Правила составления химических уравнений. Виды химических реакций

Запись химического взаимодействия, отражающая количественную и качественную информацию о реакции, называют уравнением химических реакций. Записывается реакция химическими и математическими символами.

Основные правила

Химические реакции предполагают превращение одних веществ (реагентов) в другие (продукты реакции). Это происходит благодаря взаимодействию внешних электронных оболочек веществ. В результате из начальных соединений образуются новые.

Чтобы выразить ход химической реакции графически, используются определённые правила составления и написания химических уравнений.

В левой части пишутся изначальные вещества, которые взаимодействуют между собой, т.е. суммируются. При разложении одного вещества записывается его формула. В правой части записываются полученные в ходе химической реакции вещества. Примеры записанных уравнений с условными обозначениями:

  • CuSO 4 + 2NaOH → Cu(OH) 2 ↓+ Na 2 SO 4 ;
  • CaCO 3 = CaO + CO 2 ;
  • 2Na 2 O 2 + 2CO 2 → 2Na 2 CO 3 + O 2 ;
  • CH 3 COONa + H 2 SO 4 (конц.) → CH 3 COOH + NaHSO 4 ;
  • 2NaOH + Si + H 2 O → Na 2 SiO 3 + H 2 .

Коэффициенты перед химическими формулами показывают количество молекул вещества. Единица не ставится, но подразумевается. Например, уравнение Ba + 2H 2 O → Ba(OH) 2 + H 2 показывает, что из одной молекулы бария и двух молекул воды получается по одной молекуле гидроксида бария и водорода. Если пересчитать количество водорода, то и справа, и слева получится четыре атома.

Обозначения

Для составления уравнений химических реакций необходимо знать определённые обозначения, показывающие, как протекает реакция. В химических уравнениях используются следующие знаки:

  • → - необратимая, прямая реакция (идёт в одну сторону);
  • ⇄ или ↔ - реакция обратима (протекает в обе стороны);
  • - выделяется газ;
  • ↓ - выпадает осадок;
  • hν - освещение;
  • t° - температура (может указываться количество градусов);
  • Q - тепло;
  • Е(тв.) - твёрдое вещество;
  • Е(газ) или Е(г) - газообразное вещество;
  • Е(конц.) - концентрированное вещество;
  • Е(водн.) - водный раствор вещества.

Рис. 1. Выпадение осадка.

Вместо стрелки (→) может ставиться знак равенства (=), показывающий соблюдение закона сохранения вещества: и слева, и справа количество атомов веществ одинаково. При решении уравнений сначала ставится стрелка. После расчёта коэффициентов и уравнения правой и левой части под стрелкой подводят черту.

Условия реакции (температура, освещение) указываются сверху знака протекания реакции (→,⇄). Также сверху подписываются формулы катализаторов.

Рис. 2. Примеры условий реакции.

Какие бывают уравнения

Химические уравнения классифицируются по разным признакам. Основные способы классификации представлены в таблице.

Признак

Реакции

Описание

Пример

По изменению количества реагентов и конечных веществ

Замещения

Из простого и сложного вещества образуются новые простые и сложные вещества

2Na +2H 2 O → 2NaOH + H 2

Соединения

Несколько веществ образуют новое вещество

С + О 2 = СО 2

Разложения

Из одного вещества образуется несколько веществ

2Fe(OH) 3 → Fe 2 O 3 + 3H 2 O

Ионного обмена

Обмен составными частями (ионами)

Na 2 CO 3 + H 2 SO 4 → Na 2 SO 4 + CO 2 + H 2 O

По выделению тепла

Экзотермические

Выделение тепла

С + 2H 2 = СH 4 + Q

Эндотермические

Поглощение тепла

N 2 + O 2 → 2NO – Q

По типу энергетического воздействия

Электрохимические

Действие электрического тока

Фотохимические

Действие света

Термохимические

Действие высокой температуры

По агрегатному состоянию

Гомогенные

Одинаковое состояние

CuCl 2 + Na 2 S → 2NaCl + CuS↓

Гетерогенные

Разное состояние

4Н 2 О (ж) + 3Fe (т) → Fe 3 O 4 + 4H 2

Существует понятие химического равновесия, присущее только обратимым реакциям. Это состояние, при котором скорости прямой и обратной реакции, а также концентрации веществ равны. Такое состояние характеризуется константой химического равновесия.

При внешнем воздействии температуры, давления, света реакция может смещаться в сторону уменьшения или увеличения концентрации определённого вещества. Зависимость константы равновесия от температуры выражается с помощью уравнений изобары и изохоры. Уравнение изотермы отражает зависимость энергии и константы равновесия. Эти уравнения показывают направление протекания реакции.

Рис. 3. Уравнения изобары, изохоры и изотермы.

Что мы узнали?

В уроке химии 8 класса была рассмотрена тема уравнений химических реакций. Составление и написание уравнений отражает ход химической реакции. Существуют определённые обозначения, показывающие состояние веществ и условия протекания реакции. Выделяют несколько видов химических реакций по разным признакам: по количеству вещества, агрегатному состоянию, поглощению энергии, энергетическому воздействию.

Тест по теме

Оценка доклада

Средняя оценка: 4.3 . Всего получено оценок: 520.

Химия – это наука о веществах, их свойствах и превращениях .
То есть, если с окружающими нас веществами ничего не происходит, то это не относится к химии. Но что значит, «ничего не происходит»? Если в поле нас вдруг застала гроза, и мы все промокли, как говорится «до нитки», то это ли не превращение: ведь одежда была сухой, а стала мокрой.

Если, к примеру взять железный гвоздь, обработать его напильником, а затем собрать железные опилки (Fe ) , то это ли так же не превращение: был гвоздь – стал порошок. Но если после этого собрать прибор и провести получение кислорода (О 2) : нагреть перманганат калия (КМпО 4) и собрать в пробирку кислород, а затем в неё поместить раскалённые «до красна» эти железные опилки, то они вспыхнут ярким пламенем и после сгорания превратятся в порошок бурого цвета. И это так же превращение. Так где же химия? Несмотря на то, что в этих примерах меняется форма (железный гвоздь) и состояние одежды (сухая, мокрая) – это не превращения. Дело в том, что сам по себе гвоздь как был веществом (железо), так им и остался, несмотря на другую свою форму, а воду от дождя как впитала наша одежда, так потом его и испарила в атмосферу. Сама вода не изменилась. Так что же такое превращения с точки зрения химии?

