Правило устного возведения в квадрат. Возведение в квадрат трехзначных чисел

Если умножить число само на себя, получится возведение в квадрат . Даже первоклассник знает, что «двукратно два - четыре». Трехзначные, четырехзначные и т.д. числа отменнее перемножать в столбик либо на калькуляторе, а вот с двузначными справляйтесь без электронного помощника, умножая в уме.

Инструкция

1. Разложите всякое двузначное число на составляющие, выделив число единиц. В числе 96 число единиц - 6. Следственно дозволено записать: 96 = 90 + 6.

2. Возведите в квадрат первое из чисел: 90 * 90 = 8100.

3. Подобно сделайте со вторым число м: 6 * 6 = 36

4. Перемножьте числа между собой и удвойте итог: 90 * 6 * 2 = 540 * 2 = 1080.

5. Сложите итоги второго, третьего и четвертого шагов: 8100 + 36 + 1080 = 9216. Это и есть итог возведения в квадрат числа 96. Позже некоторой тренировки сумеете стремительно делать шаги в уме, поражая родителей и одноклассников. Пока не освоились, записывайте итоги всего шага, дабы не запутаться.

6. Для тренировки возведите в квадрат число 74 и проверьте себя на калькуляторе. Последовательность действий: 74 = 70 + 4, 70 * 70 = 4900, 4 * 4 = 16, 70 * 4 * 2 = 560, 4900 + 16 + 560 = 5476.

7. Возведите во вторую степень число 81. Ваши действия: 81 = 80 + 1, 80 * 80 = 6400, 1 * 1 = 1, 80 * 1 * 2 = 160, 6400 + 1 + 160 = 6561.

8. Запомните нестандартный метод возведения в квадрат двузначных чисел, которые оканчиваются на цифру 5. Выделите число десятков: в числе 75 их 7 штук.

9. Умножьте число десятков на следующую цифру в число вом ряду: 7 * 8 = 56.

10. Припишите справа число 25: 5625 - итог возведения в квадрат числа 75.

11. Для тренировки возведите во вторую степень число 95. Оно оканчивается на цифру 5, следственно последовательность действий: 9 * 10 = 90, 9025 - итог.

12. Обучитесь возводить в квадрат негативные числа: -95 в квадрат е равно 9025, как в одиннадцатом шаге. Подобно -74 в квадрат е равно 5476, как в шестом шаге. Это связано с тем, что при умножении 2-х негативных чисел неизменно получается правильное число : -95 * -95 = 9025. Следственно при возведении в квадрат можете легко не обращать внимания на знак «минус».

Возведение числа в степень является одним из простейших алгебраических действий. В обыденной жизни возведение используется редко, а вот на производстве при выполнении расчетов – фактически повсюду, следственно пригодно припомнить, как это делается.

Инструкция

1. Представим, что мы имеем какое-то число а, степенью которого является число n. Построить число в степень обозначает, что нужно умножить число а на самоё себя n раз.

2. Разглядим несколько примеров.Дабы построить число 2 во вторую степень, нужно произвести действие:2х2=4

3. Дабы построить число 3 в пятую степень, нужно исполнить действие:3х3х3х3х3=243

4. Существует общепринятое обозначение 2-й и третьей степени чисел. Словосочетание «вторая степень» обыкновенно заменяется словом «квадрат», а взамен словосочетания «третья степень» традиционно говорят «куб».

5. Как видно из приведенных выше примеров, продолжительность и трудоемкость вычислений зависит от величины показателя степени числа. Возведение в квадрат либо куб – достаточно простая задача; возведение числа в пятую либо огромную степень теснее требует огромнее времени и аккуратности в вычислениях. Для убыстрения данного процесса и исключения ошибок дозволено воспользоваться особыми математическими таблицами либо инженерным калькулятором.

Для короткой записи произведения одного и того же числа самого на себя математики придумали представление степени. Следственно выражение 16*16*16*16*16 дозволено записать больше коротким методом. Оно будет иметь вид 16^5. Выражение будет читаться как число 16 в пятой степени.

Вам понадобится

  • Бумага, ручка.

Инструкция

1. В всеобщем виде степень записывается как a^n. Эта запись обозначает, что число a умножается на себя n раз.Выражение a^n именуется степень ю,a – это число, основание степени,n – это число, показатель степени. Скажем, a = 4, n = 5,Тогда запишем 4^5 = 4*4*4*4*4 = 1 024

2. Степень n может быть негативным числомn = -1, -2, -3 и т.д.Дабы вычислить негативную степень числа, его нужно опустить в знаменатель.a^(-n) = (1/a)^n = 1/a*1/a*1/a* … *1/a = 1/(a^n)Разглядим пример2^(-3) = (1/2)^3 = 1/2*1/2*1/2 = 1/(2^3) = 1/8 = 0,125

3. Как видно из примера, -3 степень от числа 2 дозволено вычислить различными методами.1) Вначале посчитать дробь 1/2 = 0,5; а после этого построить в степень 3,т.е. 0,5^3 = 0,5*0,5*0,5 = 0,1252) Вначале построить знаменатель в степень 2^3 = 2*2*2 = 8, а после этого вычислить дробь 1/8 = 0,125.

