Примеры колебательного движения тел. Основные отличия между вынужденными и свободными колебаниями

Лабораторная работа №3

«Определение коэффицента упругости пружины с помощью пружинного маятника»

УДК 531.13(07)

Рассматриваются законы колебательного движения на примере пружинного маятника. Даны методические указания к выполнению лабораторной работы по определению коэффициента жёсткости пружины динамическим методами. Дан разбор типовых задач по теме «Гармонические колебания. Сложение гармонических колебаний.

Теоретическое введение

Колебательное движение является одним из наиболее распространённых движений в природе. С ним связаны звуковые явления, переменный ток, электромагнитные волны. Колебания совершают отдельные части самых разнообразных машин и приборов, атомы и молекулы в твёрдых телах, жидкостях и газах, сердечные мышцы у человека и животных и т. п.

Колебанием называют физический процесс, характеризующийся повторяемостью во времени физических величин, связанных с этим процессом. Движение маятника или качелей, сокращения сердечной мышцы, переменный ток - всё это примеры систем, совершающих колебания.

Колебания считают периодическими, если значения физических величин повторяются через равные промежутки времени, называемые периодом Т. Число полных колебаний, совершаемых системой за единицу времени, называют частотой ν. Очевидно, что Т = 1/ν. Частота измеряется в герцах (Гц). При частоте 1 герц система совершает 1 колебание в секунду.

Простейшим видом колебательного движения являются свободные гармонические колебания. Свободными , или собственными называются колебания, происходящие в системе после того, как она была выведена из положения равновесия внешними силами, которые в дальнейшем участия в движении системы не принимают. Наличие периодически меняющихся внешних сил вызывает в системе вынужденные колебания .

Гармоническими называют свободные колебания, происходящие под действием упругой силы при отсутствии трения. Согласно закону Гука, при малых деформациях сила упругости прямо пропорциональна смещению тела х от положения равновесия и направлена к положению равновесия: F упр. = - κх, где κ - коэффициент упругости, измеряемый в Н/м, а x - смещение тела из положения равновесия.

Силы, не упругие по своей природе, но аналогичные по виду зависимости от смещения, называют квазиупругими (лат. quasi - якобы). Такие силы также вызывают гармонические колебания. Например, квазиупругие силы действуют на электроны в колебательном контуре, вызывая гармонические электромагнитные колебания. Примером квазиупругой силы может также служить составляющая силы тяжести математического маятника при малых углах отклонения его от вертикали.

Уравнение гармонических колебаний . Пусть тело массой m прикреплено к концу пружины, масса которой мала по сравнению с массой тела. Колеблющееся тело называют осциллятором (лат. oscillum- колебание). Пусть осциллятор может свободно и без трения скользить вдоль горизонтальной направляющей, по которой направим ось координат ОХ (рис. 1). Начало координат поместим в точке, соответствующей равновесному положению тела (рис. 1, а). Приложим к телу горизонтальную силу F и сместим его из положения равновесия вправо в точку с координатой х . Растяжение пружины внешней силой вызывает появление в ней силу упругости F ynp. , направленной к положению равновесия (рис. 1, б). Если теперь убрать внешнюю силу F , то под действием силы упругости тело приобретает ускорение а , движется к положению равновесия, а сила упругости уменьшается, становясь равной нулю в положении равновесия. Достигнув положения равновесия, тело, однако, в нем не останавливается и движется влево за счёт своей кинетической энергии. Пружина вновь сжимается, возникает сила упругости, направленная вправо. Когда кинетическая энергия тела перейдет в потенциальную энергию сжатой пружины, груз остановится, затем начнет двигаться вправо, и процесс повторяется.

Таким образом, если при непериодическом движении каждую точку траектории тело проходит только один раз, двигаясь в одном направлении, то при колебательном движении за одно полное колебание в каждой точке траектории, кроме самых крайних, тело бывает дважды: один раз двигаясь в прямом направлении, другой раз -в обратном.

Напишем второй закон Ньютона для осциллятора: ma = F ynp. , где

F упр = –κx (1)

Знак «–» в формуле указывает на то, что смещение и сила имеют противоположные направления, иными словами, сила, действующая на прикрепленный к пружине груз, пропорциональна смещению его из положения равновесия и направлена всегда к положению равновесия. Коэффициент пропорциональности «κ» носит название коэффициента упругости. Численно он равен силе, вызывающей деформацию пружины, при которой её длина изменяется на единицу. Иногда его называют коэффициентом жёсткости .