Превращениями с точки зрения химии называются такие явления, которые сопровождаются изменением состава вещества. Возьмём в качестве примера тот же гвоздь. Не важно, какую форму он принял после обработки напильником, но после того как собранные от него железные опилки поместили в атмосферу кислорода - он превратился в оксид железа (Fe 2 O 3 ) . Значит, что-то всё-таки изменилось? Да, изменилось. Было вещество гвоздь, но под воздействием кислорода сформировалось новое вещество – оксид элемента железа. Молекулярное уравнение этого превращения можно отобразить следующими химическими символами:

4Fe + 3O 2 = 2Fe 2 O 3 (1)

Для непосвящённого в химии человека сразу возникают вопросы. Что такое «молекулярное уравнение», что такое Fe? Почему поставлены цифры «4», «3», «2»? Что такое маленькие цифры «2» и «3» в формуле Fe 2 O 3 ? Это значит, наступило время во всём разобраться по порядку.

Знаки химических элементов.

Несмотря на то, что химию начинают изучать в 8-м классе, а некоторые даже раньше, многим известен великий русский химик Д. И. Менделеев. И конечно же, его знаменитая «Периодическая система химических элементов». Иначе, проще, её называют «Таблица Менделеева».

В этой таблице, в соответствующем порядке, располагаются элементы. К настоящему времени их известно около 120. Названия многих элементов нам были известны ещё давно. Это: железо, алюминий, кислород, углерод, золото, кремний. Раньше мы не задумываясь применяли эти слова, отождествляя их с предметами: железный болт, алюминиевая проволока, кислород в атмосфере, золотое кольцо и т.д. и т.д. Но на самом деле все эти вещества (болт, проволока, кольцо) состоят из соответствующих им элементов. Весь парадокс состоит в том, что элемент нельзя потрогать, взять в руки. Как же так? В таблице Менделеева они есть, а взять их нельзя! Да, именно так. Химический элемент – это абстрактное (то есть отвлечённое) понятие, и используется в химии, впрочем как и в других науках, для расчётов, составления уравнений, при решении задач. Каждый элемент отличается от другого тем, что для него характерна своя электронная конфигурация атома. Количество протонов в ядре атома равно количеству электронов в его орбиталях. К примеру, водород – элемент №1. Его атом состоит из 1-го протона и 1-го электрона. Гелий – элемент №2. Его атом состоит из 2-х протонов и 2-х электронов. Литий – элемент №3. Его атом состоит из 3-х протонов и 3-х электронов. Дармштадтий – элемент №110. Его атом состоит из 110-и протонов и 110-и электронов.

Каждый элемент обозначается определённым символом, латинскими буквами, и имеет определённое прочтение в переводе с латинского. Например, водород имеет символ «Н» , читается как «гидрогениум» или «аш». Кремний имеет символ «Si» читается как «силициум». Ртуть имеет символ «Нg» и читается как «гидраргирум». И так далее. Все эти обозначения можно найти в любом учебнике химии за 8-й класс. Для нас сейчас главное уяснить то, что при составлении химических уравнений, необходимо оперировать указанными символами элементов.

Простые и сложные вещества.

Обозначая единичными символами химических элементов различные вещества (Hg ртуть , Fe железо , Cu медь , Zn цинк , Al алюминий ) мы по сути обозначаем простые вещества, то есть вещества, состоящие из атомов одного вида (содержащие одно и то же количество протонов и нейтронов в атоме). Например, если во взаимодействие вступают вещества железо и сера, то уравнение примет следующую форму записи:

Fe + S = FeS (2)

К простым веществам относятся металлы (Ва, К, Na, Mg, Ag), а так же неметаллы (S, P, Si, Cl 2 , N 2 , O 2 , H 2). Причём следует обратить
особое внимание на то, что все металлы обозначаются единичными символами: К, Ва, Са, Аl, V, Mg и т.д., а неметаллы – либо простыми символами: C,S,P или могут иметь различные индексы, которые указывают на их молекулярное строение: H 2 , Сl 2 , О 2 , J 2 , P 4 , S 8 . В дальнейшем это будет иметь очень большое значение при составлении уравнений. Совсем не трудно догадаться, что сложными веществами являются вещества, образованные из атомов разного вида, например,

1). Оксиды:
оксид алюминия Al 2 O 3 ,

оксид натрия Na 2 O,
оксид меди CuO,
оксид цинка ZnO,
оксид титана Ti 2 O 3 ,
угарный газ или оксид углерода (+2) CO,
оксид серы (+6) SO 3

2). Основания:
гидроксид железа (+3) Fe(OH) 3 ,
гидроксид меди Cu(OH) 2 ,
гидроксид калия или щёлочь калия КOH,
гидроксид натрия NaOH.

3). Кислоты:
соляная кислота HCl,
сернистая кислота H 2 SO 3 ,
азотная кислота HNO 3

4). Соли:
тиосульфат натрия Na 2 S 2 O 3 ,
сульфат натрия или глауберова соль Na 2 SO 4 ,
карбонат кальция или известняк СаCO 3,
хлорид меди CuCl 2

5). Органические вещества:
ацетат натрия СН 3 СООNa,
метан СН 4 ,
ацетилен С 2 Н 2 ,
глюкоза С 6 Н 12 О 6

Наконец, после того как мы выяснили структуру различных веществ, можно приступать к составлению химических уравнений.

Химическое уравнение.

Само слово «уравнение» производное от слова «уравнять», т.е. разделить нечто на равные части. В математике уравнения составляют чуть ли не самую сущность этой науки. К примеру, можно привести такое простое уравнение, в котором левая и правая части будут равны «2»:

40: (9 + 11) = (50 х 2) : (80 – 30);

И в химических уравнениях тот же принцип: левая и правая части уравнения должны соответствовать одинаковым количествам атомов, участвующим в них элементов. Или, если приводится ионное уравнение, то в нём число частиц так же должно соответствовать этому требованию. Химическим уравнением называется условная запись химической реакции с помощью химических формул и математических знаков. Химическое уравнение по своей сути отражает ту или иную химическую реакцию, то есть процесс взаимодействия веществ, в процессе которых возникают новые вещества. Например, необходимо написать молекулярное уравнение реакции, в которой принимают участие хлорид бария ВаСl 2 и серная кислота H 2 SO 4. В результате этой реакции образуется нерастворимый осадок – сульфат бария ВаSO 4 и соляная кислота НСl:

ВаСl 2 + H 2 SO 4 = BaSO 4 + 2НСl (3)

Прежде всего необходимо уяснить, что большая цифра «2», стоящая перед веществом НСlназывается коэффициентом, а малые цифры «2», «4» под формулами ВаСl 2 , H 2 SO 4 ,BaSO 4 называются индексами. И коэффициенты и индексы в химических уравнениях выполняют роль множителей, а не слагаемых. Что бы правильно записать химическое уравнение, необходимо расставить коэффициенты в уравнении реакции . Теперь приступим к подсчёту атомов элементов в левой и правой частях уравнения. В левой части уравнения: в веществе ВаСl 2 содержатся 1 атом бария (Ва), 2 атома хлора (Сl). В веществе H 2 SO 4: 2 атома водорода (Н), 1 атом серы (S) и 4 атома кислорода (О) . В правой части уравнения: в веществе BaSO 4 1 атом бария (Ва) 1 атом серы (S) и 4 атома кислорода (О), в веществе НСl: 1 атом водорода (Н) и 1 атом хлора (Сl). Откуда следует, что в правой части уравнения количество атомов водорода и хлора вдвое меньше, чем в левой части. Следовательно, перед формулой НСl в правой части уравнения необходимо поставить коэффициент «2». Если теперь сложить количества атомов элементов, участвующих в данной реакции, и слева и справа, то получим следующий баланс:

В обеих частях уравнения количества атомов элементов, участвующих в реакции, равны, следовательно оно составлено правильно.

