления.

Выход (Output ) - материал или информация, которые производятся работой. Каждая работа должна иметь хотя бы одну стрелку выхода. Работа без результата не имеет смысла и не должна моделироваться. Стрелка выхода рисуется как исходящая из правой грани работы. На рис. П2.6 стрелки "Маркетинговые материалы" и "Проданные продукты" являются выходом для работы "Деятельность компании".

Механизм (Mechanism ) - ресурсы, которые выполняют работу, например персонал предприятия, станки, устройства и т. д. Стрелка механизма рисуется как входящая в нижнюю грань работы. На рис. П2.6 стрелка "Бухгалтерская система" является механизмом для работы "Деятельность компании". По усмотрению аналитика стрелки механизма могут не изображаться в модели.

Вызов (Call ) - специальная стрелка, указывающая на другую модель работы. Стрелка вызова рисуется как исходящая из нижней грани работы. На рис. П2.10 стрелка "Другая модель работы" является вызовом для работы "Изготовление изделия". Стрелка вызова используется для указания того, что некоторая работа выполняется за пределами моделируемой системы. В BPwin стрелки вызова используются в механизме слияния и разделения моделей.

Рис. П2.10. Стрелка вызова, появляющаяся при расщеплении модели

Граничные стрелки. Стрелки на контекстной диаграмме служат для описания взаимодействия системы с окружающим миром. Они могут начинаться у границы диаграммы и заканчиваться у работы, или наоборот. Такие стрелки называются граничными.

Для внесения граничной стрелки входа следует:

Стрелки управления, входа, механизма и выхода изображаются аналогично. Имена вновь внесенных стрелок (рис. П2.11) автоматически заносятся в словарь Arrow Dictionary.

Рис. П2.11. Диалог IDEF0 Arrow Properties

ICOM-коды . Диаграмма декомпозиции предназначена для детализации работы. В отличие от моделей, отображающих структуру организации, работа на диаграмме верхнего уровня в IDEF0 - это не элемент управления нижестоящими работами. Работы нижнего уровня - это то же самое, что работы верхнего уровня, но в более детальном изложении. Как следствие этого границы работы верхнего уровня - это то же самое, что границы диаграммы декомпозиции. ICOM (аббревиатура от Input, Control, Output и Mechanism) - коды, предназначенные для идентификации граничных стрелок. Код ICOM содержит префикс, соответствующий типу стрелки (I, С, О или М), и порядковый номер.

BPwin вносит ICOM-коды автоматически. Для отображения ICOM-кодов следует включить опцию ICOM codes на закладке Display диалога Model Properties (меню Model/Model Properties) (рис.П2.12).

Словарь стрелок редактируется при помощи специального редактора Arrow Dictionary Editor, в котором определяется стрелка и вносится относящийся к ней комментарий (рис. П2.13). Словарь стрелок решает очень важную задачу. Диаграммы создаются аналитиком для того, чтобы провести сеанс экспертизы, т. е. обсудить диаграмму со специалистом предметной области. В любой предметной области формируется профессиональный жаргон, причем очень часто жаргонные выражения имеют нечеткий смысл и воспринимаются разными специалистами по-разному. В то же время аналитик - автор диаграмм должен употреблять те выражения, которые наиболее понятны экспертам. Поскольку формальные определения часто сложны для восприятия, аналитик вынужден употреблять профессиональный жаргон, а чтобы не возникло неоднозначных трактовок, в словаре стрелок каждому понятию можно дать расширенное и, если это необходимо, формальное определение.

Рис. П2.12. Включение опции ICOM codes на закладке Display

Рис. П2.13. Редактирование словаря стрелок

Содержимое словаря стрелок можно распечатать в виде отчета (меню Tools/ Report /Arrow Report...) и получить толковый словарь терминов предметной области, использующихся в модели.

Несвязанные граничные стрелки (unconnected border arrow) . При декомпозиции работы входящие в нее и исходящие из нее стрелки (кроме стрелки вызова) автоматически появляются на диаграмме декомпозиции (миграция стрелок), но при этом не касаются работ. Такие стрелки называются несвязанными и воспринимаются в BPwin как синтаксическая ошибка.

На рис. П2.14 приведен фрагмент диаграммы декомпозиции с несвязанными стрелками, генерирующийся BPwin при декомпозиции работы "Сборка настольных компьютеров" (см. рис. П2.9). Для связывания стрелок входа, управления или механизма необходимо перейти в режим редактирования стрелок, щелкнуть по наконечнику стрелки и потом по соответствующему сегменту работы. Для связывания стрелки выхода необходимо перейти в режим редактирования стрелок, щелкнуть по сегменту выхода работы и затем по стрелке.

Рис. П2.14. Пример несвязанных стрелок

Внутренние стрелки. Для связи работ между собой используются внутренние стрелки, то есть стрелки, которые не касаются границы диаграммы, начинаются у одной и кончаются у другой работы.

Для рисования внутренней стрелки необходимо в режиме рисования стрелок щелкнуть по сегменту (например, выхода) одной работы и затем по сегменту (например, входа) другой. В IDEF0 различают пять типов связей работ.

Связь по входу (output-input ), когда стрелка выхода вышестоящей работы (далее - просто выход) направляется на вход нижестоящей (например, на рис. П2.15 стрелка "Собранные компьютеры" связывает работы и "Отгрузка и получение" ).