Так как ускорение есть вторая производная от смещения тела, то это уравнение можно переписать в виде

, или
(2)

Уравнение (2) может быть записано в виде:

, (3)

где обе части уравнения разделены на массу m и введено обозначение:

(4)

Легко проверить подстановкой, что этому уравнению удовлетворяет решение:

х = А 0 cos (ω 0 t + φ 0) , (5)

где А 0 - амплитуда или максимальное смещение груза от положения равновесия, ω 0 - угловая или циклическая частота, которая может быть выражена через период Т собственных колебаний формулой
(см. ниже).

Величину φ = φ 0 + ω 0 t (6), стоящую под знаком косинуса и измеряемую в радианах, называют фазой колебания в момент времени t , а φ 0 - начальная фаза. Фаза представляет собой число, определяющее величину и направление смещения колеблющейся точки в данный момент времени. Из (6) видно, что

. (7)

Таким образом, величина ω 0 определяет быстроту изменения фазы и называется циклической частотой . С обычной чистотой её связывает формула

Если фаза изменяется на 2π радиан, то, как известно из тригонометрии, косинус принимает исходное значение, а следовательно, исходное значение принимает и смещение х . Но гак как время при этом изменяется на один период, то получается, что

ω 0 (t + T ) + φ 0 = (ω 0 t + φ 0) + 2π

Раскрывая скобки и сокращая подобные члены, получим ω 0 T = 2π или
. Но так как из (4)
, то получим:
. (9)

Таким образом, период колебания тела , подвешенного на пружине, как это следует из формулы (8), не зависит от амплитуды колебаний, но зависит от массы тела и от коэффициента упругости (или жесткости) пружины.

Дифференциальное уравнение гармонических колебаний:
,

Собственная круговая частота колебаний, определяемая природой и параметрами колеблющейся системы:


-для материальной точки массой m , колеблющейся под действием квазиупругой силы, характеризующейся коэффициентом упругости (жёсткости) k ;


-для математического маятника, имеющего длину l ;


-для электромагнитных колебаний в контуре с емкостью С и индуктивностью L .

ВАЖНОЕ ЗАМЕЧАНИЕ

Эти формулы верны при малых отклонениях от положения равновесия.

Скорость при гармоническом колебании:

.

Ускорение при гармоническом колебании:

Полная энергия гармонического колебания:

.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Задание 1

Определение зависимости периода собственных колебаний пружинного маятника от массы груза

1. Подвесьте к одной из пружин груз и выведите маятник из положения равновесия примерно на 1 - 2 см.

2. Предоставив грузу свободно колебаться, измерьте секундомером промежуток времени t , в течение которого маятник совершит n (n = 15 - 25) полных колебаний
. Найдите период колебания маятника, разделив измеренный вами промежуток времени на число колебаний. Для большей точности проведите измерения не менее 3 раз и вычислите среднее значение периода колебания.

Примечание : Следите за тем, чтобы боковые колебания груза отсутствовали, т. е. чтобы колебания маятника были строго вертикальными.

3. Повторите измерения с другими грузами. Результаты измерений запишите в таблицу.

4. Постройте зависимость периода колебаний маятника от массы груза. График будет более простым (прямая линия), если на горизонтальной оси откладывать значения маcсы грузов, а на вертикальной оси - значения квадрата периода.

Задание 2

Определение коэффициента упругости пружины динамическим методом

1. Подвесьте к одной из пружин груз массой 100 г., выведите его из положения равновесия на 1 - 2 см и, измерив время 15 - 20 полных колебаний, определите период колебания маятника с выбранным грузом по формуле
. Из формулы
вычислите коэффициент упругости пружины.

2. Проделайте аналогичные измерения с грузами от 150 г до 800 г (в зависимости от оборудования), определите для каждого случая коэффициент упругости и подсчитайте среднее значение коэффициента упругости пружины. Результаты измерений запишите в таблицу.

Задание 3 . По результатам лабораторной работы (задания 1 - 3):

– найдите значение циклической частоты маятника ω 0 .