Химические уравнение и химические реакции

Как мы уже выяснили, химические уравнения являются отражением химических реакций. Химическими реакциями называются такие явления, в процессе которых происходит превращение одних веществ в другие. Среди их многообразия можно выделить два основных типа:

1). Реакции соединения
2). Реакции разложения.

В подавляющем своём большинстве химические реакции принадлежат к реакциям присоединения, поскольку с отдельно взятым веществом редко могут происходить изменения в его составе, если оно не подвергается воздействиям извне (растворению, нагреванию, действию света). Ничто так не характеризует химическое явление, или реакцию, как изменения, происходящие при взаимодействии двух и более веществ. Такие явления могут осуществляться самопроизвольно и сопровождаться повышением или понижением температуры, световыми эффектами, изменением цвета, образованием осадка, выделением газообразных продуктов, шумом.

Для наглядности приведём несколько уравнений, отражающих процессы реакций соединения, в процессе которых получаются хлорид натрия (NaCl), хлорид цинка (ZnCl 2), осадок хлорида серебра (AgCl), хлорид алюминия (AlCl 3)

Cl 2 + 2Nа = 2NaCl (4)

СuCl 2 + Zn= ZnCl 2 + Сu (5)

AgNO 3 + КCl = AgCl + 2KNO 3 (6)

3HCl + Al(OH) 3 = AlCl 3 + 3Н 2 О (7)

Cреди реакций соединения следует особым образом отметить следующие: замещения (5), обмена (6), и как частный случай реакции обмена – реакцию нейтрализации (7).

К реакциям замещения относятся такие, при осуществлении которой атомы простого вещества замещают атомы одного из элементов в сложном веществе. В примере (5) атомы цинка замещают из раствора СuCl 2 атомы меди, при этом цинк переходит в растворимую соль ZnCl 2 , а медь выделяется из раствора в металлическом состоянии.

К реакциям обмена относятся такие реакции, при которых два сложных вещества обмениваются своими составными частями. В случае реакции (6) растворимые соли AgNO 3 и КCl при сливании обоих растворов образуют нерастворимый осадок соли AgCl. При этом они обмениваются своими составными частями – катионами и анионами. Катионы калия К + присоединяются к анионам NO 3 , а катионы серебра Ag + – к анионам Cl - .

К особому, частному случаю, реакций обмена относится реакция нейтрализации. К реакциям нейтрализации относятся такие реакции, в процессе которых кислоты реагируют с основаниями, в результате образуется соль и вода. В примере (7) соляная кислота HCl , реагируя с основанием Al(OH) 3 образует соль AlCl 3 и воду. При этом катионы алюминия Al 3+ от основания обмениваются с анионами Сl - от кислоты. В итоге происходит нейтрализация соляной кислоты.

К реакциям разложения относятся такие, при котором из одного сложного образуются два и более новых простых или сложных веществ, но более простого состава. В качестве реакций можно привести такие, в процессе которых разлагаются 1). Нитрат калия (КNO 3) с образованием нитрита калия (КNO 2) и кислорода (O 2); 2). Перманганат калия (KMnO 4): образуются манганат калия (К 2 МnO 4), оксид марганца (MnO 2) и кислород (O 2); 3). Карбонат кальция или мрамор ; в процессе образуются углекислый газ (CO 2) и оксид кальция (СаО)

2КNO 3 = 2КNO 2 + O 2 (8)
2KMnO 4 = К 2 МnO 4 + MnO 2 + O 2 (9)
СаCO 3 = CaO + CO 2 (10)

В реакции (8) из сложного вещества образуется одно сложное и одно простое. В реакции (9) – два сложных и одно простое. В реакции (10) – два сложных вещества, но более простых по составу

Разложению подвергаются все классы сложных веществ:

1). Оксиды: оксид серебра 2Ag 2 O = 4Ag + O 2 (11)

2). Гидроксиды: гидроксид железа 2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O (12)

3). Кислоты: серная кислота H 2 SO 4 = SO 3 + H 2 O (13)

4). Соли: карбонат кальция СаCO 3 = СаO + CO 2 (14)

5). Органические вещества: спиртовое брожение глюкозы

С 6 Н 12 О 6 = 2С 2 Н 5 ОH + 2CO 2 (15)

Согласно другой классификации, все химические реакции можно разделить на два типа: реакции, идущие с выделением теплоты, их называют экзотермические, и реакции, идущие с поглощением теплоты – эндотермические. Критерием таких процессов является тепловой эффект реакции. Как правило, к экзотермическим реакциям относятся реакции окисления, т.е. взаимодействия с кислородом, например сгорание метана :

СН 4 + 2O 2 = СО 2 + 2Н 2 О + Q (16)

а к эндотермическим реакциям – реакции разложения, уже приводимые выше (11) – (15). Знак Q в конце уравнения указывает на то, выделяется ли теплота в процессе реакции (+Q) или поглощается (-Q):

СаCO 3 = СаO+CO 2 - Q (17)

Можно так же рассматривать все химические реакции по типу изменения степени окисления, участвующих в их превращениях элементов. К примеру, в реакции (17) участвующие в ней элементы не меняют свои степени окисления:

Са +2 C +4 O 3 -2 = Са +2 O -2 +C +4 O 2 -2 (18)

А в реакции (16) элементы меняют свои степени окисления:

2Mg 0 + O 2 0 = 2Mg +2 O -2

Реакции такого типа относятся к окислительно-восстановительным . Они будут рассматриваться отдельно. Для составления уравнений по реакциям такого типа необходимо использовать метод полуреакций и применять уравнение электронного баланса.

После приведения различных типов химических реакций, можно приступать к принципу составлений химических уравнений, иначе, подбору коэффициентов в левой и правой их частях.

Механизмы составления химических уравнений.

К какому бы типу ни относилась та или иная химическая реакция, её запись (химическое уравнение) должна соответствовать условию равенства количества атомов до реакции и после реакции.

Существуют такие уравнения (17), которые не требуют уравнивания, т.е. расстановки коэффициентов. Но в большинстве случаях, как в примерах (3), (7), (15), необходимо предпринимать действия, направленные на уравнивание левой и правой частей уравнения. Какими же принципами необходимо руководствоваться в таких случаях? Существует ли какая ни будь система в подборе коэффициентов? Существует, и не одна. К таковым системам относятся:

1). Подбор коэффициентов по заданным формулам.