Рис. П2.15. Связь по входу

Связь по управлению (output-control ), когда выход вышестоящей работы направляется на управление нижестоящей. Связь по управлению показывает доминирование вышестоящей работы. Данные или объекты выхода вышестоящей работы не меняются в нижестоящей. На рис. П2.16 стрелка "Заказы клиентов" связывает работы "Продажи и маркетинг" и "Сборка и тестирование компьютеров" .

Рис. П2.16. Связь по управлению

Обратная связь по входу (output-input feedback ), когда выход нижестоящей работы направляется на вход вышестоящей. Такая связь, как правило, используется для описания циклов. На рис. П2.17 стрелка "Результаты тестирования" связывает работы "Тестирование компьютеров" и "Отслеживание расписания и управление сборкой и тестированием" .

Рис. П2.1П2. Обратная связь по входу

Обратная связь по управлению (output-control feedback ), когда выход нижестоящей работы направляется на управление вышестоящей (стрелка "Результаты сборки и тестирования", рис. П2.18). Обратная связь по управлению часто свидетельствует об эффективности бизнес-процесса. На рис. П2.18 объем продаж может быть повышен путем непосредственного регулирования процессов сборки и тестирования компьютеров (выхода) работы "Сборки и тестирование компьютеров".

Рис. П2.18. Обратная связь по управлению

Связь выход-механизм (output-mechanism ), когда выход одной работы направляется на механизм другой. Эта взаимосвязь используется реже остальных и показывает, что одна работа подготавливает ресурсы, необходимые для проведения другой работы (рис. П2.19).

Рис. П2.19. Связь выход-механизм

Явные стрелки. Явная стрелка имеет источником одну-единственную работу и назначением тоже одну-единственную работу.

Разветвляющиеся и сливающиеся стрелки. Одни и те же данные или объекты, порожденные одной работой, могут использоваться сразу в нескольких других работах. С другой стороны, стрелки, порожденные в разных работах, могут представлять собой одинаковые или однородные данные или объекты, которые в дальнейшем используются или перерабатываются в одном месте. Для моделирования таких ситуаций в IDEF0 используются разветвляющиеся и сливающиеся стрелки. Для разветвления стрелки нужно в режиме редактирования стрелки щелкнуть по фрагменту стрелки и по соответствующему сегменту работы. Для слияния двух стрелок выхода нужно в режиме редактирования стрелки сначала щелкнуть по сегменту выхода работы, а затем по соответствующему фрагменту стрелки.

Смысл разветвляющихся и сливающихся стрелок передается именованием каждой ветви стрелок. Существуют определенные правила именования таких стрелок. Рассмотрим их на примере разветвляющихся стрелок. Если стрелка именована до разветвления, а после разветвления ни одна из ветвей не именована, то подразумевается, что каждая ветвь моделирует те же данные или объекты, что и ветвь до разветвления (рис. П2.20).

Рис. П2.20.

Если стрелка именована до разветвления, а после разветвления какая-либо из ветвей тоже именована, то подразумевается, что эти ветви соответствуют именованию. Если при этом какая-либо ветвь после разветвления осталась неименованной, то подразумевается, что она моделирует те же данные или объекты, что и ветвь до разветвления (рис. П2.21).

Рис. П2.21. Пример именования разветвляющейся стрелки

Недопустима ситуация, когда стрелка до разветвления не именована, а после разветвления не именована какая-либо из ветвей. BPwin определяет такую стрелку как синтаксическую ошибку.

Правила именования сливающихся стрелок полностью аналогичны - ошибкой будет считаться стрелка, которая после слияния не именована, а до слияния не именована какая-либо из ее ветвей. Для именования отдельной ветви разветвляющихся и сливающихся стрелок следует выделить на диаграмме только одну ветвь, после чего вызвать редактор имени и присвоить имя стрелке. Это имя будет соответствовать только выделенной ветви.

Туннелирование стрелок . Вновь внесенные граничные стрелки на диаграмме декомпозиции нижнего уровня изображаются в квадратных скобках и автоматически не появляются на диаграмме верхнего уровня (рис. П2.22).

Рис. П2.22. Неразрешенная (unresolved) стрелка

Для их "перетаскивания" наверх нужно щелкнуть правой кнопкой мыши по квадратным скобкам граничной стрелки и в контекстном меню выбрать команду Arrow Tunnel (рис. П2.23).

Рис. П2.23. Выбор команды из контекстного меню

Появляется диалог Border Arrow Editor (рис. П2.24).

Если щелкнуть по кнопке Resolve Border Arrow, стрелка мигрирует на диаграмму верхнего уровня, если по кнопке Change To Tunnel - стрелка будет туннелирована и не попадет на другую диаграмму. Туннельная стрелка изображается с круглыми скобками на конце (рис. П2.25).

Рис. П2.24. Диалог Border Arrow Editor

Рис. П2.25. Типы туннелирования стрелок

Туннелирование может быть применено для изображения малозначимых стрелок. Если на какой-либо диаграмме нижнего уровня необходимо изобразить малозначимые данные или объекты, которые не обрабатываются или не используются работами на текущем уровне, то их необходимо направить на вышестоящий уровень (на родительскую диаграмму). Если эти данные не используются на родительской диаграмме, их нужно направить еще выше, и т. д. В результате малозначимая стрелка будет изображена на всех уровнях и затруднит чтение всех диаграмм, на которых она присутствует. Выходом является туннелирование стрелки на самом нижнем уровне. Такое туннелирование называется "не-в-родительской-диаграмме".