4. Сейчас вычислим -1 степень для числа, т.е. n = -1. Правила, рассмотренные выше, подходят для этого случая.a^(-1) = (1/a)^1 = 1/(a^1) = 1/aНапример, построим число 5 в -1 степень 5^(-1) = (1/5)^1 = 1/(5^1) = 1/5 = 0,2.

5. Из примера наглядно видно, что число в -1 степени – это обратная дробь от числа.Предположим число 5 в виде дроби 5/1, тогда 5^(-1) дозволено арифметически не считать, а сразу написать дробь, обратную 5/1, это 1/5.Так, 15^(-1) = 1/15,6^(-1) = 1/6,25^(-1) = 1/25

Обратите внимание!
При возведении числа в негативную степень следует помнить, что число не может быть равно нулю. Согласно правилу, мы обязаны число опустить в знаменатель. А нуль не может быть в знаменателе, так как на нуль разделять невозможно.

Полезный совет
Изредка при работе со степенями для облегчения расчета дробное число намеренно заменяют целым в -1 степени1/6 = 6^(-1)1/52 = 52^(-1).

При решении арифметических и алгебраических задач изредка требуется построить дробь в квадрат . Проще каждого это сделать, когда дробь десятичная – довольно обыкновенного калькулятора. Впрочем если дробь обычная либо смешанная, то при возведении такого числа в квадрат могут появиться некоторые затруднения.

Вам понадобится

  • калькулятор, компьютер, приложение Excel.

Инструкция

1. Дабы построить десятичную дробь в квадрат , возьмите инженерный калькулятор, наберите на нем возводимую в квадрат дробь и нажмите на клавишу возведения во вторую степень. На большинстве калькуляторов эта кнопка обозначена как «х?». На стандартном калькуляторе Windows функция возведения в квадрат выглядит как «x^2». Скажем, квадрат десятичной дроби 3,14 будет равен: 3,14? = 9,8596.

2. Дабы построить в квадрат десятичную дробь на обыкновенном (бухгалтерском) калькуляторе, умножьте это число само на себя. Кстати, в некоторых моделях калькуляторов предусмотрена вероятность возведения числа в квадрат даже при отсутствии особой кнопки. Следственно заблаговременно ознакомьтесь с инструкцией к определенному калькулятору. Изредка примеры «хитроумного» возведения в степень приведены на задней крышке либо на коробке калькулятора. Скажем, на многих калькуляторах для возведения числа в квадрат довольно нажать кнопки «х» и «=».

3. Для возведения в квадрат обычной дроби (состоящей из числителя и знаменателя), возведите в квадрат по отдельности числитель и знаменатель этой дроби. То есть воспользуйтесь дальнейшим правилом:(ч / з)? = ч? / з?, где ч – числитель дроби, з – знаменатель дроби.Пример: (3/4)? = 3?/4? = 9/16.

4. Если возводимая в квадрат дробь – смешанная (состоит из целой части и обычной дроби), то заранее приведите ее к обычному виду. То есть примените следующую формулу:(ц ч/з)? = ((ц*з+ч) / з)? = (ц*з+ч)? / з?, где ц – целая часть смешанной дроби.Пример: (3 2/5)? = ((3*5+2) / 5)? = (3*5+2)? / 5? = 17? / 5? = 289/25 = 11 14/25.

5. Если возводить в квадрат обычные (не десятичные) дроби доводится непрерывно, то воспользуйтесь программой MS Excel. Для этого введите в одну из клеток таблицы следующую формулу: =СТЕПЕНЬ(A2;2) где А2 – адрес ячейки, в которую будет вводиться возводимая в квадрат дробь .Дабы осведомить программе, что с вводимым числом нужно обращаться как с обычной дробь ю (т.е. не преобразовывать ее в десятичный вид), наберите перед дробь ю цифру «0» и знак «пробел». То есть для ввода, скажем, дроби 2/3 надобно ввести: «0 2/3» (и нажать Enter). При этом в строке ввода отобразится десятичное представление введенной дроби. Значение и представление дроби непринужденно в клетке сохранится в начальном виде. Помимо того, при применении математических функций, доводами которых являются обычные дроби, итог также будет представлен в виде обычной дроби. Следственно квадрат дроби 2/3 будет представлен как 4/9.

Способ выделения квадрата двучлена используется при облегчении массивных выражений, а также для решения квадратных уравнений. На практике его традиционно комбинируют с другими приемами, включая разложение на множители, группировку и пр.