2). Составление по валентностям реагирующих веществ.

3). Составление по степеням окисления реагирующих веществ.

В первом случае полагается, что нам известны формулы реагирующих веществ как до реакции, так и после. К примеру, дано следующее уравнение:

N 2 + О 2 →N 2 О 3 (19)

Принято считать, что пока не установлено равенство между атомами элементов до реакции и после, знак равенства (=) в уравнении не ставится, а заменяется стрелкой (→). Теперь приступим к собственно уравниванию. В левой части уравнения имеются 2 атома азота (N 2) и два атома кислорода (О 2), а в правой – два атома азота (N 2) и три атома кислорода (О 3). По количеству атомов азота его уравнивать не надо, но по кислороду необходимо добиться равенства, поскольку до реакции их участвовало два атома, а после реакции стало три атома. Составим следующую схему:

до реакции после реакции
О 2 О 3

Определим наименьшее кратное между данными количествами атомов, это будет «6».

О 2 О 3
\ 6 /

Разделим это число в левой части уравнения по кислороду на «2». Получим число «3», поставим его в решаемое уравнение:

N 2 + 3О 2 →N 2 О 3

Так же разделим число «6» для правой части уравнения на «3». Получим число «2», так же поставим его в решаемое уравнение:

N 2 + 3О 2 → 2N 2 О 3

Количества атомов кислорода и в левой и в правой частях уравнения стали равны, соответственно по 6 атомов:

Но количество атомов азота в обеих частях уравнения не будут соответствовать друг другу:

В левой – два атома, в правой – четыре атома. Следовательно, что бы добиться равенства, необходимо удвоить количество азота в левой части уравнения, поставив коэффициент «2»:

Таким образом, равенство по азоту соблюдено и в целом, уравнение примет вид:

2N 2 + 3О 2 → 2N 2 О 3

Теперь в уравнении можно вместо стрелки поставит знак равенства:

2N 2 + 3О 2 = 2N 2 О 3 (20)

Приведём другой пример. Дано следующее уравнение реакции:

Р + Cl 2 → РCl 5

В левой части уравнения имеется 1 атом фосфора (Р) и два атома хлора (Cl 2), а в правой – один атом фосфора (Р) и пять атомов кислорода (Cl 5). По количеству атомов фосфора его уравнивать не надо, но по хлору необходимо добиться равенства, поскольку до реакции их участвовало два атома, а после реакции стало пять атома. Составим следующую схему:

до реакции после реакции
Cl 2 Cl 5

Определим наименьшее кратное между данными количествами атомов, это будет «10».

Cl 2 Cl 5
\ 10 /

Разделим это число в левой части уравнения по хлору на «2». Получим число «5», поставим его в решаемое уравнение:

Р + 5Cl 2 → РCl 5

Так же разделим число «10» для правой части уравнения на «5». Получим число «2», так же поставим его в решаемое уравнение:

Р + 5Cl 2 → 2РCl 5

Количества атомов хлора и в левой и в правой частях уравнения стали равны, соответственно по 10 атомов:

Но количество атомов фосфора в обеих частях уравнения не будут соответствовать друг другу:

Следовательно, что бы добиться равенства, необходимо удвоить количество фосфора в левой части уравнения, поставив коэффициент «2»:

Таким образом, равенство по фосфору соблюдено и в целом, уравнение примет вид:

2Р + 5Cl 2 = 2РCl 5 (21)

При составлении уравнений по валентностям необходимо дать определение валентности и установить значения для наиболее известных элементов. Валентность – это одно из ранее применяемых понятий, в настоящее время в ряде школьных программ не используется. Но при его помощи легче объяснить принципы составления уравнений химических реакций. Под валентностью понимают число химических связей, которые тот или иной атом может образовывать с другим, или другими атомами . Валентность не имеет знака (+ или -) и обозначается римскими цифрами, как правило, над символами химических элементов, например:

Откуда берутся эти значения? Как их применять при составлении химических уравнений? Числовые значения валентностей элементов совпадают с их номером группы Периодической системы химических элементов Д. И. Менделеева (Таблица 1).

Для других элементов значения валентностей могут иметь иные значения, но никогда не больше номера группы, в которой они расположены. Причём для чётных номеров групп (IV и VI) валентности элементов принимают только чётные значения, а для нечётных – могут иметь как чётные, так и нечётные значения (Таблица.2).

Конечно же, в значениях валентностей для некоторых элементов имеются исключения, но в каждом конкретном случае эти моменты обычно оговариваются. Теперь рассмотрим общий принцип составления химических уравнений по заданным валентностям для тех или иных элементов. Чаще всего данный метод приемлем в случае составления уравнений химических реакций соединения простых веществ, например, при взаимодействии с кислородом (реакции окисления ). Допустим, необходимо отобразить реакцию окисления алюминия . Но напомним, что металлы обозначаются единичными атомами (Al), а неметаллы, находящиеся в газообразном состоянии – с индексами «2» - (О 2). Сначала напишем общую схему реакции:

Al + О 2 →AlО

На данном этапе ещё не известно, какое правильное написание должно быть у оксида алюминия. И вот именно на данном этапе нам на помощь придёт знание валентностей элементов. Для алюминия и кислорода проставим их над предполагаемой формулой этого оксида:

III II
Al О

После чего «крест»-на-«крест» у этих символов элементов поставим внизу соответствующие индексы:

III II
Al 2 О 3

Состав химического соединения Al 2 О 3 определён. Дальнейшая схема уравнения реакции примет вид:

Al+ О 2 →Al 2 О 3

Остаётся только уравнять левую и правую его части. Поступим таким же способом, как в случае составления уравнения (19). Количества атомов кислорода уравняем, прибегая к нахождению наименьшего кратного:

до реакции после реакции

О 2 О 3
\ 6 /

Разделим это число в левой части уравнения по кислороду на «2». Получим число «3», поставим его в решаемое уравнение. Так же разделим число «6» для правой части уравнения на «3». Получим число «2», так же поставим его в решаемое уравнение:

Al + 3О 2 → 2Al 2 О 3

Что бы добиться равенства по алюминию, необходимо скорректировать его количество в левой части уравнения, поставив коэффициент «4»:

4Al + 3О 2 → 2Al 2 О 3

Таким образом, равенство по алюминию и кислороду соблюдено и в целом, уравнение примет окончательный вид:

4Al + 3О 2 = 2Al 2 О 3 (22)

Применяя метод валентностей, можно прогнозировать, какое вещество образуется в процессе химической реакции, как будет выглядеть его формула. Допустим, в реакцию соединения вступили азот и водород с соответствующими валентностями III и I. Напишем общую схему реакции:

N 2 + Н 2 → NН

Для азота и водорода проставим валентности над предполагаемой формулой этого соединения:

Как и прежде «крест»-на-«крест» у этих символов элементов поставим внизу соответствующие индексы:

III I
N Н 3

Дальнейшая схема уравнения реакции примет вид:

N 2 + Н 2 → NН 3

Уравнивая уже известным способом, через наименьшее кратное для водорода, равное «6»,получим искомые коэффициенты, и уравнение в целом:

N 2 + 3Н 2 = 2NН 3 (23)

При составлении уравнений по степеням окисления реагирующих веществ необходимо напомнить, что степенью окисления того или иного элемента называется число принятых или отданных в процессе химической реакции электронов. Степень окисления в соединениях в основном, численно совпадает со значениями валентностей элемента. Но отличаются знаком. Например, для водорода валентность равна I, а степень окисления (+1) или (-1). Для кислорода валентность равна II, а степень окисления (-2). Для азота валентности равны I,II,III,IV,V, а степени окисления (-3), (+1), (+2), (+3), (+4), (+5) и т.д. Степени окисления наиболее часто применяемых в уравнениях элементов, приведены в таблице 3.

В случае реакций соединения принцип составления уравнений по степеням окисления такой же, как и при составлении по валентностям. Например, приведём уравнение реакции окисления хлора кислородом, в которой хлор образует соединение со степенью окисления +7. Запишем предполагаемое уравнение:

Cl 2 + О 2 → ClО

Поставим над предполагаемым соединением ClО степени окисления соответствующих атомов:

Как и в предыдущих случаях установим, что искомая формула соединения примет вид:

7 -2
Cl 2 О 7

Уравнение реакции примет следующий вид:

Cl 2 + О 2 → Cl 2 О 7

Уравнивая по кислороду, найдя наименьшее кратное между двумя и семи, равное «14», установим в итоге равенство:

2Cl 2 + 7О 2 = 2Cl 2 О 7 (24)

Несколько иной способ необходимо применять со степенями окисления при составлении реакций обмена, нейтрализации, замещения. В ряде случаев предоставляется затруднительным узнать: какие соединения образуются при взаимодействии сложных веществ?

Как узнать: что получится в процессе реакции?

Действительно, как узнать: какие продукты реакции могут возникнут в ходе конкретной реакции? К примеру, что образуется при взаимодействии нитрата бария и сульфата калия?

Ва(NО 3) 2 + К 2 SO 4 → ?

Может быть ВаК 2 (NО 3) 2 + SO 4 ? Или Ва + NО 3 SO 4 + К 2 ? Или ещё что-то? Конечно же, в процессе этой реакции образуются соединения: ВаSO 4 и КNО 3 . А откуда это известно? И как правильно написать формулы веществ? Начнём с того, что чаще всего упускается из вида: с самого понятия «реакция обмена». Это значит, что при данных реакциях вещества меняются друг с другом составными частями. Поскольку реакции обмена в большинстве своём осуществляются межу основаниями, кислотами или солями, то частями, которыми они будут меняться, являются катионы металлов (Na + , Mg 2+ ,Al 3+ ,Ca 2+ ,Cr 3+), ионов Н + или ОН - , анионов – остатков кислот, (Cl - , NO 3 2- ,SO 3 2- , SO 4 2- , CO 3 2- , PO 4 3-). В общем виде реакцию обмена можно привести в следующей записи:

Kt1An1 + Kt2An1 = Kt1An2 + Kt2An1 (25)

Где Kt1 и Kt2 – катионы металлов (1) и (2), а An1 и An2 – соответствующие им анионы (1) и (2). При этом обязательно надо учитывать, что в соединениях до реакции и после реакции на первом месте всегда устанавливаются катионы, а анионы – на втором. Следовательно, если в реакцию вступит хлорид калия и нитрат серебра , оба в растворённом состоянии

KCl + AgNO 3 →

то в процессе её образуются вещества KNO 3 и AgClи соответствующее уравнение примет вид:

KCl + AgNO 3 =KNO 3 + AgCl (26)

При реакциях нейтрализации протоны от кислот (Н +) будут соединяться с анионами гидроксила (ОН -) с образованием воды (Н 2 О):

НCl + КОН = КCl + Н 2 O (27)

Степени окисления катионов металлов и заряды анионов кислотных остатков указаны в таблице растворимости веществ (кислот, солей и оснований в воде). По горизонтали приведены катионы металлов, а по вертикали – анионы кислотных остатков.

Исходя из этого, при составлении уравнения реакции обмена, необходимо вначале в левой его части установить степени окисления принимающих в этом химическом процессе частиц. Например, требуется написать уравнение взаимодействия между хлоридом кальция и карбонатом натрия.Составим исходную схему этой реакции:

СаCl + NаСО 3 →

Са 2+ Cl - + Nа + СО 3 2- →

Совершив уже известное действие «крест»-на-«крест», определим реальные формулы исходных веществ:

СаCl 2 + Nа 2 СО 3 →

Исходя из принципа обмена катионами и анионами (25), установим предварительные формулы образующихся в ходе реакции веществ:

СаCl 2 + Nа 2 СО 3 → СаСО 3 + NаCl

Над их катионами и анионами проставим соответствующие заряды:

Са 2+ СО 3 2- + Nа + Cl -

Формулы веществ записаны правильно, в соответствии с зарядами катионов и анионов. Составим полное уравнение, уравняв левую и правую его части по натрию и хлору:

СаCl 2 + Nа 2 СО 3 = СаСО 3 + 2NаCl (28)

В качестве другого примера приведём уравнение реакции нейтрализации между гидроксидом бария и ортофосфорной кислотой:

ВаОН + НРО 4 →

Над катионами и анионами проставим соответствующие заряды:

Ва 2+ ОН - + Н + РО 4 3- →

Определим реальные формулы исходных веществ:

Ва(ОН) 2 + Н 3 РО 4 →

Исходя из принципа обмена катионами и анионами (25), установим предварительные формулы образующихся в ходе реакции веществ, учитывая, что при реакции обмена одним из веществ обязательно должна быть вода:

Ва(ОН) 2 + Н 3 РО 4 → Ва 2+ РО 4 3- + Н 2 O

Определим правильную запись формулы соли, образовавшейся в процессе реакции:

Ва(ОН) 2 + Н 3 РО 4 → Ва 3 (РО 4) 2 + Н 2 O

Уравняем левую часть уравнения по барию:

3Ва (ОН) 2 + Н 3 РО 4 → Ва 3 (РО 4) 2 + Н 2 O

Поскольку в правой части уравнения остаток ортофосфорной кислоты взят дважды, (РО 4) 2 , то слева необходимо также удвоить её количество:

3Ва (ОН) 2 + 2Н 3 РО 4 → Ва 3 (РО 4) 2 + Н 2 O

Осталось привести в соответствие количество атомов водорода и кислорода в правой части у воды. Так как слева общее количество атомов водорода равно 12, то справа оно так же должно соответствовать двенадцати, поэтому перед формулой воды необходимо поставить коэффициент «6» (поскольку в молекуле воды уже имеется 2 атома водорода). По кислороду так же соблюдено равенство: слева 14 и справа 14. Итак, уравнение имеет правильную форму записи:

3Ва (ОН) 2 + 2Н 3 РО 4 → Ва 3 (РО 4) 2 + 6Н 2 O (29)

Возможность осуществления химических реакций

Мир состоит из великого множества веществ. Неисчислимо так же количество вариантов химических реакций между ними. Но можем ли мы, написав на бумаге то или иное уравнение утверждать, что ему будет соответствовать химическая реакция? Существует ошибочное мнение, что если правильно расставить коэффициенты в уравнении, то оно будет осуществимо и на практике. Например, если взять раствор серной кислоты и опустить в него цинк , то можно наблюдать процесс выделения водорода:

Zn+ H 2 SO 4 = ZnSO 4 + H 2 (30)

Но если в этот же раствор опустить медь, то процесс выделения газа наблюдаться не будет. Реакция не осуществима.

Cu+ H 2 SO 4 ≠

В случае, если будет взята концентрированная серная кислота, она будет реагировать с медью:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2Н 2 O (31)

В реакции (23) между газами азотом и водородом наблюдается термодинамическое равновесие, т.е. сколько молекул аммиака NН 3 образуется в единицу времени, столько же их и распадётся обратно на азот и водород. Смещение химического равновесия можно добиться повышением давления и понижением температуры

N 2 + 3Н 2 = 2NН 3

Если взять раствор гидроксида калия и прилить к нему раствор сульфата натрия , то никаких изменений наблюдаться не будет, реакция будет не осуществима:

КОН + Na 2 SO 4 ≠

Раствор хлорида натрия при взаимодействии с бромом не будет образовывать бром, несмотря на то, что данная реакция может быть отнесена к реакции замещения:

NаCl + Br 2 ≠

В чём же причины таких несоответствий? Дело в том, что оказывается недостаточно только правильно определять формулы соединений , необходимо знать специфику взаимодействия металлов с кислотами, умело пользоваться таблицей растворимости веществ, знать правила замещения в ряду активности металлов и галогенов. В этой статье излагаются только самые основные принципы как расставить коэффициенты в уравнениях реакций , как написать молекулярные уравнения , как определить состав химического соединения.

Химия, как наука, чрезвычайно разнообразна и многогранна. В приведённой статье отражена лишь малая часть процессов, происходящих в реальном мире. Не рассмотрены типы , термохимические уравнения, электролиз, процессы органического синтеза и многое, многое другое. Но об этом в следующих статьях.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

ОПРЕДЕЛЕНИЕ

Химическими реакция называют превращения веществ, в которых происходит изменение их состава и (или) строения.

Наиболее часто под химическими реакциями понимают процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Химические реакции записываются с помощью химических уравнений, содержащих формулы исходных веществ и продуктов реакции. Согласно закону сохранения массы, число атомов каждого элемента в левой и правой частях химического уравнения одинаково. Обычно формулы исходных веществ записывают в левой части уравнения, а формулы продуктов – в правой. Равенство числа атомов каждого элемента в левой и правой частях уравнения достигается расстановкой перед формулами веществ целочисленных стехиометрических коэффициентов.

Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции: температура, давление, излучение и т.д., что указывается соответствующим символом над (или «под») знаком равенства.

Все химические реакции могут быть сгруппированы в несколько классов, которым присущи определенные признаки.

Классификация химических реакций по числу и составу исходных и образующихся веществ

Согласно этой классификации, химические реакции подразделяются на реакции соединения, разложения, замещения, обмена.

В результате реакций соединения из двух или более (сложных или простых) веществ образуется одно новое вещество. В общем виде уравнение такой химической реакции будет выглядеть следующим образом:

Например:

СаСО 3 + СО 2 + Н 2 О = Са(НСО 3) 2

SO 3 + H 2 O = H 2 SO 4

2Mg + O 2 = 2MgO.

2FеСl 2 + Сl 2 = 2FеСl 3

Реакции соединения в большинстве случаев экзотермические, т.е. протекают с выделением тепла. Если в реакции участвуют простые вещества, то такие реакции чаще всего являются окислительно-восстановительными (ОВР), т.е. протекают с изменением степеней окисления элементов. Однозначно сказать будет ли реакция соединения между сложными веществами относиться к ОВР нельзя.

Реакции, в результате которых из одного сложного вещества образуется несколько других новых веществ (сложных или простых) относят к реакциям разложения . В общем виде уравнение химической реакции разложения будет выглядеть следующим образом:

Например:

CaCO 3 CaO + CO 2 (1)

2H 2 O =2H 2 + O 2 (2)

CuSO 4 × 5H 2 O = CuSO 4 + 5H 2 O (3)

Cu(OH) 2 = CuO + H 2 O (4)

H 2 SiO 3 = SiO 2 + H 2 O (5)

2SO 3 =2SO 2 + O 2 (6)

(NH 4) 2 Cr 2 O 7 = Cr 2 O 3 + N 2 +4H 2 O (7)

Большинство реакций разложения протекает при нагревании (1,4,5). Возможно разложение под действием электрического тока (2). Разложение кристаллогидратов, кислот, оснований и солей кислородсодержащих кислот (1, 3, 4, 5, 7) протекает без изменения степеней окисления элементов, т.е. эти реакции не относятся к ОВР. К ОВР реакциям разложения относится разложение оксидов, кислот и солей, образованных элементами в высших степенях окисления (6).

Реакции разложения встречаются и в органической химии, но под другими названиями — крекинг (8), дегидрирование (9):

С 18 H 38 = С 9 H 18 + С 9 H 20 (8)

C 4 H 10 = C 4 H 6 + 2H 2 (9)

При реакциях замещения простое вещество взаимодействует со сложным, образуя новое простое и новое сложное вещество. В общем виде уравнение химической реакции замещения будет выглядеть следующим образом:

Например:

2Аl + Fe 2 O 3 = 2Fе + Аl 2 О 3 (1)

Zn + 2НСl = ZnСl 2 + Н 2 (2)

2КВr + Сl 2 = 2КСl + Вr 2 (3)

2КСlO 3 + l 2 = 2KlO 3 + Сl 2 (4)

СаСО 3 + SiO 2 = СаSiO 3 + СО 2 (5)

Са 3 (РО 4) 2 + ЗSiO 2 = ЗСаSiO 3 + Р 2 О 5 (6)

СН 4 + Сl 2 = СН 3 Сl + НСl (7)

Реакции замещения в своем большинстве являются окислительно-восстановительными (1 – 4, 7). Примеры реакций разложения, в которых не происходит изменения степеней окисления немногочисленны (5, 6).