– ответьте на вопрос: зависит ли амплитуда колебаний маятника от массы груза.

Возьмите на графике, полученном при выполнении задания 1 , произвольную точку и проведите из неё перпендикуляры до пересечения с осями Om и OT 2 . Определите для этой точки значения m и T 2 и по формуле
вычислите величину коэффициента упругости пружины.

Приложение

КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

ПО СЛОЖЕНИЮ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ

Амплитуда А результирующего колебания, полученного при сложении двух колебаний с одинаковыми частотами и амплитудами А 1 и А 2 , происходящих по одной прямой, определяется по формуле

где φ 0, 1 , φ 0, 2 - начальные фазы.

Начальная фаза φ 0 результирующего колебания может быть найдена по формуле

tg
.

Биения , возникающие при сложении двух колебаний x 1 =A cos2πν 1 t , происходящих по одной прямой с различными, но близкими по значению частотами ν 1 и ν 2 , описываются формулой

x = x 1 + x 2 + 2A cosπ (ν 1 – ν 2)t cosπ(ν 1 +ν 2)t .

Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях одинаковой частоты с амплитудами А 1 и А 2 и начальными фазами φ 0, 1 и φ 0, 2:

Если начальные фазы φ 0, 1 и φ 0, 2 составляющих колебаний одинаковы, то уравнение траектории принимает вид
. Если же начальные фазы отличаются на π, то уравнение траектории имеет вид
. Это уравнения прямых линий, проходящих через начало координат, иными словами, в этих случаях точка движется по прямой. В остальных случаях движение происходит по эллипсу. При разности фаз
оси этого эллипса расположены по осямО X и О Y и уравнение траектории принимает вид
. Такие колебания называются эллиптическими. При A 1 =A 2 =A x 2 +y 2 =A 2 . Это уравнение окружности, и колебания называются круговыми. При других значениях частот и разностей фаз траектории колеблющейся точки образует причудливой формы кривые, называемые фигурами Лиссажу .

РАЗБОР НЕКОТОРЫХ ТИПОВЫХ ЗАДАЧ

ПО УКАЗАННОЙ ТЕМЕ

Задача 1. Из графика колебаний материальной точки следует, что модуль скорости в момент времени t = 1/3 с равен...


Период гармонического колебания, изображенного на рисунке, равен 2 секундам. Амплитуда этого колебания 18 см. Поэтому зависимость x (t ) можно записать в виде x(t) = 18sinπ t . Скорость равна производной функции х (t ) по времени v (t ) = 18π cosπ t . Подставив t = (1/3) с, получим v (1/3) = 9π (см/с).

Правильным является ответ: 9 π см/с.

Складываются два гармонических колебания одного направления с одинаковыми периодами и равными амплитудами A 0 . При разности
амплитуда результирующего колебания равна...


Решение существенно упрощается, если использовать векторный метод определения амплитуды и фазы результирующего колебания. Для этого одно из складываемых колебаний представим в виде горизонтального вектора с амплитудой А 1 . Из конца этого вектора построим второй вектор с амплитудой А 2 так, чтобы он образовал угол
с первым вектором. Тогда длина вектора, проведенного из начала первого вектора в конец последнего, будет равна амплитуде результирующего колебания, а угол, образуемый результирующим вектором с первым вектором, будет определять разность их фаз. Векторная диаграмма, соответствующая условию задания, приведена на рисунке. Отсюда сразу видно, что амплитуда результирующего колебания в
раз больше амплитуды каждого из складываемых колебаний.

Правильным является ответ:
.

ТочкаМ одновременно колеблется по гармоническому закону вдоль осей координат ОХ и OY с различными амплитудами, но одинаковыми частотами. При разности фаз π/2 траектория точки М имеет вид:

При заданной в условии разности фаз уравнением траектории является уравнение эллипса, приведенного к координатным осям, причем полуоси эллипса равны соответствующим амплитудам колебаний (см. теоретические сведения).

Правильным является ответ: 1.

Два одинаково направленных гармонических колебания одного периода с амплитудами A 1 =10 см и А 2 =6 см складываются в одно колебание с амплитудой А рез =14 см. Разность фаз
складываемых колебаний равна...

В этом случае удобно воспользоваться формулой . Подставив в нее данные из условия задания, получим:
.