Инструкция

1. Способ выделения полного квадрата двучлена основан на применении 2-х формул сокращенного умножения многочленов. Эти формулы являются частными случаями Бинома Ньютона для 2-й степени и разрешают упростить желанное выражение так, дабы дозволено было провести дальнейшее сокращение либо разложение на множители:(m + n)² = m² + 2·m·n + n²;(m – n)² = m² – 2·m·n + n².

2. Согласно этому способу из начального многочлена требуется выделить квадраты 2-х одночленов и сумму/разность их двойного произведения. Использование этого способа имеет толк, если старшая степень слагаемых не поменьше 2. Представим, дано задание разложить на множители с понижением степени следующее выражение:4·y^4 + z^4

3. Для решения задачи необходимо воспользоваться способом выделения полного квадрата. Выходит, выражение состоит из 2-х одночленов с переменными четной степени. Следственно, дозволено обозначить всякий из них через m и n:m = 2·y²; n = z².

4. Сейчас надобно привести начальное выражение к виду (m + n)². В нем теснее присутствуют квадраты этих слагаемых, но не хватает двойного произведения. Необходимо добавить его неестественно, а потом вычесть:(2·y²)² + 2·2·y²·z² + (z²)² – 2·2·y² ·z² = (2·y² + z²)² – 4·y²·z².

5. В получившемся выражении дозволено увидеть формулу разности квадратов:(2·y² + z²)² – (2·y·z)² = (2·y² + z² – 2·y·z)· (2·y² + z² + 2·y·z).

6. Выходит, способ состоит из 2-х этапов: выделение одночленов полного квадрата m и n, прибавление и вычитание их двойного произведения. Способ выделения полного квадрата двучлена может использоваться не только самосильно, но и в комбинации с другими способами: вынесения за скобки всеобщего множителя, замена переменной, группировки слагаемых и пр.

7. Пример 2.Выделите полный квадрат в выражении:4·y² + 2·y·z + z².Решение.4·y² + 2·y·z + z² = = (2·y)² + 2·2·y·z + (z) ² – 2·y·z = (2·y + z)² – 2·y·z.

8. Способ используется при нахождении корней квадратного уравнения. Левая часть уравнения представляет собой трехчлен вида a·y? + b·y + c, где a, b и c – какие-то числа, причем a ? 0. a·y? + b·y + c = a·(y? + (b/a)·y) + c = a·(y? + 2·(b/(2·a))·y) + c = a·(y? + 2·(b/(2·a))·y + b?/(4·a?)) + c – b?/(4·a) = a·(y + b/(2·a)) ? – (b? – 4·a·c)/(4·a).

9. Эти расчеты приводят к представлению дискриминанта, тот, что равен (b? – 4·a·c)/(4·a), а корни уравнения равны:y_1,2 = ±(b/(2 a)) ± ? ((b? – 4·a·c)/(4·a)).

Операция возведения в степень является «бинарной», то есть имеет два непременных входных параметра и один выходной. Один из начальных параметров именуется показателем степени и определяет число раз, которое операция умножения должна быть применена ко второму параметру – основанию. Основание может быть как правильным, так и негативным числом .

Инструкция

1. Используйте при возведении в степень негативного числа обыкновенные для этой операции правила. Как и для позитивных чисел, возведение в степень обозначает умножение начальной величины на саму себя число раз, на единицу меньшее показателя степени. Скажем, дабы построить в четвертую степень число -2, его надобно трижды умножить на себя: -2?=-2*(-2)*(-2)*(-2)=16.

2. Умножение 2-х негативных чисел неизменно дает позитивное значение, а итогом этой операции для величин с различными знаками будет число негативное. Из этого дозволено сделать итог, что при возведении негативных значений в степень с четным показателем неизменно должно получаться число позитивное, а при нечетных показателях итог неизменно будет поменьше нуля. Используйте это качество для проверки произведенных расчетов. Скажем, -2 в пятой степени должно быть числом негативным -2?=-2*(-2)*(-2)*(-2)*(-2)=-32, а -2 в шестой – позитивным -2?=-2*(-2)*(-2)*(-2)*(-2)*(-2)=64.

3. При возведении негативного числа в степень показатель может быть приведен в формате обычной дроби – скажем, -64 в степени?. Такой показатель обозначает, что начальную величину следует построить в степень, равную числителю дроби, и извлечь из нее корень степени, равной знаменателю. Одна часть этой операции рассмотрена в предыдущих шагах, а тут вам следует обратить внимание на иную.

4. Извлечение корня – нечетная функция, то есть для негативных вещественных чисел она может использоваться только при нечетном показателе степени. При четном эта функция значения не имеет. Следственно, если в условиях задачи требуется построить негативное число в дробную степень с четным знаменателем, то задача решения не имеет. В остальных случая проделайте вначале операции из первых 2-х шагов, применяя в качестве показателя степени числитель дроби, а после этого извлеките корень со степенью знаменателя.