Реакциями обмена называют реакции, протекающие между сложными веществами, при которых они обмениваются своими составными частями. Обычно этот термин применяют для реакций с участием ионов, находящихся в водном растворе. В общем виде уравнение химической реакции обмена будет выглядеть следующим образом:

АВ + СD = АD + СВ

Например:

CuO + 2HCl = CuCl 2 + H 2 O (1)

NaOH + HCl = NaCl + H 2 O (2)

NаНСО 3 + НСl = NаСl + Н 2 О + СО 2 (3)

AgNО 3 + КВr = АgВr ↓ + КNО 3 (4)

СrСl 3 + ЗNаОН = Сr(ОН) 3 ↓+ ЗNаСl (5)

Реакции обмена не являются окислительно-восстановительными. Частный случай этих реакций обмена -реакции нейтрализации (реакции взаимодействия кислот со щелочами) (2). Реакции обмена протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного вещества (3), осадка (4, 5) или малодиссоциирующего соединения, чаще всего воды (1, 2).

Классификация химических реакций по изменениям степеней окисления

В зависимости от изменения степеней окисления элементов, входящих в состав реагентов и продуктов реакции все химические реакции подразделяются на окислительно-восстановительные (1, 2) и, протекающие без изменения степени окисления (3, 4).

2Mg + CO 2 = 2MgO + C (1)

Mg 0 – 2e = Mg 2+ (восстановитель)

С 4+ + 4e = C 0 (окислитель)

FeS 2 + 8HNO 3 (конц) = Fe(NO 3) 3 + 5NO + 2H 2 SO 4 + 2H 2 O (2)

Fe 2+ -e = Fe 3+ (восстановитель)

N 5+ +3e = N 2+ (окислитель)

AgNO 3 +HCl = AgCl ↓ + HNO 3 (3)

Ca(OH) 2 + H 2 SO 4 = CaSO 4 ↓ + H 2 O (4)

Классификация химических реакций по тепловому эффекту

В зависимости от того, выделяется ли или поглощается тепло (энергия) в ходе реакции, все химические реакции условно разделяют на экзо – (1, 2) и эндотермические (3), соответственно. Количество тепла (энергии), выделившееся или поглотившееся в ходе реакции называют тепловым эффектом реакции. Если в уравнении указано количество выделившейся или поглощенной теплоты, то такие уравнения называются термохимическими.

N 2 + 3H 2 = 2NH 3 +46,2 кДж (1)

2Mg + O 2 = 2MgO + 602, 5 кДж (2)

N 2 + O 2 = 2NO – 90,4 кДж (3)

Классификация химических реакций по направлению протекания реакции

По направлению протекания реакции различают обратимые (химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ) и необратимые (химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ).

Для обратимых реакций уравнение в общем виде принято записывать следующим образом:

А + В ↔ АВ

Например:

СН 3 СООН + С 2 Н 5 ОН↔ Н 3 СООС 2 Н 5 + Н 2 О

Примерами необратимых реакций может служить следующие реакции:

2КСlО 3 → 2КСl + ЗО 2

С 6 Н 12 О 6 + 6О 2 → 6СО 2 + 6Н 2 О

Свидетельством необратимости реакции может служить выделение в качестве продуктов реакции газообразного вещества, осадка или малодиссоциирующего соединения, чаще всего воды.

Классификация химических реакций по наличию катализатора

С этой точи зрения выделяют каталитические и некаталитические реакции.

Катализатором называют вещество, ускоряющее ход химической реакции. Реакции, протекающие с участием катализаторов, называются каталитическими. Протекание некоторых реакций вообще невозможно без присутствия катализатора:

2H 2 O 2 = 2H 2 O + O 2 (катализатор MnO 2)

Нередко один из продуктов реакции служит катализатором, ускоряющим эту реакцию (автокаталитические реакции):

MeO+ 2HF = MeF 2 + H 2 O, где Ме – металл.

Примеры решения задач

ПРИМЕР 1

Определение

Химическое уравнение -это условная запись химической реакции с помощью химических формул и коэффициентов.

Чтобы правильно расставлять коэффициенты в химическом уравнении следует понимать разницу между коэффициентами и индексами.

Определение

Коэффициент - показывает число молекул и изображается большой цифрой перед молекулярной формулой вещества. Индекс - показывает число атомов элемента в одной молекуле вещества, изображается справа внизу от символа элемента.

Чтобы посчитать общее количество атомов нужно умножить количество молекул на количество атомов элемента в одной молекуле. Например, справа изображена запись трех молекул серной кислоты (брутто-формула), а снизу - вариант структурной записи. Так, одна молекула серной кислоты состоит три из трех элементов и всего содержит (2+1+4)=7 атомов: 2 атома водорода, один атом серы и четыре атома кислорода. В трех молекулах будет в три раза больше атомов, то есть 3*2=6 атомов водорода, 3*1=3 атома серы и 3*4=12 атомов кислорода. Это хорошо видно из структурной формулы, приведенной ниже.

Чтобы понять логику уравнивания химических реакций попробуйте дома потренироваться с самостоятельно изготовленными моделями атомов и молекул: приготовьте из пластилина шарики разного цветы (серого, красного и черного). Попробуйте осуществить реакцию горения метана, схема которой изображена ниже.

При моделировании будет очевидно, что количество атомов (самодельных пластилиновых шариков) каждого элемента (цвета) не меняется в ходе реакции. То есть количество атомов углерода до и после превращения остается неизменным и равно одному (один черный шарик). Две молекулы кислорода в левой части уравнения состоят из 4-х атомов, в правой части уравнения два атома кислорода содержится в углекислом газе ($CO_2$) и два атома- в двух молекулах воды, то есть всего справа также 4 атома кислорода.

Закон действующих масс

При составлении уравнений реакций необходимо использовать закон сохранения массы веществ (закон действующих масс или ЗДМ), открытый М.В. Ломоносовым и А.Лавуазье.

Закон действующих масс : масса веществ, вступивших в реакцию, равна массе веществ, получившихся в результате её.

Так как вещества состоят из атомов, то при составлении химических уравнений, мы будем пользоваться правилом: число атомов каждого химического элемента исходных веществ должно равняться числу атомов в продуктах реакции. В химической реакции число взаимодействующих атомов остается неизменным, происходит только их перегруппировка с разрушением исходных веществ

Алгоритм составления уравнений реакций.

Рассмотрим алгоритм составления химических уравнений на примере взаимодействия простых веществ: металлов и неметаллов друг с другом. Пусть взаимодействуют фосфор и кислород (реакция горения).

1.Записывают рядом исходные вещества (реагенты) , между ними ставим знак "+"(здесь мы будем учитывать то, что кислород двухатомная молекула), а после них стрелку - как знак равенства.