Другим примером туннелирования может быть ситуация, когда стрелка механизма мигрирует с верхнего уровня на нижний, причем на нижнем уровне этот механизм используется одинаково во всех работах без исключения. (Предполагается, что не нужно детализировать стрелку механизма, т. е. стрелка механизма на дочерней работе именована до разветвления, а после разветвления ветви не имеют собственного имени). В этом случае стрелка механизма на нижнем уровне может быть удалена, после чего на родительской диаграмме она может быть туннелирована, а в комментарии к стрелке или в словаре можно указать, что механизм будет использоваться во всех работах дочерней диаграммы декомпозиции. Такое туннелирование называется "не-в-дочерней-работе" (рис. П2.25).

Нумерация работ и диаграмм . Все работы модели нумеруются. Номер состоит из префикса и числа. Может быть использован префикс любой длины, но обычно используют префикс А. Контекстная (корневая) работа дерева имеет номер А0. Работы i декомпозиции А0 имеют номера А1, А2, A3 и т. д. Работы декомпозиции нижнего уровня имеют номер родительской работы и очередной порядковый номер, например работы декомпозиции A3 будут иметь номера А31, А32, АЗЗ, А34 и т. д. Работы образуют иерархию, где каждая работа может иметь одну родительскую и несколько дочерних работ, образуя дерево. Такое дерево называют деревом узлов, а вышеописанную нумерацию - нумерацией по узлам. Диаграммы IDEF0 имеют двойную нумерацию. Во-первых, диаграммы имеют номера по узлу. Контекстная диаграмма всегда имеет номер А-0, декомпозиция контекстной диаграммы - номер А0, остальные диаграммы декомпозиции - номера по соответствующему узлу (например, A1, A2, А21, А213 и т. д.). BPwin автоматически поддерживает нумерацию по узлам, т. е. при проведении декомпозиции создается новая диаграмма и ей автоматически присваивается соответствующий номер. В результате проведения экспертизы диаграммы могут уточняться и изменяться, следовательно, могут быть созданы различные версии одной и той же (с точки зрения ее расположения в дереве узлов) диаграммы декомпозиции. BPwin позволяет иметь в модели только одну диаграмму декомпозиции в данном узле. Прежние версии диаграммы можно хранить в виде бумажной копии либо как FEO-диаграмму. (К сожалению, при создании FEO-диаграмм отсутствует возможность отката, т. е. из диаграммы можно получить декомпозиции FEO, но не наоборот.) В любом случае следует отличать различные версии одной и той же диаграммы. Для этого существует специальный номер - C-number, который должен присваиваться автором модели вручную. C-number - это произвольная строка, но рекомендуется придерживаться стандарта, когда номер состоит из буквенного префикса и порядкового номера, причем в качестве префикса используются инициалы автора диаграммы, а порядковый номер отслеживается автором вручную, например МСВ00021.

Владимир Репин К.т.н., исполнительный директор ООО «ФИНЭКСПЕРТ.РУ », зав. кафедрой Управления бизнес-процессами НОУ ВПО «ИЭФ «Синергия».

Важно подчеркнуть, что при анализе цепочек создания ценности предприятия выделенные бизнес-процессы носят, как правило, межфункциональный характер. В выполнении таких процессов участвуют многие подразделения. Если при построении модели в IDEF0 взять за основу цепочки создания ценности, то полученную в результате модель можно будет с полным правом назвать процессной.

При попытке отобразить цепочку создания ценности, представленную на рисунке 5, в модели IDEF0 возникает вопрос: каким образом отобразить на одной диаграмме 16 бизнес-процессов одновременно? Делать это не стоит, т.к. диаграмма станет плохо читаемой (не говоря уже о нарушении требований стандарта). Нужно определиться с тем, каким образом сгруппировать процессы так, чтобы с одной стороны сохранилась цепочка, а с другой — чрезмерно не усложнять диаграмму . Кроме того, нужно решить, отображать ли в данной модели бизнес-процессы закупки, сбыта, управления финансами и т.д. Вариантов решения этой проблемы может быть несколько. Какого-то единственного правильного решения не существует. Конечно, все зависит от того, какие цели мы ставим перед моделью. На рисунке 6 показан пример модели в IDEF0, построенной для рассматриваемого случая.

Бизнес-процессы на диаграмме А0 (рисунок 6) сгруппированы по трем категориям на основе анализа движения материальных потоков — сырья, полуфабрикатов, готовой продукции. Далее в качестве примера показано детальное представление процесса «Производить, хранить и доставлять сырье» (см. рисунок 7).


Рисунок 6. Фрагмент модели в IDEF0, построенной на основе цепочек создания ценности. Диаграмма А0.

На рисунке 7 белым цветом показаны бизнес-процессы, выполняемые предприятием, а серым цветом — бизнес-процессы, выполняемые внешними контрагентами. Видно, что бизнес-процесс «Закупать сырье», по сути, управляет всеми остальными бизнес-процессами в рассматриваемой части цепочки создания ценности. Выполняется этот процесс Отделом закупок Службы снабжения. Так же в этом процессе участвует подразделение «Транспортный отдел» (оно не показано на схеме организационной структуры на рисунке 1). Хотя данное подразделение не входит в Службу снабжения, но выполняет часть рассматриваемого процесса. Таким образом, на диаграмме А2 представлен «сквозной» или межфункциональный (даже можно сказать межорганизационный) бизнес-процесс.