Степенной формат записи числа – это сокращенная форма записи операции умножения основания на само себя. С числом, представленным в такой форме, дозволено осуществлять те же операции, что и с всякими другими числами, в том числе и возводить их в степень . Скажем, дозволено построить в произвольную степень квадрат числа и приобретение итога на современном ярусе становления техники не составит какой-нибудь сложности.

Вам понадобится

  • Доступ в интернет либо калькулятор Windows.

Инструкция

1. Для возведения квадрат а в степень используйте всеобщее правило возведения в степень числа, теснее имеющего степенной показатель. При такой операции показатели перемножаются, а основание остается бывшим. Если основание обозначить как x, а начальный и добавочный показатели степени – как a и b, записать это правило в всеобщем виде дозволено так: (x?)?=x??.

2. Для утилитарных расчетов проще каждого воспользоваться поисковой системой Google – в нее встроен дюже легкой в применении калькулятор. Скажем, если требуется построить в пятую степень квадрат числа 6, перейдите на основную страницу поисковика и введите соответствующий запрос. Сформулировать его дозволено так: (6^2)^5 – тут значок ^ обозначает степень . А дозволено самосильно рассчитать результирующий показатель степени в соответствии с формулой из предыдущего шага и сформулировать запрос так: 6^10. Либо доверить сделать это Google, введя такой запрос: 6^(2*5). Для всякого из этих вариантов калькулятор поисковика вернет идентичный результат: 60 466 176.

3. При отсутствии доступа в интернет вычислитель Google дозволено заменить, скажем, встроенным калькулятором Windows. Если вы используете версии Seven либо Vista этой ОС, раскройте основное меню системы и наберите каждого две буквы: «ка». Система отобразит в основном меню все программы и файлы, которые у нее ассоциируется с этим сочетанием. В первой строке будет ссылка «Калькулятор» – кликните по ней мышкой, и приложение будет запущено.

4. Нажмите сочетание клавиш Alt + 2, дабы в интерфейсе приложения возникла кнопка с функцией возведения в произвольную степень . После этого введите основание – в примере из второго шага это число 6 – и кликните вначале по кнопке x?, а после этого по кнопке x?. Введите показатель степени, в которую надобно построить квадрат – в использованном примере это число 5. Нажмите кнопку Enter, и калькулятор отобразит окончательный итог операции.

Видео по теме

Полезный совет
Дабы тренировка не была тоскливой, позовите на подмога друга. Пускай он пишет двузначное число, а вы - вывод возведения этого числа в квадрат. После этого меняйтесь местами.

23 октября 2016 в 16:37

Красота чисел. Как быстро вычислять в уме

  • Научно-популярное

Старинная запись на квитанции в уплате подати («ясака»). Она означает сумму 1232 руб. 24 коп. Иллюстрация из книги: Яков Перельман «Занимательная арифметика»

Ещё Ричард Фейнман в книге «Вы конечно шутите, мистер Фейнман! » поведал несколько приёмов устного счёта. Хотя это очень простые трюки, они не всегда входят в школьную программу.

Например, чтобы быстро возвести в квадрат число X около 50 (50 2 = 2500), нужно вычитать/прибавлять по сотне на каждую единицы разницы между 50 и X, а потом добавить разницу в квадрате. Описание звучит гораздо сложнее, чем реальное вычисление.

52 2 = 2500 + 200 + 4
47 2 = 2500 – 300 + 9
58 2 = 2500 + 800 + 64

Молодого Фейнмана научил этому трюку коллега-физик Ханс Бете, тоже работавший в то время в Лос-Аламосе над Манхэттенским проектом.

Ханс показал ещё несколько приёмов, которые использовал для быстрых вычислений. Например, для вычисления кубических корней и возведения в степень удобно помнить таблицу логарифмов. Это знание очень упрощает сложные арифметические операции. Например, вычислить в уме примерное значение кубического корня из 2,5. Фактически, при таких вычислениях в голове у вас работает своеобразная логарифмическая линейка, в которой умножение и деление чисел заменяется сложением и вычитанием их логарифмов. Удобнейшая вещь.


Логарифмическая линейка

До появления компьютеров и калькуляторов логарифмическую линейку использовали повсеместно. Это своеобразный аналоговый «компьютер», позволяющий выполнить несколько математических операций, в том числе умножение и деление чисел, возведение в квадрат и куб, вычисление квадратных и кубических корней, вычисление логарифмов, потенцирование, вычисление тригонометрических и гиперболических функций и некоторые другие операции. Если разбить вычисление на три действия, то с помощью логарифмической линейки можно возводить числа в любую действительную степень и извлекать корень любой действительной степени. Точность расчётов - около 3 значащих цифр.