Этому значению косинуса соответствует
.

Правильным является ответ: .

Контрольные вопросы

1. Какие колебания называются гармоническими? 2. Какой вид имеет график незатухающих гармонических колебаний? 3. Какими величинами характеризуется гармонический колебательный процесс? 4. Приведите примеры колебательных движений из биологии и ветеринарии. 5. Напишите уравнение гармонических колебаний. 6. Как получить выражение для периода колебательного движения пружинного маятника?

ЛИТЕРАТУРА

    Грабовский Р. И. Курс физики. - М.: Высшая школа, 2008, ч. I, § 27-30.

    Основы физики и биофизики. Журавлёв А. И. , Белановский А. С., Новиков В. Э., Олешкевич А. А. и др. - М., Мир, 2008, гл. 2.

    Трофимова Т. И. Курс физики: Учебник для студ. вузов. - М.: МГАВМиБ, 2008. - гл. 18.

    Трофимова Т. И. Физика в таблицах и формулах: Учеб. пособие для студентов вузов. - 2-е изд., испр. - М.: Дрофа, 2004. - 432 с.

1. Движение называется колебательным, если при движении происходит частичная или полная повторяемость состояния системы по времени. Если значения физических величин, характеризующих данное колебательное движение, повторяются через равные промежутки времени, колебания называют периодическими.

2. Что такое период колебаний? Что такое частота колебаний? Какова связь между ними?

2. Периодом называют время, в течение которого совершается одно полное колебание. Частота колебаний - число колебаний в единицу времени. Частота колебаний обратно пропорциональна периоду колебаний.

3. Система колеблется с частотой 1 Гц. Чему равен период колебания?

4. В каких точках траектории колеблющегося тела скорость равна нулю? Ускорение равно нулю?

4. В точках максимального отклонения от положения равновесия скорость равна нулю. Ускорение равно нулю в точках равновесия.

5. Какие величины, характеризующие колебательное движение, изменяются периодически?

5. Скорость, ускорение и координата в колебательном движении изменяются периодически.

6. Что можно сказать о силе, которая должна действовать в колебательной системе, чтобы она совершала гармонические колебания?

6. Сила должна изменяться с течением времени по гармоническому закону. Эта сила должна быть пропорциональна смещению и направлена противоположно смещению к положению равновесия.

С одним из видов неравномерного движения - равноускоренным - вы уже знакомы.

Рассмотрим ещё один вид неравномерного движения - колебательное.

Колебательные движения широко распространены в окружающей нас жизни. Примерами колебаний могут служить: движение иглы швейной машины, качелей, маятника часов, вагона на рессорах и многих других тел.

На рисунке 52 изображены тела, которые могут совершать колебательные движения, если их вывести из положения равновесия (т. е. отклонить или сместить от линии ОО").

Рис. 52. Примеры тел, совершающих колебательные движения

В движении этих тел можно найти много различий. Например, шарик на нити (рис. 52, а) движется криволинейно, а цилиндр на резиновом шнуре (рис. 52, б) - прямолинейно; верхний конец линейки (рис. 52, в) колеблется с большим размахом, чем средняя точка струны (рис. 52, г). За одно и то же время одни тела могут совершать большее число колебаний, чем другие.

Но при всём разнообразии этих движений у них есть важная общая черта: через определённый промежуток времени движение любого тела повторяется.

Действительно, если шарик отвести от положения равновесия и отпустить, то он, пройдя через положение равновесия, отклонится в противоположную сторону, остановится, а затем вернётся к месту начала движения. За этим колебанием последует второе, третье и т. д., похожие на первое.

Повторяющимися будут и движения остальных тел, изображённых на рисунке 52.

Промежуток времени, через который движение повторяется, называется периодом колебаний. Поэтому говорят, что колебательное движение периодично.

В движении тел, изображённых на рисунке 52, кроме периодичности есть ещё одна общая черта: за промежуток времени, равный периоду колебаний, любое тело дважды проходит через положение равновесия (двигаясь в противоположных направлениях).

  • Повторяющиеся через равные промежутки времени движения, при которых тело многократно и в разных направлениях проходит положение равновесия, называются механическими колебаниями

Именно такие колебания и будут предметом нашего изучения.