У читателя может возникнуть вопрос: почему на диаграмму А2 не попал бизнес-процесс хранения сырья на складе предприятия, выполняемый Складом сырья Службы снабжения? Этот процесс был условно отнесен в блоку процессов «Хранить и перерабатывать сырье и полуфабрикаты» (диаграмма А0, рисунок 6). Здесь мы коснулись вопроса определения границ «сквозных» или межфункциональных бизнес-процессов. Поскольку такие процессы не локализованы внутри отдельных подразделений (или даже организаций), определение их границ является достаточно субъективным и зависит от ряда критериев, которые, как правило, вырабатывается при проведении анализа бизнеса компании на основе установленных целей и задач.


Рисунок 7. Фрагмент модели в IDEF0, построенной на основе цепочек создания ценности. Диаграмма А2.

Выводы

Мы проводили анализ цепочек создания ценности нескольких российских компаний при помощи стандарта IDEF0 и считаем, что он вполне подходит для этих целей при правильном и последовательном методическом подходе. На наш взгляд, реальной проблемой является то, что специалисты предприятий смешивают два представленных выше подхода при построении моделей в IDEF0. В результате полученная модель содержит как описание деятельности подразделений («локальные» процессы), так и элементы «сквозных» процессов. Такое смешение делает модель «рыхлой» и существенно затрудняет ее анализ и последующее использование для целей реорганизации, документирования и подготовки к автоматизации.

Кроме IDEF0, существуют и другие формы графического представления цепочек создания ценности, о которых речь пойдет в следующих публикациях.

Москва, февраль 2005 г.

Кто-то из читателей наверняка скажет, что для собственников это слишком сложно. Однако наш опыт работы показывает, что профессионально построенная модель в IDEF0 вполне может использоваться для обсуждения и принятия решений не только на уровне специалистов, но и на уровне собственников.

Состав функций и распределение их по сотрудникам являются условными. Таблица дается в качестве примера.

Конечно, такое разделение процессов является субъективным.

Если конечно не приравнивать деятельность крупных структурных подразделений бизнес-процессам, как это делают некоторые авторы.

Более подробно методы построения цепочек ценности смотри в других статьях автора.

Это проблема не только IDEF0, но и любого другого способа графического представления бизнес-процессов.

6.2. Назначение и состав методологии SADT (IDEF0)

Методология SADT (Structured Analysis and Design Technique – методология структурного анализа и проектирования) представляет собой совокупность методов, правил и процедур, предназначенных для построения функциональной модели системы.

Начало разработки данной методологии было положено Дугласом Россом (США) в середине 60-х гг. ХХ в. С тех пор системные аналитики компании SofTech, Inc. улучшили SADT и использовали ее в решении широкого круга проблем. Программное обеспечение телефонных сетей, диагностика, долгосрочное и стратегическое планирование, автоматизированное производство и проектирование, конфигурация компьютерных систем, обучение персонала, управление финансами и материально-техническим снабжением – вот некоторые из областей эффективного применения SADT. Широкий спектр областей указывает на универсальность и мощь методологии SADT. В программе «Интеграции компьютерных и промышленных технологий» (Integrated Computer Aided Manufacturing, ICAM) Министерства обороны США была признана полезность SADT. Это привело к публикации ее части в 1981 г., называемой IDEF0 (Icam DEFinition), в качестве федерального стандарта на разработку программного обеспечения. Под этим названием SADT стала применяться тысячами специалистов в военных и промышленных организациях . Последняя редакция стандарта IDEF0 была выпущена в декабре 1993г. Национальным институтом по стандартам и технологиям США (National Institute Standards and Technology, NIST).

Данная методология при описании функционального аспекта информационной системы конкурирует с методами, ориентированными на потоки данных (DFD). В отличие от них IDEF0 позволяет:

Описывать любые системы, а не только информационные (DFD предназначена для описания программного обеспечения);

Создать описание системы и ее внешнего окружения до определения окончательных требований к ней. Иными словами, с помощью данной методологии можно постепенно выстраивать и анализировать систему даже тогда, когда трудно еще представить ее воплощение.

Таким образом, IDEF0 может применяться на ранних этапах создания широкого круга систем. В то же время она может быть использована для анализа функций существующих систем и выработки решений по их улучшению.

Основу методологии IDEF0 составляет графический язык описания процессов. Модель в нотации IDEF0 представляет собой совокупность иерархически упорядоченных и взаимосвязанных диаграмм. Каждая диаграмма является единицей описания системы и располагается на отдельном листе.

Модель (AS-IS, TO-BE или SHOULD-BE) может содержать 4 типа диаграмм [ , ]:

Контекстную диаграмму;

Диаграммы декомпозиции;

Диаграммы дерева узлов;

Диаграммы только для экспозиции (for exposition only, FEO).

Контекстная диаграмма (диаграмма верхнего уровня), являясь вершиной древовидной структуры диаграмм, показывает назначение системы (основную функцию) и ее взаимодействие с внешней средой. В каждой модели может быть только одна контекстная диаграмма. После описания основной функции выполняется функциональная декомпозиция, т. е. определяются функции, из которых состоит основная.

Далее функции делятся на подфункции и так до достижения требуемого уровня детализации исследуемой системы. Диаграммы, которые описывают каждый такой фрагмент системы, называются диаграммами декомпозиции . После каждого сеанса декомпозиции проводятся сеансы экспертизы – эксперты предметной области указывают на соответствие реальных процессов созданным диаграммам. Найденные несоответствия устраняются, после чего приступают к дальнейшей детализации процессов.

Диаграмма дерева узлов показывает иерархическую зависимость функций (работ), но не связи между ними. Их может быть несколько, поскольку дерево можно построить на произвольную глубину и с произвольного узла.