Чтобы быстро проводить в уме сложные расчёты даже без логарифмической линейки, неплохо запомнить квадраты всех чисел, хотя бы до 25, просто потому что они часто используются в расчётах. И таблицу степеней - самых распространённых. Проще запомнить, чем вычислять каждый раз заново, что 5 4 = 625, 3 5 = 243, 2 20 = 1 048 576, а √3 ≈ 1,732.

Ричард Фейнман совершенствовал свои навыки и постепенно замечал всё новые интересные закономерности и связи между числами. Он приводит такой пример: «Если кто-то начинал делить 1 на 1,73, можно было незамедлительно ответить, что это будет 0,577, потому что 1,73 - это число, близкое к квадратному корню из трёх. Таким образом, 1/1,73 - это около одной трети квадратного корня из 3».

Настолько продвинутый устный счёт мог бы удивить коллег в те времена, когда не было компьютеров и калькуляторов. В те времена абсолютно все учёные умели хорошо считать в уме, поэтому для достижения мастерства требовалось достаточно глубоко погрузиться в мир цифр.

В наше время люди достают калькулятор, чтобы просто поделить 76 на 3. Удивить окружающих стало гораздо проще. Во времена Фейнмана вместо калькулятора были деревянные счёты, на которых тоже можно было производить сложные операции, в том числе брать кубические корни. Великий физик уже тогда заметил, что использование таких инструментов, людям вообще не нужно запоминать множество арифметический комбинаций, а достаточно просто научиться правильно катать шарики. То есть люди с «расширителями» мозга не знают чисел. Они хуже справляются с задачами в «автономном» режиме.

Вот пять очень простых советов устного счёта, которые рекомендует Яков Перельман в методичке «Быстрый счёт » 1941 года издательства.

1. Если одно из умножаемых чисел разлагается на множители, удобно бывает последовательно умножать на них.

225 × 6 = 225 × 2 × 3 = 450 × 3
147 × 8 = 147 × 2 × 2 × 2, то есть трижды удвоить результат

2. При умножении на 4 достаточно дважды удвоить результат. Аналогично, при делении на 4 и 8, число делится пополам дважды или трижды.

3. При умножении на 5 или 25 число можно разделить на 2 или 4, а затем приписать к результату один или два нуля.

74 × 5 = 37 × 10
72 × 25 = 18 × 100

Здесь лучше сразу оценивать, как проще. Например, 31 × 25 удобнее умножать как 25 × 31 стандартным способом, то есть как 750+25, а не как 31 × 25, то есть 7,75 × 100.

При умножении на число, близкое к круглому (98, 103), удобно сразу умножить на круглое число (100), а затем вычесть/прибавить произведение разницы.

37 × 98 = 3700 – 74
37 × 104 = 3700 + 148

4. Чтобы возвести в квадрат число, оканчивающееся цифрой 5 (например, 85), умножают число десятков (8) на него же плюс единица (9), и приписывают 25.
8 × 9 = 72, приписываем 25, так что 85 2 = 7225

Почему действует это правило, видно из формулы:
(10Х + 5) 2 = 100Х 2 + 100Х + 25 = 100Х (X+1) + 25

Приём применяется и к десятичным дробям, которые оканчиваются на 5:
8,5 2 = 72,25
14,5 2 = 210,25
0,35 2 = 0,1225

5. При возведении в квадрат не забываем об удобной формуле
(a + b) 2 = a 2 + b 2 + 2ab
44 2 = 1600 + 16 + 320

Конечно же, все способы можно сочетать между собой, создавая более удобные и эффективные приёмы для конкретных ситуаций.

Умение считать в уме квадраты чисел может пригодиться в разных жизненных ситуациях, например, для быстрой оценки инвестиционных сделок, для подсчета площадей и объемов, а также во многих других случаях. Кроме того, умение считать квадраты в уме может служить демонстрацией ваших интеллектуальных способностей. В данной статье разобраны методики и алгоритмы, позволяющие научиться этому навыку.

Квадрат суммы и квадрат разности

Одним из самых простых способов возведения двузначных чисел в квадрат является методика, основанная на использовании формул квадрата суммы и квадрата разности:

Для использования этого метода необходимо разложить двузначное число на сумму числа кратного 10 и числа меньше 10. Например:

  • 37 2 = (30+7) 2 = 30 2 + 2*30*7 + 7 2 = 900+420+49 = 1 369
  • 94 2 = (90+4) 2 = 90 2 + 2*90*4 + 4 2 = 8100+720+16 = 8 836

Практически все методики возведения в квадрат (которые описаны ниже) основываются на формулах квадрата суммы и квадрата разности. Эти формулы позволили выделить ряд алгоритмов упрощающих возведение в квадрат в некоторых частных случаях.

Квадрат близкий к известному квадрату

Если число, возводимое в квадрат, находится близко к числу, квадрат которого мы знаем, можно использовать одну из четырех методик для упрощенного счета в уме:

На 1 больше:

Методика: к квадрату числа на единицу меньше прибавляем само число и число на единицу меньше.