На рисунке 53 изображён шарик с отверстием, надетый на гладкую стальную струну и прикреплённый к пружине (другой конец которой прикреплён к вертикальной стойке). Шарик может свободно скользить по струне, т. е. силы трения настолько малы, что не оказывают существенного влияния на его движение. Когда шарик находится в точке О (рис. 53, а), пружина не деформирована (не растянута и не сжата), поэтому никакие силы в горизонтальном направлении на него не действуют. Точка О - положение равновесия шарика.

Рис. 53. Динамика свободных колебаний горизонтального пружинного маятника

Переместим шарик в точку В (рис. 53, б). Пружина при этом растянется, и в ней возникнет сила упругости F упрB . Эта сила пропорциональна смещению (т. е. отклонению шарика от положения равновесия) и направлена противоположно ему. Значит, при смещении шарика вправо действующая на него сила направлена влево, к положению равновесия.

Если отпустить шарик, то под действием силы упругости он начнёт ускоренно перемещаться влево, к точке О. Направление силы упругости и вызванного ею ускорения будет совпадать с направлением скорости шарика, поэтому по мере приближения шарика к точке О его скорость будет всё время возрастать. При этом сила упругости с уменьшением деформации пружины будет уменьшаться (рис. 53, в).

Напомним, что любое тело обладает свойством сохранять свою скорость, если на него не действуют силы или если равнодействующая сил равна нулю. Поэтому, дойдя до положения равновесия (рис. 53, г), где сила упругости станет равна нулю, шарик не остановится, а будет продолжать двигаться влево.

При его движении от точки О к точке А пружина будет сжиматься. В ней снова возникнет сила упругости, которая и в этом случае будет направлена к положению равновесия (рис. 53, д, е). Поскольку сила упругости направлена против скорости движения шарика, то она тормозит его движение. В результате в точке А шарик остановится. Сила упругости, направленная к точке О, будет продолжать действовать, поэтому шарик вновь придёт в движение и на участке АО его скорость будет возрастать (рис. 53, е, ж, з).

Движение шарика от точки О к точке В снова приведёт к растяжению пружины, вследствие чего опять возникнет сила упругости, направленная к положению равновесия и замедляющая движение шарика до полной его остановки (рис. 53, з, и, к). Таким образом, шарик совершит одно полное колебание. При этом в каждой точке его траектории (кроме точки О) на него будет действовать сила упругости пружины, направленная к положению равновесия.

Под действием силы, возвращающей тело в положение равновесия, тело может совершать колебания как бы само по себе. Первоначально эта сила возникла благодаря тому, что мы совершили работу по растяжению пружины, сообщив ей некоторый запас энергии. За счёт этой энергии и происходили колебания.

  • Колебания, происходящие только благодаря начальному запасу энергии, называются свободными колебаниями

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними образуют систему тел, которая получила название колебательной системы. В рассмотренном примере в колебательную систему входят шарик, пружина и вертикальная стойка, к которой прикреплён левый конец пружины. В результате взаимодействия этих тел и возникает сила, возвращающая шарик к положению равновесия.

На рисунке 54 изображена колебательная система, состоящая из шарика, нити, штатива и Земли (Земля на рисунке не показана). В данном случае шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити. Их равнодействующая направлена к положению равновесия.

Рис. 54. Нитяной маятник

  • Системы тел, которые способны совершать свободные колебания, называются колебательными системами

Одно из основных общих свойств всех колебательных систем заключается в возникновении в них силы, возвращающей систему в положение устойчивого равновесия.

Колебательные системы - довольно широкое понятие, применимое к разнообразным явлениям.

Рассмотренные колебательные системы называются маятниками. Существует несколько типов маятников: нитяные (см. рис. 54), пружинные (см. рис. 53, 55) и т. д.

Рис. 55. Пружинный маятник

В общем случае

  • маятником называется твёрдое тело, совершающее под действием приложенных сил колебания около неподвижной точки или вокруг оси

Колебательное движение будем изучать на примере пружинного и нитяного маятников.

Вопросы

  1. Приведите примеры колебательных движений.
  2. Как вы понимаете утверждение о том, что колебательное движение периодично?
  3. Что называется механическими колебаниями?
  4. Пользуясь рисунком 53, объясните, почему по мере приближения шарика к точке О с любой стороны его скорость увеличивается, а по мере удаления от точки О в любую сторону скорость шарика уменьшается.
  5. Почему шарик не останавливается, дойдя до положения равновесия?
  6. Какие колебания называются свободными?
  7. Какие системы называются колебательными? Приведите примеры.

