При каких условиях выполняется закон импульса. Школьная энциклопедия

Закон сохранения импульса является следствием законов Ньютона и применяется для определения мгновенных скоростей тел после их взаимодействия.

Импульсом тела (материальной точки) называется векторная физическая величина равная произведению массы тела на его скорость p -> = mϑ -> , где m – масса тела, ϑ -> – мгновенная скорость. Импульсом системы тел называется векторная сумма импульсов тел p c -> = p 1 -> + p 2 -> + p 3 -> + … + p n -> .

Согласно первому закону Ньютона, если тела не взаимодействуют, сохраняется импульс каждого тела и импульс нескольких тел входящих в систему. При взаимодействии внутри системы, между телами возникают пары сил равные по величине и противоположные по направлению, согласно третьему закону Ньютона.

Векторная физическая величина, являющаяся мерой действия силы в течении некоторого промежутка времени называется импульсом силы и обозначается F -> Δt. Из второго закона Ньютона в случае действия одной силы и определения ускорения следует F -> = ma -> , a -> = (ϑ -> - ϑ 0 ->)/Δt =>

F -> = m(ϑ -> – ϑ 0 ->)/Δt => F -> Δt = mϑ -> – mϑ 0 -> => … F -> Δt = p -> – p 0 ->

Это уравнение является законом сохранения импульса в импульсной форме. Импульс силы (равнодействующей) равен изменению импульса тела (материальной точки). В замкнутой системе взаимодействия происходят попарно, причем импульс одного тела изменяется на величину F 21 -> Δt, импульс второго на F 12 -> Δt, где F 12 -> – сила, действующая со стороны первого тела на второе и F 21 -> – сила действующая со стороны второго тела на первое.

Замкнутой назовем систему тел, взаимодействующих только между собой.

Импульс первого тела изменяется на величину F 21 -> Δt, p 1 -> = p 01 -> + F 21 -> Δt, импульс второго тела изменяется на величину F 12 -> Δt, p 2 -> = p 02 -> + F 12 -> Δt. Но импульс системы тел остается постоянной величиной

p 01 -> + p 02 -> = p 1 -> + p2 -> , так как F 21 -> Δt + F 12 -> Δt = 0, поскольку F 12 -> = -F 21 -> .

При любом взаимодействии двух тел внутри замкнутой системы импульс всей системы не изменяется. Сформулируем закон сохранения импульса.

Векторная сумма импульсов взаимодействующих тел, составляющих замкнутую систему, остается неизменной.

При использовании закона сохранения импульса в задаче делаем два схематических рисунка, показывая состояние системы тел до и после взаимодейсвия. Для решения векторных уравнений выбираем одинаковые системы координат.

Задача 1. Неупругий удар.

Вагон массой 30 т движется со скоростью 4 м/с и сталкивается с неподвижной платформой массой 10 т. Найти скорость вагона и платформы после того, как сработает автосцеп.

Решение.

p 01 -> + p 02 -> = p 1 -> + p 2 ->

M1ϑ 1 -> = (M1 + M2)ϑ ->

ОХ: M 1 ϑ 1 = (M 1 + M 2)ϑ

Отсюда: ϑ = M 1 ϑ 1 /(M 1 + M 2);

ϑ = (30 · 103 · 4) / (30 · 103 + 10 · 103) = 0,75 м/c

[ϑ] = (кг · м/с)/кг = м/с

Ответ. 0,75 м/c

Закон сохранения импульса также можно применить для незамкнутых систем, если взаимодействие тел происходит мгновенно и определяются скорости тел сразу после взаимодействия.

Задача 2. Разделение на части.

Граната, летящая со скоростью 20 м/с, разрывается на два осколка массами 1,2 кг и 1,8 кг. Больший осколок продолжает двигаться в том же направлении со скоростью 50 м/с. Найти скорость меньшего осколка.

Решение.


Система не замкнута на тело и его части действует сила тяжести, но так как разрыв происходит мгновенно, изменением импульса каждой части силой тяжести можно пренебречь. Применим закон сохранения импульса в векторном виде.

Mϑ -> = M 1 ϑ -> 1 + M 2 ϑ -> 2

ОХ: Mϑ = M 1 ϑ 1 + M 2 ϑ 2

Отсюда: ϑ 2х = (Mϑ - M 1 ϑ 1)/M 2

ϑ 2х = (3 · 20 – 1,8 · 50)/1,2 = -25 м/с

[ϑ] = (кг · м/с)/кг = м/с

Ответ.