  • 31 2 = 30 2 + 31 + 30 = 961
  • 16 2 = 15 2 + 15 + 16 = 225 + 31 = 256

На 1 меньше:

Методика: из квадрата числа на единицу больше вычитаем само число и число на единицу больше.

  • 19 2 = 20 2 - 19 - 20 = 400 - 39 = 361
  • 24 2 = 25 2 - 24 - 25 = 625 - 25 - 24 = 576

На 2 больше

Методика: к квадрату числа на 2 меньше прибавляем удвоенную сумму самого числа и числа на 2 меньше.

  • 22 2 = 20 2 + 2*(20+22) = 400 + 84 = 484
  • 27 2 = 25 2 + 2*(25+27) = 625 + 104 = 729

На 2 меньше

Методика: из квадрата числа на 2 больше вычитаем удвоенную сумму самого числа и числа на 2 больше.

  • 48 2 = 50 2 - 2*(50+48) = 2500 - 196 = 2 304
  • 98 2 = 100 2 - 2*(100+98) = 10 000 - 396 = 9 604

Все эти методики можно легко доказать, выведя алгоритмы из формул квадрата суммы и квадрата разности (о которых сказано выше).

Квадрат чисел, заканчивающихся на 5

Чтобы возвести в квадрат числа, заканчивающиеся на 5. Алгоритм прост. Число до последней пятерки, умножаем на это же число плюс единица. К оставшемуся числу приписываем 25.

  • 15 2 = (1*(1+1)) 25 = 225
  • 25 2 = (2*(2+1)) 25 = 625
  • 85 2 = (8*(8+1)) 25 = 7 225

Это верно и для более сложных примеров:

  • 155 2 = (15*(15+1)) 25 = (15*16)25 = 24 025

Квадрат чисел близких к 50

Считать квадрат чисел, которые находятся в диапазоне от 40 до 60 , можно очень простым способом. Алгоритм таков: к 25 прибавляем (или вычитаем) столько, насколько число больше (или меньше) 50. Умножаем эту сумму (или разность) на 100. К этому произведению добавляем квадрат разности числа, возводимого в квадрат, и пятидесяти. Посмотрите работу алгоритма на примерах:

  • 44 2 = (25-6)*100 + 6 2 = 1900 + 36 = 1936
  • 53 2 = (25+3)*100 + 3 2 = 2800 + 9 = 2809

Квадрат трехзначных чисел

Возведение в квадрат трехзначных чисел может быть осуществлено при помощи одной из формул сокращенного умножения:

Нельзя сказать, что этот способ является удобным для устного счета, но в особо сложных случаях его можно взять на вооружение:

436 2 = (400+30+6) 2 = 400 2 + 30 2 + 6 2 + 2*400*30 + 2*400*6 + 2*30*6 = 160 000 + 900 + 36 + 24 000 + 4 800 + 360 = 190 096

Тренировка

Если вы хотите прокачать свои умения по теме данного урока, можете использовать следующую игру. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что числа каждый раз разные.

В книге «Магия чисел» рассказывается о десятках трюков, которые упрощают привычные математические операции. Оказалось, что умножение и деление в столбик - это прошлый век, а есть гораздо более эффективные способы деления в уме.

Вот 10 самых интересных и полезных трюков.

Умножение «3 на 1» в уме

Умножение трёхзначных чисел на однозначные - это очень простая операция. Всё, что нужно сделать, - это разбить большую задачу на несколько маленьких.

Пример : 320 × 7

  1. Разбиваем число 320 на два более простых числа: 300 и 20.
  2. Умножаем 300 на 7 и 20 на 7 по отдельности (2 100 и 140).
  3. Складываем получившиеся числа (2 240).

Возведение в квадрат двузначных чисел

Возводить в квадрат двузначные числа не намного сложнее. Нужно разбить число на два и получить приближенный ответ.

Пример : 41^2

  1. Вычтем 1 из 41, чтобы получить 40, и добавим 1 к 41, чтобы получить 42.
  2. Умножаем два получившихся числа, воспользовавшись предыдущим советом (40 × 42 = 1 680).
  3. Прибавляем квадрат числа, на величину которого мы уменьшали и увеличивали 41 (1 680 + 1^2 = 1 681).

Ключевое правило здесь - превратить искомое число в пару других чисел, которые перемножить гораздо проще. К примеру, для числа 41 это числа 42 и 40, для числа 77 - 84 и 70. То есть мы вычитаем и прибавляем одно и то же число.

Мгновенное возведение в квадрат числа, оканчивающегося на 5

С квадратами чисел, оканчивающихся на 5, вообще не нужно напрягаться. Всё, что нужно сделать, - это умножить первую цифру на число, которое на единицу больше, и добавить в конец числа 25.