Диаграммы для экспозиции строятся для иллюстрации отдельных фрагментов модели с целью отображения альтернативной точки зрения на происходящие в системе процессы (например, с точки зрения руководства организации).

6.3. Элементы графической нотации IDEF0

Методология IDEF0 нашла широкое признание и применение, в первую очередь, благодаря простой графической нотации, используемой для построения модели. Главными компонентами модели являются диаграммы. На них отображаются функции системы в виде прямоугольников, а также связи между ними и внешней средой посредством стрелок. Использование всего лишь двух графических примитивов (прямоугольник и стрелка) позволяют быстро объяснить правила и принципы построения диаграмм IDEF0 людям, незнакомым с данной методологией. Это достоинство позволяет подключить и активизировать деятельность заказчика по описанию бизнес-процессов с использованием формального и наглядного графического языка.

На следующем рисунке показаны основные элементы графической нотации IDEF0 .

Рис. 6.1. Элементы графической нотации IDEF0

Прямоугольник представляет собой работу (процесс, деятельность, функцию или задачу) , которая имеет фиксированную цель и приводит к некоторому конечному результату. Имя работы должно выражать действие (например, «Изготовление детали», «Расчет допускаемых скоростей», «Формирование ведомости ЦДЛ № 3»).

Взаимодействие работ между собой и внешним миром описывается в виде стрелок. В IDEF0 различают 5 видов стрелок :

- вход (англ. input) – материал или информация, которые используются и преобразуются работой для получения результата (выхода). Вход отвечает на вопрос «Что подлежит обработке?». В качестве входа может быть как материальный объект (сырье, деталь, экзаменационный билет), так и не имеющий четких физических контуров (запрос к БД, вопрос преподавателя). Допускается, что работа может не иметь ни одной стрелки входа. Стрелки входа всегда рисуются входящими в левую грань работы;

- управление (англ. control) – управляющие, регламентирующие и нормативные данные, которыми руководствуется работа. Управление отвечает на вопрос «В соответствии с чем выполняется работа?». Управление влияет на работу, но не преобразуется ей, т.е. выступает в качестве ограничения. В качестве управления могут быть правила, стандарты, нормативы, расценки, устные указания. Стрелки управления рисуются входящими в верхнюю грань работы. Если при построении диаграммы возникает вопрос, как правильно нарисовать стрелку сверху или слева, то рекомендуется ее рисовать как вход (стрелка слева);

- выход (англ. output) – материал или информация, которые представляют результат выполнения работы. Выход отвечает на вопрос «Что является результатом работы?». В качестве выхода может быть как материальный объект (деталь, автомобиль, платежные документы, ведомость), так и нематериальный (выборка данных из БД, ответ на вопрос, устное указание). Стрелки выхода рисуются исходящими из правой грани работы;

- механизм (англ. mechanism) – ресурсы, которые выполняют работу. Механизм отвечает на вопрос «Кто выполняет работу или посредством чего?». В качестве механизма могут быть персонал предприятия, студент, станок, оборудование, программа. Стрелки механизма рисуются входящими в нижнюю грань работы;

- вызов (англ. call) – стрелка указывает, что некоторая часть работы выполняется за пределами рассматриваемого блока. Стрелки выхода рисуются исходящими из нижней грани работы.

6.4. Типы связей между работами

После определения состава функций и взаимосвязей между ними, возникает вопрос о правильной их композиции (объединении) в модули (подсистемы). При этом подразумевается, что каждая отдельная функция должна решать одну, строго определенную задачу. В противном случае необходима дальнейшая декомпозиция или разделение функций.

При объединении функций в подсистемы необходимо стремиться, чтобы внутренняя связность (между функциями внутри модуля) была как можно сильнее, а внешняя (между функциями, входящими в разные модули), как можно слабее. Опираясь на семантику связей методологии , введем классификацию связей между функциями (работами). Данная классификация является расширением . Типы связей приводятся в порядке уменьшения их значимости (силы связывания). В приводимых примерах утолщенными линиями выделяются функции, между которыми имеется рассматриваемый тип связи.

1. Иерархическая связь (связь «часть» – «целое») имеет место между функцией и подфункциями, из которых она состоит.

Рис. 6.2. Иерархическая связь

2. Регламентирующая (управляющая, подчиненная) связь отражает зависимость одной функции от другой, когда выход одной работы направляется на управление другой. Функцию, из которой выходит управление, следует считать регламентирующей или управляющей, а в которую входит – подчиненной. Различают прямую связь по управлению , когда управление передается с вышестоящей работы на нижестоящую (рис. 6.3), и обратную связь по управлению , когда управление передается от нижестоящей к вышестоящей (рис. 6.4).

3. Функциональная (технологическая) связь имеет место, когда выход одной функции служит входными данными для следующей функции. С точки зрения потока материальных объектов данная связь показывает технологию (последовательность работ) обработки этих объектов. Различают прямую связь по входу , когда выход передается с вышестоящей работы на нижестоящую (рис. 6.5), и обратную связь по входу , когда выход передается с нижестоящей к вышестоящей (рис.6.6).



Рис. 6.5. Прямая связь по входу Рис. 6.6. Обратная связь по входу

4. Потребительская связь имеет место, когда выход одной функции служит механизмом для следующей функции. Таким образом, одна функция потребляет ресурсы, вырабатываемые другой.

Рис. 6.7. Потребительская связь

5. Логическая связь наблюдается между логически однородными функциями. Такие функции, как правило, выполняют одну и ту же работу, но разными (альтернативными) способами или, используя разные исходные данные (материалы).