Закон сохранения импульса может быть применен в проекциях на ось, если проекция равнодействующей внешних сил на эту ось равна О. p х = 0; p 01х + p 02х = p 1х + p 2х.

Задача 3. Выстрел под углом.

Из орудия, установленного на платформе массой М, производят выстрел снарядом массы m под углом a к горизонту и скоростью V относительно земли, определить скорость платформы после выстрела.

Решение.


Система не замкнута, на тело во время выстрела действует дополнительная сила реакции опоры, которая сообщает снаряду импульс вдоль вертикальной оси ОY, ее проекция на горизонтальную ось ОХ равна 0, других сил, действующих вдоль оси ОХ нет, значит можно применить закон сохранения импульса в проекциях на ось ОХ.

p х = p 1х + p 2х

ОХ: 0 = МU x + mϑ x

0 = МU x + mϑ cosα

U x = m ϑcosα/М

[U] = (кг · м/с)/кг = м/с

Остались вопросы? Не знаете, как решить задачу на закон сохранения импульса?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Как мы уже говорили, в точности замкнутых систем тел не существует. Поэтому возникает вопрос: в каких случаях можно применять закон сохранения импульса к незамкнутым системам тел? Рассмотрим эти случаи.

1. Внешние силы уравновешивают друг друга или ими можно пренебречь

С этим случаем мы уже познакомились в предыдущем параграфе на примере двух взаимодействующих тележек.

В качестве второго примера вспомним первоклассника и десятиклассника, соревнующихся в перетягивании каната, стоя на скейтбордах (рис. 26.1). При этом внешние силы также уравновешивают друг друга, а силой трения можно пренебречь. Поэтому сумма импульсов соперников сохраняется.

Пусть в начальный момент школьники покоились. Тогда их суммарный импульс в начальный момент равен нулю. Согласно закону сохранения импульса он останется равным нулю и тогда, когда они будут двигаться. Следовательно,

где 1 и 2 – скорости школьников в произвольный момент (пока действия всех других тел компенсируются).

1. Докажите, что отношение модулей скоростей мальчиков обратно отношению их масс:

v 1 /v 2 = m 2 /m 1 . (2)

Обратите внимание: это соотношение будет выполняться независимо от того, как взаимодействуют соперники. Например, не имеет значения, тянут они канат рывками или плавно, перебирает канат руками только кто-то один из них или оба.

2. На рельсах стоит платформа массой 120 кг, а на ней – человек массой 60 кг (рис. 26.2, а). Трением между колесами платформы и рельсами можно пренебречь. Человек начинает идти вдоль платформы вправо со скоростью 1,2 м/с относительно платформы (рис. 26.2, б).

Начальный суммарный импульс платформы и человека равен нулю в системе отсчета, связанной с землей. Поэтому применим закон сохранения импульса в этой системе отсчета.

а) Чему равно отношение скорости человека к скорости платформы относительно земли?
б) Как связаны модули скорости человека относительно платформы, скорости человека относительно земли и скорости платформы относительно земли?
в) С какой скоростью и в каком направлении будет двигаться платформа относительно земли?
г) Чему будут равны скорости человека и платформы относительно земли, когда он дойдет до ее противоположного конца и остановится?

2. Проекция внешних сил на некоторую ось координат равна нулю

Пусть, например, по рельсам со скоростью катится тележка с песком массой m т. Будем считать, что трением между колесами тележки и рельсами можно пренебречь.

В тележку падает груз массой m г (рис. 26.3, а), и тележка катится далее с грузом (рис. 26.3, б). Обозначим конечную скорость тележки с грузом к.

Введем оси координат, как показано на рисунке. На тела действовали только вертикально направленные внешние силы (сила тяжести и сила нормальной реакции со стороны рельсов). Эти силы не могут изменить горизонтальные проекции импульсов тел. Поэтому проекция суммарного импульса тел на горизонтально направленную ось х осталась неизменной.

3. Докажите, что конечная скорость тележки с грузом

v к = v(m т /(m т + m г)).

Мы видим, что скорость тележки после падения груза уменьшилась.

Уменьшение скорости тележки объясняется тем, что часть своего начального горизонтально направленного импульса она передала грузу, разгоняя его до скорости к. Когда тележка разгоняла груз, он, согласно третьему закону Ньютона, тормозил тележку.

Обратите внимание на то, что в рассматриваемом процессе суммарный импульс тележки и груза не сохранялся. Неизменной осталась лишь проекция суммарного импульса тел на горизонтально направленную ось x.

Проекция же суммарного импульса тел на вертикально направленную ось у в данном процессе изменилась: перед падением груза она была отлична от нуля (груз двигался вниз), а после падения груза она стала равной нулю (оба тела движутся горизонтально).