$P+O_2 \rightarrow$

2.Записываем после стрелки формулу продукта реакции:

$P+O_2\rightarrow P_2O_5$

3.Из схемы видно, что слева кислорода-2 атома, справа-5, а в соответствии с законом сохранения массы веществ, число атомов данного химического элемента должно быть одинаковым. Чтобы уравнять их число, находим наименьшее общее кратное. Для 2 и 5 это будет число 10. Делим наименьшее общее кратное на число атомов в формулах. 10:2=5, 10:5=2, это и будут коэффициенты, которые ставятся соответственно перед кислородом $O_2$ и оксидом фосфора (V) $P_2O_5$.

$P+5O_2\rightarrow 2P_2O_5$

кислорода слева и справа стало по 10(5·2=10, 2·5=10)

4.Коэффициент относится ко всей формуле и ставится перед ней. После его постановки справа фосфора стало 2·2=4 атома. А слева 1 (коэффициент 1 не ставится).Значит перед фосфором ставим коэффициент 4.

$4P + 5O_2\rightarrow 2P_2O_5$

Это и есть окончательная запись химического уравнения.

Читается: четыре пе плюс пять о-два равняется два пе-два о-пять.

Разберем алгоритм проставления коэффициентов на другом примере:

$KNO_3 = KNO_2 + O_2$

при разложении нитрата калия образуется нитрит калия и кислород.

В левой части уравнения один атом калия, в правой - тоже один. Количество атомов азота слева и справа одинаково и равно одному. А вот количество атомов кислорода различно: слева - 3, справа - 4. В подобных случаях можно прибегнуть к удвоению, то есть поставить коэффициент =2 перед нитратом калия.

Для того чтобы выяснить, как уравнять химическое уравнение, для начала следует узнать предназначение данной науки.

Определение

Химия изучает вещества, их свойства, а также превращения. В случае если не наблюдается изменения окраски, выпадения осадка, выделения газообразного вещества, то не происходит никакого химического взаимодействия.

Например, при обработке напильником железного гвоздя металл просто превращается в порошок. В этом случае никакой химической реакции не происходит.

Прокаливание перманганата калия сопровождается образованием оксида марганца (4), выделением кислорода, то есть наблюдается взаимодействие. При этом возникает вполне закономерный вопрос о том, как правильно уравнивать химические уравнения. Разберем все нюансы, связанные с подобной процедурой.

Специфика химических превращений

Любые явления, которые сопровождаются изменением качественного и количественного состава веществ, относятся к химическим превращениям. В молекулярном виде процесс сгорания железа в атмосфере можно выразить с помощью знаков и символов.

Методика расстановки коэффициентов

Как уравнивать коэффициенты в химических уравнениях? В курсе химии средней школы разбирается метод электронного баланса. Рассмотрим процесс более подробно. Для начала в исходной реакции необходимо расставить степени окисления у каждого химического элемента.

Существуют определенные правила, по которым их можно определить у каждого элемента. В простых веществах степени окисления будут равны нулю. В бинарных соединениях у первого элемента она положительна, соответствует высшей валентности. У последнего данный параметр определяется путем вычитания номера группы из восьми и имеет знак «минус». В формулах, состоящих их трех элементов, есть свои нюансы вычисления степеней окисления.

Для первого и последнего элемента порядок аналогичен определению в бинарных соединениях, а для вычисления центрального элемента составляется уравнение. Сумма всех показателей должна быть равна нулю, исходя из этого, вычисляется показатель для среднего элемента формулы.

Продолжим разговор о том, как уравнивать химические уравнения методом электронного баланса. После того как степени окисления будут поставлены, можно определять те ионы либо вещества, которые в ходе химического взаимодействия изменили их значение.

Знаками «плюс» и «минус» необходимо указать количество электронов, которые были приняты (отданы) в процессе химического взаимодействия. Между полученными цифрами находят наименьшее общее кратное.

При делении его на принятые и отданные электроны получают коэффициенты. Как уравнять химическое уравнение? Полученные в балансе цифры нужно поставить перед соответствующими формулами. Обязательным условием является проверка количества каждого элемента в левой и правой части. Если коэффициенты расставлены правильно, их число должно быть одинаковым.

Закон сохранения массы веществ

Рассуждая над тем, как уравнять химическое уравнение, необходимо использовать именно этот закон. Учитывая, что масса тех веществ, которые вступили в химическую реакцию, равна массе образующихся продуктов, становится возможным постановка коэффициентов перед формулами. Например, как уравнять химическое уравнение, если вступают во взаимодействие простые вещества кальций и кислород, а после завершения процесса получается оксид?

Чтобы справиться с поставленной задачей, необходимо учитывать, что кислород является двухатомной молекулой с ковалентной неполярной связью, поэтому его формула записывается в следующем виде - О2. В правой части при составлении оксида кальция (СаО) учитывают валентности каждого элемента.

Сначала необходимо проверить количество кислорода в каждой части уравнения, так как оно отличается. По закону сохранения массы веществ перед формулой продукта нужно поставить коэффициент 2. Далее проводится проверка кальция. Для того чтобы он был уравнен, перед исходным веществом ставим коэффициент 2. В итоге получаем запись:

  • 2Са+О2=2СаО.

Разбор реакции методом электронного баланса

Как уравнивать химические уравнения? Примеры ОВР помогут ответить на данный вопрос. Допустим, что необходимо методом электронного баланса расставить коэффициенты в предложенной схеме:

  • CuO + Н2=Cu + Н2О.

Для начала у каждого из элементов в исходных веществах и продуктах взаимодействия расставим значения степеней окисления. Получим следующий вид уравнения:

  • Cu(+2)О(-2)+Н2(0)=Cu(0)+Н2(+)О(-2).

Показатели изменились у меди и водорода. Именно на их основе будем составлять электронный баланс:

  • Cu(+2)+2е=Cu(0) 1 восстановитель, окисление;
  • Н2(0)-2е=2Н(+) 1 окислитель, восстановление.

Исходя из коэффициентов, полученных в электронном балансе, получаем следующую запись предложенного химического уравнения:

  • CuO+Н2=Cu+Н2О.

Возьмем еще один пример, который предполагает постановку коэффициентов:

  • Н2+О2=Н2О.

Для того чтобы уравнять на основе закона сохранения веществ данную схему, необходимо начать с кислорода. Учитывая, что вступала в реакцию двухатомная молекула, перед формулой продукта взаимодействия необходимо поставить коэффициент 2.

  • 2Н2+О2=2Н2О.

Заключение

На основании электронного баланса можно расставлять коэффициенты в любых химических уравнениях. Выпускникам девятых и одиннадцатых классов образовательных учреждений, выбирающим экзамен по химии, в одном из заданий итоговых тестов предлагают подобные задания.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...