Рис. 6.8. Логическая связь

6. Коллегиальная (методическая) связь имеет место между функциями, алгоритм работы которых определяется одним и тем же управлением. Аналогом такой связи является совместная работа сотрудников одного отдела (коллег), подчиняющихся начальнику, который отдает указания и приказы (управляющие сигналы). Такая связь также возникает, когда алгоритмы работы этих функций определяются одним и тем же методическим обеспечением (СНИП, ГОСТ, официальными нормативными материалами и т. д.), служащим в качестве управления.

Рис. 6.9. Методическая связь

7. Ресурсная связь возникает между функциями, использующими для своей работы одни и те же ресурсы. Ресурсно-зависимые функции, как правило, не могут выполняться одновременно.

Рис. 6.10. Ресурсная связь

8. Информационная связь имеет место между функциями, использующими в качестве входных данных одну и ту же информацию.

Рис. 6.11. Информационная связь

9. Временная связь возникает между функциями, которые должны выполняться одновременно до или одновременно после другой функции.

Кроме указанных на рисунке случаев, эта связь имеет место также между другими сочетаниями управления, входа и механизма, поступающими в одну функцию.

Рис. 6.12. Временная связь

10. Случайная связь возникает, когда конкретная связь между функциями мала или полностью отсутствует.

Рис. 6.13. Случайная связь

Из приведенных выше типов связей наиболее сильной является иерархическая связь, которая, по сути, и определяет объединение функций в модули (подсистемы). Несколько слабее являются регламентирующие, функциональные и потребительские связи. Функции с этими связями обычно реализуются в одной подсистеме. Логические, коллегиальные, ресурсные и информационные связи одни из самых слабых. Функции, обладающие ими, как правило, реализуют в разных подсистемах, за исключением логически однородных функций (функций, связанных логической связью). Временная связь свидетельствует о слабой зависимости функций друг от друга и требует их реализации в отдельных модулях.

Таким образом, при объединении функций в модули наиболее желательными являются первые пять видов связей. Функции, связанные последними пятью связями, лучше реализовывать в отдельных модулях.

В IDEF0 существуют соглашения (правила и рекомендации) по созданию диаграмм, которые призваны облегчить чтение и экспертизу модели [ , ]. Некоторые из этих правил CASE-средства поддерживают автоматически, выполнение других следует обеспечить вручную.

1. Перед построением модели необходимо определиться, какая модель (модели) системы будет построена. Это подразумевает определение ее типа AS-IS, TO-BE или SHOULD-BE, а также определения позиции, с точки зрения которой строится модель. «Точку зрения» лучше всего представлять себе как место (позицию) человека или объекта, в которое надо встать, чтобы увидеть систему в действии. Например, при построении модели работы продуктового магазина можно среди возможных претендентов, с точки зрения которых рассматривается система, выбрать продавца, кассира, бухгалтера или директора. Обычно выбирается одна точка зрения, наиболее полно охватывающая все нюансы работы системы, и при необходимости для некоторых диаграмм декомпозиции строятся диаграммы FEO, отображающие альтернативную точку зрения.

2. На контекстной диаграмме отображается один блок, показывающий назначение системы. Для него рекомендуется отображать по 2–4 стрелки, входящие и выходящие с каждой стороны.

3. Количество блоков на диаграммах декомпозиции рекомендуется в пределах 3–6. Если на диаграмме декомпозиции два блока, то она, как правило, не имеет смысла. При наличии большого количества блоков диаграмма становится перенасыщенной и трудно читаемой.

4. Блоки на диаграмме декомпозиции следует располагать слева направо и сверху вниз. Такое расположение позволяет более четко отразить логику и последовательность выполнения работ. Кроме этого маршруты стрелок будут менее запутанными и иметь минимальное количество пересечений.

5. Отсутствие у функции одновременно стрелок управления и входа не допускается. Это означает, что запуск данной функции не контролируется и может произойти в любой произвольный момент времени либо вообще никогда.

Рис. 6.14. Функция без управления и входа

Блок с наличием только управления можно рассматривать как вызов в программе функции (процедуры) без параметров. Если у блока имеется вход, то он эквивалентен вызову в программе функции с параметрами. Таким образом, блок без управления и входа эквивалентен функции, которая в программе ни разу не вызывается на исполнение.

На рис. 6.7–6.12, отображающих фрагменты диаграмм IDEF0, встречаются блоки без входа и управления. Это не стоит рассматривать как ошибку, так как подразумевается, что одна из этих стрелок должна быть.

6. У каждого блока должен быть как минимум один выход.

Рис. 6.15. Функция без выхода

Работы без результата не имеют смысла и не должны моделироваться. Исключение составляют работы, отображаемые в модели AS-IS. Их наличие свидетельствует о неэффективности и несовершенстве технологических процессов. В модели TO-BE эти работы должны отсутствовать.

7. При построении диаграмм следует минимизировать число пересечений, петель и поворотов стрелок.

8. Обратные связи и итерации (циклические действия) могут быть изображены с помощью обратных дуг. Обратные связи по входу рисуются «нижней» петлей, обратная связь по управлению – «верхней» (см. рис. 6.4 и 6.6).

9. Каждый блок и каждая стрелка на диаграммах должны обязательно иметь имя. Допускается использовать ветвление (декомпозицию) или слияние (композицию) стрелок. Это связано с тем, что одни и те же данные или объекты, порожденные одной работой, могут использоваться сразу в нескольких других работах. И наоборот, одинаковые или однородные данные и объекты, порожденные разными работами, могут использоваться в одном месте.