4. В стоящую на рельсах тележку с песком массой 20 кг влетает груз массой 10 кг. Скорость груза непосредственно перед попаданием в тележку равна 6 м/с и направлена под углом 60º к горизонту (рис. 26.4). Трением между колесами тележки и рельсами можно пренебречь.


а) Какая проекция суммарного импульса в данном случае сохраняется?
б) Чему равна горизонтальная проекция импульса груза непосредственно перед его попаданием в тележку?
в) С какой скоростью будет двигаться тележка с грузом?

3. Удары, столкновения, разрывы, выстрелы

В этих случаях происходит значительное изменение скорости тел (а значит, и их импульса) за очень краткий промежуток времени. Как мы уже знаем (см. предыдущий параграф), это означает, что в течение этого промежутка времени тела действуют друг на друга с большими силами. Обычно эти силы намного превышают внешние силы, действующие на тела системы.
Поэтому систему тел во время таких взаимодействий можно с хорошей степенью точности считать замкнутой, благодаря чему можно использовать закон сохранения импульса.

Например, когда во время пушечного выстрела ядро движется внутри ствола пушки, силы, с которыми действуют друг на друга пушка и ядро, намного превышают горизонтально направленные внешние силы, действующие на эти тела.

5. Из пушки массой 200 кг выстрелили в горизонтальном направлении ядром массой 10 кг (рис. 26.5). Ядро вылетело из пушки со скоростью 200 м/с. Какова скорость пушки при отдаче?


При столкновениях тела также действуют друг на друга с довольно большими силами в течение краткого промежутка времени.

Наиболее простым для изучения является так называемое абсолютно неупругое столкновение (или абсолютно неупругий удар). Так называют столкновение тел, в результате которого они начинают двигаться как единое целое. Именно так взаимодействовали тележки в первом опыте (см. рис. 25.1), рассмотренном в предыдущем параграфе, Найти общую скорость тел после абсолютно неупругого столкновения довольно просто.

6. Два пластилиновых шарика массой m 1 и m 2 движутся со скоростями 1 и 2 . В результате столкновения они стали двигаться как единое целое. Докажите, что их общую скорость можно найти с помощью формулы

Обычно рассматривают случаи, когда тела до столкновения движутся вдоль одной прямой. Направим ось x вдоль этой прямой. Тогда в проекциях на эту ось формула (3) принимает вид

Направление общей скорости тел после абсолютно неупругого столкновения определяется знаком проекции v x .

7. Объясните, почему из формулы (4) следует, что скорость «объединенного тела» будет направлена так же, как начальная скорость тела с большим импульсом.

8. Две тележки движутся навстречу друг другу. При столкновении они сцепляются и движутся как единое целое. Обозначим массу и скорость тележки, которая вначале ехала вправо, m п и п, а массу и скорость тележки, которая вначале ехала влево, m л и л. В каком направлении и с какой скоростью будут двигаться сцепленные тележки, если:
а) m п = 1 кг, v п = 2 м/с, m л = 2 кг, v л = 0,5 м/с?
б) m п = 1 кг, v п = 2 м/с, m л = 4 кг, v л = 0,5 м/с?
в) m п = 1 кг, v п = 2 м/с, m л = 0,5 кг, v л = 6 м/с?


Дополнительные вопросы и задания

В заданиях к этому параграфу предполагается, что трением можно пренебречь (если не указан коэффициент трения).

9. На рельсах стоит тележка массой 100 кг. Бегущий вдоль рельсов школьник массой 50 кг с разбега запрыгнул на эту тележку, после чего она вместе со школьником стала двигаться со скоростью 2 м/с. Чему была равна скорость школьника непосредственно перед прыжком?

10. На рельсах недалеко друг от друга стоят две тележки массой M каждая. На первой из них стоит человек массой m. Человек перепрыгивает с первой тележки на вторую.
а) Скорость какой тележки будет больше?
б) Чему будет равно отношение скоростей тележек?

11. Из зенитного орудия, установленного на железнодорожной платформе, производят выстрел снарядом массой m под углом α к горизонту. Начальная скорость снаряда v0. Какую скорость приобретет платформа, если ее масса вместе с орудием равна M? В начальный момент платформа покоилась.

12. Скользящая по льду шайба массой 160 г ударяется о лежащую льдинку. После удара шайба скользит в прежнем направлении, но модуль ее скорости уменьшился вдвое. Скорость же льдинки стала равной начальной скорости шайбы. Чему равна масса льдинки?