Пример : 75^2

  • Умножаем 7 на 8 и получаем 56.
  • Добавляем к числу 25 и получаем 5 625.
  • Деление на однозначное число

    Деление в уме - это достаточно полезный навык. Задумайтесь о том, как часто мы делим числа каждый день. К примеру, счёт в ресторане.

    Пример : 675: 8

    1. Найдём приближенные ответы, умножив 8 на удобные числа, которые дают крайние результаты (8 × 80 = 640, 8 × 90 = 720). Наш ответ - 80 с хвостиком.
    2. Вычтем 640 из 675. Получив число 35, нужно разделить его на 8 и получить 4 с остатком 3.
    3. Наш финальный ответ - 84,3.

    Мы получаем не максимально точный ответ (правильный ответ - 84,375), но согласитесь, что даже такого ответа будет более чем достаточно.

    Простое получение 15%

    Чтобы быстро узнать 15% от любого числа, нужно сначала посчитать 10% от него (перенеся запятую на один знак влево), затем поделить получившееся число на 2 и прибавить его к 10%.

    Пример : 15% от 650

    1. Находим 10% - 65.
    2. Находим половину от 65 - это 32,5.
    3. Прибавляем 32,5 к 65 и получаем 97,5.

    Банальный трюк

    Пожалуй, все мы натыкались на такой трюк:

    Задумайте любое число. Умножьте его на 2. Прибавьте 12. Разделите сумму на 2. Вычтите из неё исходное число.

    Вы получили 6, верно? Что бы вы ни загадали, вы всё равно получите 6. И вот почему:

    1. 2x (удвоить число).
    2. 2x + 12 (прибавить 12).
    3. (2x + 12) : 2 = x + 6 (разделить на 2).
    4. x + 6 − x (вычесть исходное число).

    Этот трюк построен на элементарных правилах алгебры. Поэтому, если вы когда-нибудь услышите, что кто-то его загадывает, натяните свою самую надменную усмешку, сделайте презрительный взгляд и расскажите всем разгадку. 🙂

    Магия числа 1 089

    Этот трюк существует не одно столетие.

    Запишите любое трёхзначное число, цифры которого идут в порядке уменьшения (к примеру, 765 или 974). Теперь запишите его в обратном порядке и вычтите его из исходного числа. К полученному ответу добавьте его же, только в обратном порядке.

    Какое бы число вы ни выбрали, в результате получите 1 089.

    Быстрые кубические корни

    1 2 3 4 5 6 7 8 9 10
    1 8 27 64 125 216 343 512 729 1 000

    Как только вы запомните эти значения, находить кубический корень из любого числа будет элементарно просто.

    Пример : кубический корень из 19 683

    1. Берём величину тысяч (19) и смотрим, между какими числами она находится (8 и 27). Соответственно, первой цифрой в ответе будет 2, а ответ лежит в диапазоне 20+.
    2. Каждая цифра от 0 до 9 появляется в таблице по одному разу в виде последней цифры куба.
    3. Так как последняя цифра в задаче - 3 (19 683), это соответствует 343 = 7^3. Следовательно, последняя цифра ответа - 7.
    4. Ответ - 27.

    Примечание: трюк работает только тогда, когда исходное число является кубом целого числа.

    Правило 70

    Чтобы найти число лет, необходимых для удвоения ваших денег, нужно разделить число 70 на годовую процентную ставку.

    Пример : число лет, необходимое для удвоения денег с годовой процентной ставкой 20%.

    70: 20 = 3,5 года

    Правило 110

    Чтобы найти число лет, необходимых для утроения денег, нужно разделить число 110 на годовую процентную ставку.

    Пример : число лет, необходимое для утроения денег с годовой процентной ставкой 12%.

    110: 12 = 9 лет

    Математика - волшебная наука. Если даже такие простые трюки удивляют, то какие ещё фокусы можно придумать?

    Рассмотрим теперь возведение в квадрат двучлена и, применяясь к арифметической точке зрения, будем говорить о квадрате суммы, т. е. (a + b)² и о квадрате разности двух чисел, т. е. (a – b)².

    Так как (a + b)² = (a + b) ∙ (a + b),

    то найдем: (a + b) ∙ (a + b) = a² + ab + ab + b² = a² + 2ab + b², т. е.

    (a + b)² = a² + 2ab + b²

    Этот результат полезно запомнить и в виде вышеописанного равенства и словами: квадрат суммы двух чисел равен квадрату первого числа плюс произведение двойки на первое число и на второе число, плюс квадрат второго числа.