Рис. 6.16. Ветвление стрелок

При этом допускается задание различным ветвям стрелки уточняющих имен после разветвления (до слияния). Если какая-либо ветвь после ветвления не именована, то считается, что ее имя соответствует имени стрелки, записанному до ветвления.

Так, на рис. 6.16 управления, входящие в блоки «Изготовление деталей» и «Сборка изделия», имеют уточняющие значения и являются составной частью более общего управления «Чертежи». Для работы блока «Контроль качества» используются все чертежи.

На диаграмме не допускается рисовать стрелки, когда до и после ветвления они не именованы. На рис. 6.17 стрелка, входящая в блок «Формирование типовых ведомостей», не имеет имени до и после ветвления, что является ошибкой.

Рис. 6.17. Неправильное именование стрелок

10. При построении диаграмм для лучшей их читаемости может использоваться механизм туннелирования стрелок. Например, чтобы не загромождать лишними деталями диаграммы верхних уровней (родительские), на диаграммах декомпозиции начало дуги помещают в тоннель.

Рис. 6.18. Туннелирование стрелок

В данном примере при построении модели проведения новогоднего утренника механизм «два топора» не будет отображаться на диаграммах верхних уровней, при чтении которых может возникнуть справедливый вопрос: «А зачем нужны два топора на новогоднем утреннике?».

Аналогичным образом можно выполнять туннелирование с обратной целью – недопущения отображения стрелки на диаграммах низших уровней. В этом случае круглые скобки ставятся на конце стрелки. На контекстной диаграмме (см. рис. 6.21) затуннелирован механизм «Инженер службы пути», входящий в блок «Определение допускаемых скоростей». Такое решение принято, так как инженер непосредственно участвует во всех работах, отображенных на диаграмме декомпозиции этого блока (см. рис. 6.22). Чтобы не показывать эту связь и не загромождать диаграмму декомпозиции, стрелка была затуннелирована.

11. Все стрелки, входящие и выходящие из блока, при построении для него диаграммы декомпозиции должны быть отображены на ней. Исключение составляют затуннелированные стрелки. Имена стрелок, перенесенных на диаграмму декомпозиции, должны совпадать с именами, указанными на диаграмме верхнего уровня.

12. Если две стрелки проходят параллельно (начинаются из одной и той же грани одной работы и заканчиваются на одной и той же грани другой работы), то по возможности следует их объединить и называть единым термином.

Рис. 6.19. Объединение связей

13. Каждый блок на диаграммах должен иметь свой номер. Для того чтобы указать положение любой диаграммы или блока в иерархии, используются номера диаграмм. Блок на диаграмме верхнего уровня обозначается 0, блоки на диаграммах второго уровня – цифрами от 1 до 9 (1, 2, …, 9), блоки на третьем уровне – двумя цифрами, первая из которых указывает на номер детализируемого блока с родительской диаграммы, а вторая номер блока по порядку на текущей диаграмме (11, 12, 25, 63) и т. д. Контекстная диаграмма имеет обозначение «А – 0», диаграмма декомпозиции первого уровня – «А0», диаграммы декомпозиции следующих уровней – состоят из буквы «А», за которой следует номер декомпозируемого блока (например, «А11», «А12», «А25», «А63»). На рисунке показано типичное дерево диаграмм (диаграмма дерева узлов) с нумерацией.

Рис. 6.20. Иерархия диаграмм

В современных CASE-средствах механизмы нумерации работ поддерживается автоматически. CASE-средства обеспечивают также автоматическое построение диаграмм дерева узлов, которые содержат только иерархические связи. Вершиной такой диаграммы может быть любой узел (блок), и она может быть построена на любую глубину.

6.6. Пример построения модели IDEF0 для системы определения допускаемых скоростей

Расчет допускаемых скоростей движения поездов является трудоемкой инженерной задачей. При проходе поездом какого-либо участка фактическая скорость движения поезда не должна превышать предельно допускаемую. Эта предельно допускаемая скорость устанавливается исходя из опыта эксплуатации и специально проводимых испытаний по динамике движения и воздействию на путь подвижного состава. Непревышение этой скорости гарантирует безопасность движения поездов, комфортабельные условия езды пассажиров и т. п. Они определяются в зависимости от типа подвижного состава (марки локомотива и типа вагонов), параметров верхнего строения пути (типа рельсов, балласта, эпюры шпал) и плана (радиуса кривых, переходных кривых, возвышения наружного рельса и т. д.). Как правило, для установления допускаемых скоростей необходимо определить не менее двух (на прямых) и пяти (в кривых) скоростей, из которых и выбирается окончательная допускаемая скорость, как наименьшая из всех рассчитанных. Расчет этих скоростей регламентируются Приказом МПС России № 41 от 12 ноября 2001 г. «Нормы допускаемых скоростей движения подвижного состава по железнодорожным путям колеи 1520 (1524) мм Федерального железнодорожного транспорта».

Как было отмечено, построение модели IDEF0 начинается с представления всей системы в виде простейшей компоненты (контекстной диаграммы). Данная диаграмма отображает назначение (основную функцию) системы и необходимые входные и выходные данные, управляющую и регламентирующую информацию, а также механизмы.

Контекстная диаграмма для задачи определения допускаемых скоростей показана на рис.6.21. Для построения модели использовался продукт BPwin 4.0 фирмы Computer Associates.