13. На одном конце платформы длиной 10 м и массой 240 кг стоит человек массой 60 кг. Каково будет перемещение платформы относительно земли, когда человек перейдет к ее противоположному концу?
Подсказка. Примите, что человек идет с постоянной скоростью v относительно платформы; выразите через v скорость платформы относительно земли.

14. В лежащий на длинном столе деревянный брусок массой M попадает летящая горизонтально со скоростью и пуля массой m и застревает в нем. Сколько времени после этого брусок будет скользить по столу, если коэффициент трения между столом и бруском равен μ?

Теория

Рассмотрим два небольших тела (материальные точки), взаимодействующих только друг с другом. По 3-му закону Ньютона сила, с которой первое тело действует на второе, равна по величине и противоположно направлена по отношению к силе, которая действует со стороны первого тела на второе, причем эти силы действуют вдоль линии, соединяющей материальные точки. Тогда 2-й закон Ньютона для этих тел запишется в виде:

где и – приращение скоростей первого и второго тел за время , а и – соответственно сила, действующая со стороны второго тела на первое и наоборот.

Сложим эти уравнения друг с другом. Сумма правых частей равна нулю, т.к. вследствие 3-го закона Ньютона . Значит, равна нулю также сумма левых частей уравнений. Таким образом,

где – скорость первого и второго тел в начале промежутка времени , а – в конце этого промежутка. Из этого уравнения получаем:

, (1)

Величина, равная произведению массы материальной точки на ее скорость, называется импульсом. Для системы материальных точек полный импульс равен сумме импульсов. При этом следует иметь в виду, что импульс – это векторная величина, и поэтому в общем случае импульсы складываются как векторы, т.е. по правилу параллелограмма. Уравнение (1) выражает закон сохранения импульса для двух материальных точек, которые взаимодействуют только между собой. В правой и левой частях уравнения стоит суммарный импульс двух тел в разные моменты времени, из уравнения видно, что эта величина остается неизменной (т.е. сохраняется).

Таким образом, закон сохранения импульса можно сформулировать так: если на тела системы действуют только силы взаимодействия между ними («внутренние силы»), то полный импульс системы тел не изменяется со временем, т.е. сохраняется. Этот закон применим не только к системе 2 тел, как в рассмотренном примере, но и к системе, состоящей из любого числа тел. Отметим еще раз, что импульс – величина векторная, поэтому сохранение полного импульса означает сохранение не только его величины, но и направления.

Закон сохранения импульса выполняется при распаде тела на части и при абсолютно неупругом ударе, когда соударяющиеся тела соединяются в одно. Если распад или удар происходят в течение малого промежутка времени, то закон сохранения импульса приближенно выполняется для этих процессов даже при наличии внешних сил, действующих на тела системы со стороны тел, не входящих в нее, т.к. за малое время внешние силы не успевают значительно изменить импульс системы. Если внешние силы имеют какое-то определенное направление, то сохраняется не сам импульс, а его проекции на оси, перпендикулярные действующей силе.


Описание работы

Рассмотрим движение тела, брошенного под углом к горизонту. Пусть тело бросили со скоростью под углом к горизонту (рис. 1).

В полете на тело действует сила тяжести, направленная вертикально вниз, поэтому горизонтальная проекция скорости не изменяется со временем и равна .

Пусть в верхней точке траектории тело распадается на 2 одинаковых осколка, один из которых возвращается назад в точку бросания по той же траектории, по которой до распада летело брошенное тело. При распаде выполняется закон сохранения горизонтальной проекции импульса, поскольку сила тяжести направлена вертикально. Один из осколков вернулся назад по прежней траектории. Это означает, что его скорость сразу же после распада равна скорости всего тела непосредственно перед распадом. Закон сохранения проекции импульса тогда запишется следующим образом.

Изменяются, так как на каждое из тел действуют силы взаимодействия, однако сумма импульсов остается постоянной. Это и называется законом сохранения импульса .

Второй закон Ньютона выражается формулой . Ее можно записать иным способом, если вспомнить, что ускорение равно быстроте изменения скорости тела. Для равноускоренного движения формула будет иметь вид:

Если подставить это выражение в формулу, получим:

,

Эту формулу можно переписать в виде:

В правой части этого равенства записано изменение произведения массы тела на его скорость. Произведение массы тела на скорость является физической величиной, которая называется импульсом тела или количеством движения тела .

Импульсом тела называют произведение массы тела на его скорость. Это векторная величина. Направление вектора импульса совпадает с направлением вектора скорости.