    Зная этот результат, мы можем сразу написать, напр.:

    (x + y)² = x² + 2xy + y²
    (3ab + 1)² = 9a² b² + 6ab + 1

    (x n + 4x)² = x 2n + 8x n+1 + 16x 2

    Разберем второй из этих примеров. Нам требуется возвести в квадрат сумму двух чисел: первое число есть 3ab, второе 1. Должно получиться: 1) квадрат первого числа, т. е. (3ab)², что равно 9a²b²; 2) произведение двойки на первое число и на второе, т. е. 2 ∙ 3ab ∙ 1 = 6ab; 3) квадрат 2-го числа, т. е. 1² = 1 – все эти три члена должно сложить между собою.

    Совершенно также получим формулу для возведения в квадрат разности двух чисел, т. е. для (a – b)²:

    (a – b)² = (a – b) (a – b) = a² – ab – ab + b² = a² – 2ab + b².

    (a – b)² = a² – 2ab + b² ,

    т. е. квадрат разности двух чисел равен квадрату первого числа, минус произведение двойки на первое число и на второе, плюс квадрат второго числа .

    Зная этот результат, мы можем сразу выполнять возведение в квадрат двучленов, представляющих с точки зрения арифметики разность двух чисел.

    (m – n)² = m² – 2mn + n²
    (5ab 3 – 3a 2 b) 2 = 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2

    (a n-1 – a) 2 = a 2n-2 – 2a n + a 2 и т. п.

    Поясним 2-ой пример. Здесь мы имеем в скобках разность двух чисел: первое число 5ab 3 и второе число 3a 2 b. В результате должно получиться: 1) квадрат первого числа, т. е. (5ab 3) 2 = 25a 2 b 6 , 2) произведение двойки на 1-ое и на 2-ое число, т. е. 2 ∙ 5ab 3 ∙ 3a 2 b = 30a 3 b 4 и 3) квадрат второго числа, т. е. (3a 2 b) 2 = 9a 4 b 2 ; первый и третий члены надо взять с плюсом, а 2-ой с минусом, получим 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2 . В пояснение 4-го примера заметим лишь, что 1) (a n-1)2 = a 2n-2 … надо показателя степени умножить на 2 и 2) произведение двойки на 1-ое число и на 2-ое = 2 ∙ a n-1 ∙ a = 2a n .

    Если встать на точку зрения алгебры, то оба равенства: 1) (a + b)² = a² + 2ab + b² и 2) (a – b)² = a² – 2ab + b² выражают одно и тоже, а именно: квадрат двучлена равен квадрату первого члена, плюс произведение числа (+2) на первый член и на второй, плюс квадрат второго члена. Это ясно, потому что наши равенства можно переписать в виде:

    1) (a + b)² = (+a)² + (+2) ∙ (+a) (+b) + (+b)²
    2) (a – b)² = (+a)² + (+2) ∙ (+a) (–b) + (–b)²

    В некоторых случаях так именно и удобно толковать полученные равенства:

    (–4a – 3b)² = (–4a)² + (+2) (–4a) (–3b) + (–3b)²

    Здесь возводится в квадрат двучлен, первый член которого = –4a и второй = –3b. Далее мы получим (–4a)² = 16a², (+2) (–4a) (–3b) = +24ab, (–3b)² = 9b² и окончательно:

    (–4a – 3b)² = 6a² + 24ab + 9b²

    Возможно было бы также получить и запомнить формулу для возведения в квадрат трехчлена, четырехчлена и вообще любого многочлена. Однако, мы этого делать не будем, ибо применять эти формулы приходится редко, а если понадобится какой-либо многочлен (кроме двучлена) возвести в квадрат, то станем сводить дело к умножению. Например:

    31. Применим полученные 3 равенства, а именно:

    (a + b) (a – b) = a² – b²
    (a + b)² = a² + 2ab + b²
    (a – b)² = a² – 2ab + b²

    к арифметике.

    Пусть надо 41 ∙ 39. Тогда мы можем это представить в виде (40 + 1) (40 – 1) и свести дело к первому равенству – получим 40² – 1 или 1600 – 1 = 1599. Благодаря этому, легко выполнять в уме умножения вроде 21 ∙ 19; 22 ∙ 18; 31 ∙ 29; 32 ∙ 28; 71 ∙ 69 и т. д.

    Пусть надо 41 ∙ 41; это все равно, что 41² или (40 + 1)² = 1600 + 80 + 1 = 1681. Также 35 ∙ 35 = 35² = (30 + 5)² = 900 + 300 + 25 = 1225. Если надо 37 ∙ 37, то это равно (40 – 3)² = 1600 – 240 + 9 = 1369. Подобные умножения (или возведение в квадрат двузначных чисел) легко выполнять, при некотором навыке, в уме.



    Последние материалы раздела:

    Изменение вида звездного неба в течение суток
    Изменение вида звездного неба в течение суток

    Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

    Развитие критического мышления: технологии и методики
    Развитие критического мышления: технологии и методики

    Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

    Онлайн обучение профессии Программист 1С
    Онлайн обучение профессии Программист 1С

    В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...