Рис. 6.21. Контекстная диаграмма системы определения допускаемых скоростей (методология IDEF0)

В качестве исходной информации , на основе которой выполняется определение допускаемых скоростей, используются:

Данные проекта новой линии или проекта реконструкции (содержат всю необходимую информацию для реализации проекта, а именно километраж, оси раздельных пунктов, план линии и др.);

Подробный продольный профиль (содержит информацию, аналогичную рассмотренной выше);

Паспорт дистанции пути (содержит информацию, аналогичную рассмотренной выше, а также сведения о верхнем строении пути (ВСП));

Данные о результатах съемки плана пути вагоном-путеизмерителем;

Ведомость возвышений наружного рельса в кривых (содержит информацию о плане пути).

Часть исходной информации может быть взята из разных источников. В частности сведения о плане (параметрах кривых) могут быть взяты из проекта новой линии или проекта реконструкции, подробного продольного профиля, паспорта дистанции пути и т.д.

Управляющими данными являются:

Указание начальника службы пути дороги или Департамента пути и сооружений ОАО «РЖД» на расчет;

Приказ № 41, содержащий нормативно-справочную информацию, порядок и формулы определения допускаемых скоростей;

Сведения о текущем или планируемом поездопотоке (данные о марках обращающихся локомотивов и типах используемых вагонов);

Сведения о планируемых ремонтах пути, реконструкции и переустройстве сооружений и устройств.

Результатом работы системы должны быть:

Ведомости допускаемых скоростей, содержащие все типы рассчитанных скоростей и позволяющие установить причину их ограничения;

Ведомости Приказа начальника дороги об установлении допускаемых скоростей на перегонах и раздельных пунктах (Приказ «Н») согласно принятой на дороге форме. Утвержденный Приказ «Н» официально закрепляет допускаемые скорости движения поездов;

Типовые формы № 1, 1а и 2, содержащие планируемые допускаемые скорости для разработки графика движения поездов.

Скорости, содержащиеся в Приказе «Н» и типовых формах, могут отличаться от рассчитанных и показываемых в ведомостях допускаемых скоростей. Это связано с тем, что в них отражают ограничения скорости не только по конструкции подвижного состава, параметров ВСП и кривых, но и по состоянию устройств и сооружений (деформация земляного полотна, перекос опор контактной сети и т. д.). Кроме того, они корректируются с учетом планируемых ремонтов пути, реконструкции и переустройства сооружений и устройств и т.д.

После построения контекстная диаграмма детализируется с помощью диаграммы декомпозиции первого уровня. На этой диаграмме отображаются функции системы, которые должны быть реализованы в рамках основной функции. Диаграмма, для которой выполнена декомпозиция, по отношению к детализирующим ее диаграммам называется родительской . Диаграмма декомпозиции по отношению к родительской называется дочерней .

Диаграмма декомпозиции первого уровня для рассматриваемой задачи приведена на рис.6.22. Как правило, при построении диаграммы декомпозиции исходная функция (декомпозируемая) разбивается на 3–8 подфункций (блоков). При этом блоки на диаграмме декомпозиции рекомендуется располагать слева направо сверху вниз, чтобы лучше была видна последовательность и логика взаимодействия подфункций.


Рис. 6.22. Диаграмма декомпозиции первого уровня (методология IDEF0)

Очередность выполнения функций для решения рассматриваемой задачи следующая:

Ввод и корректировка нормативно-справочной информации и данных по участкам дороги (блоки 1 и 2);

Подготовка задания на расчет (блок 3). В нем указывается, для какого участка и пути, а также марки локомотива и типа вагонов следует выполнить расчет;

Расчет допускаемых скоростей в соответствии с порядком и формулами, указанными в Приказе № 41 (блок 4). В качестве исходной информации выступают данные по пути участка (план, верхнее строение пути и т. д.) и нормативы, выбираемые на основании задания на расчет;

Формирование ведомостей допускаемых скоростей (блок 5). На базе результатов расчета создаются несколько видов выходных документов, которые, с одной стороны, позволяют выявить причину ограничений скорости, с другой стороны, выступают в качестве основы для подготовки регламентированных документов;

Формирование и подготовка проекта Приказа «Н» и типовых ведомостей (блоки 6 и 7).

После построения диаграммы декомпозиции первого уровня для указанных на ней функций строятся отдельные диаграммы (диаграммы декомпозиции второго уровня). Затем процесс декомпозиции (построения диаграмм) продолжается до тех пор, пока дальнейшая детализация функций не теряет смысла. Для каждой атомарной функции, описывающей элементарную операцию (т. е. функции, не имеющей диаграмму декомпозиции), составляется подробная спецификация, определяющая ее особенности и алгоритм реализации. В качестве дополнения к спецификации могут использоваться блок-схемы алгоритмов. Таким образом, процесс функционального моделирования заключается в постепенном выстраивании иерархии функций.

6.7. ICOM-коды

Стрелки, входящие в блок и выходящие из него на диаграмме верхнего уровня, являются теми же самыми, что и стрелки, входящие в диаграмму нижнего уровня и выходящие из нее, потому что блок и диаграмма представляют одну и ту же часть системы (см. рис. и ). Как следствие этого, границы функции верхнего уровня – это то же самое, что и границы диаграммы декомпозиции.

ICOM-коды (аббревиатура от Input, Control, Output и Mechanism) предназначены для идентификации граничных стрелок. ICOM-код содержит префикс, соответствующий типу стрелки (I, С, О или М), и порядковый номер (см. рис.).



Последние материалы раздела:

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...