Другими словами, тело массой m , движущееся со скоростью обладает импульсом . За единицу импульса в СИ принят импульс тела массой 1 кг , движущегося со скоростью 1 м/с (кг·м/с). При взаимодействии друг с другом двух тел если первое действует на второе тело силой , то, согласному третьему закону Ньютона , второе действует на первое силой . Обозначим массы этих двух тел через m 1 и m 2 , а их скорости относительно какой-либо системы отсчета через и . Через некоторое время t в результате взаимодействия тел их скорости изменятся и станут равными и . Подставив эти значения в формулу, получим:

,

,

Следовательно,

Изменим знаки обеих частей равенства на противоположные и запишем в виде

В левой части равенства - сумма начальных импульсов двух тел, в правой части - сумма импульсов тех же тел через время t . Суммы равны между собой. Таким образом, несмотря на то. что импульс каждого тела при взаимодействии изменяется, полный импульс (сумма импульсов обоих тел) остается неизменным.

Действителен и тогда, когда взаимодействуют несколько тел. Однако, важно, чтобы эти тела взаимодействовали только друг с другом и на них не действовали силы со стороны других тел, не входящих в систему (либо чтоб внешние силы уравновешивались). Группа тел, не взаимодействущая с другими телами, называется замкнутой системой справедлив только для замкнутых систем.

Применим закон сохранения импульса к задаче об отдаче пушки. Вначале, до выстрела, как пушка (массы ), так и снаряд (массы ) покоятся. Значит, суммарный импульс системы пушка- снаряд равен нулю (в формуле (50.1) можно положить равными нулю скорости и ). После выстрела пушка и снаряд получат скорости и соответственно. Суммарный импульс после выстрела также должен равняться нулю, согласно закону сохранения импульса. Таким образом, непосредственно после выстрела будет выполнено равенство

Или

откуда следует, что пушка получит скорость, во столько раз меньшую скорости снаряда, во сколько раз масса пушки больше массы снаряда; знак минус указывает на противоположность направлений скоростей пушки и снаряда. Этот результат был уже нами получен другим способом в § 48.

Мы видим, что задачу удалось решить, не выясняя даже, какие силы и в течение какого времени действовали на тела системы; эти сведения были бы нужны, если бы мы вычисляли скорость пушки при помощи второго закона Ньютона. В закон сохранения импульса силы вообще не входят. Это обстоятельство позволяет решать простым способом многие задачи, в основном такие, где мы интересуемся не процессом взаимодействия тел системы, а только окончательным результатом этого взаимодействия, как в примере с выстрелом из пушки. Конечно, если силы неизвестны, то должны быть заданы какие-то другие величины, относящиеся к движению. В данном примере, для того чтобы можно было определить скорость пушки, надо было знать скорость снаряда после выстрела.

Если измерено время взаимодействия пушки со снарядом, то можно найти среднюю силу, действовавшую на снаряд. Если это время равнялось, то средняя сила была равна . Такая же по модулю средняя сила (но противоположно направленная) действовала и на пушку.

Рассмотрим еще одну очень важную задачу, которую также можно решить, пользуясь законом сохранения импульса. Это - задача о неупругом соударении двух тел, т. е. о случае, когда тела после соударения движутся с одной и той же скоростью, как это происходит, например, при соударении двух комков мягкой глины, которые, столкнувшись, слипаются и продолжают движение совместно.

Рис. 74. Сложение импульсов при неупругом соударении двух тел

Пусть тело массы имело до соударения скорость , а тело массы имело до соударения скорость. Пусть внешние силы отсутствуют. После соударения оба тела будут двигаться вместе с некоторой скоростью , которую и требуется найти. Суммарный импульс тел легко найти путем векторного сложения, как это показано на рис. 74. Слагаемые векторы - импульсы каждого из тел до соударения. Искомая же скорость получится путем деления суммарного импульса тел на их суммарную массу:

(51.1)

Если до соударения тела двигались по одной прямой, то после соударения они будут двигаться по той же прямой. Примем эту прямую за ось и спроектируем скорости на эту ось. Тогда формула (51.1) превратится в скалярную формулу:

(51.2)

Каждая из проекций в этой формуле равна модулю соответствующего вектора, взятому со знаком плюс, если вектор направлен по оси, и со знаком минус, если направление вектора противоположно направлению оси (ср. с формулой (49.3)).

51.1. Человек массы 60 кг, бегущий вдоль рельсов со скоростью 6 м/с, впрыгивает на неподвижно стоящую на рельсах тележку массы 30 кг и останавливается на тележке. С какой скоростью тележка начнет катиться по рельсам?



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...