Упражнение 23


Колебания – один из самых распространенных процессов в природе и технике.

Колеблются крылья насекомых и птиц в полете, высотные здания и высоковольтные провода под действием ветра, маятник заведенных часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни.

Звук – это колебания плотности и давления воздуха, радиоволны – периодические изменения напряженностей электрического и магнитного полей, видимый свет – тоже электромагнитные колебания, только с несколько иными длиной волны и частотой.

Землетрясения – колебания почвы, приливы и отливы – изменение уровня морей и океанов, вызываемое притяжением Луны и достигающее в некоторых местностях 18 метров, биение пульса – периодические сокращения сердечной мышцы человека и т.д.

Смена бодрствования и сна, труда и отдыха, зимы и лета... Даже наше каждодневное хождение на работу и возвращение домой попадает под определение колебаний, которые трактуются как процессы, точно или приближенно повторяющиеся через равные промежутки времени.

Колебания бывают механические, электромагнитные, химические, термодинамические и различные другие. Несмотря на такое разнообразие, все они имеют между собой много общего и поэтому описываются одними и теми же уравнениями.

Свободными колебаниями называются колебания, происходящие благодаря начальному запасу энергии, приданному колеблющемуся телу.

Чтобы тело совершало свободные колебания, необходимо вывести его из состояния равновесия.

НАДО ЗНАТЬ

Специальный раздел физики – теория колебаний – занимается изучением закономерностей этих явлений. Знать их необходимо судо- и самолетостроителям, специалистам промышленности и транспорта, создателям радиотехнической и акустической аппаратуры.

Первыми учеными, изучавшими колебания, были Галилео Галилей (1564...1642) и Христиан Гюйгенс (1629...1692). (Полагают, что соотношение между длиной маятника и временем каждого качания открыл Галлилей. Однажды в церкви он наблюдал, как качалась огромная люстра, и засекал время по своему пульсу. Позже он открыл, что время, за которое происходит один взмах, зависит от длины маятника - время наполовину уменьшается, если укоротить маятник на три четверти.).
Гюйгенс изобрел первые часы с маятником (1657) и во втором издании своей монографии «Маятниковые часы» (1673) исследовал ряд проблем, связанных с движением маятника, в частности нашел центр качания физического маятника.

Большой вклад в изучение колебаний внесли многие ученые: английские – У. Томсон (лорд Кельвин) и Дж. Рэлей, русские – А.С. Попов и П.Н. Лебедев и другие


Красным цветом изображается вектор силы тяжести, синим - силы реакции, желтым - силы сопротивления, бордовым - равнодействующей силы. Для остановки маятника нажать кнопку "Стоп" в окне "Управление" или щелкнуть кнопкой мыши внутри главного окна программы. Для продолжения движения действия повторить.

Дальнейшие колебания нитяного маятника, выведенного из состояния равновесия, происходят
под действием результирующей силы, которая является суммой двух векторов: силы тяжести
и силы упругости.
Результирующая сила в данном случае называется возвращающей силой.


МАЯТНИК ФУКО В ПАРИЖСКОМ ПАНТЕОНЕ

Что доказал Жан Фуко?

Маятник Фуко служит для демонстрации вращения Земли вокруг своей оси. На длинном тросе подвешен тяжелый шар. Он качается взад-вперед над круглой площадкой с делениями.
Через какое-то время зрителям начинает казаться, что маятник качается уже над другими делениями. Кажется, что маятник повернулся, но это не так. Это повернулся вместе с Землей сам круг!

Для всех факт вращения Земли очевиден хотя бы потому, что день сменяет ночь, то есть за 24 часа совершается один полный оборот планеты вокруг своей оси. Вращение Земли можно доказать многими физическими опытами. Самым знаменитым из них был опыт, проведенный Жаном Бернаром Леоном Фуко в 1851 году в парижском Пантеоне в присутствии императора Наполеона. Под куполом здания физик подвесил металлический шар массой 28 кг на стальной проволоке длиной 67 м. Отличительной особенностью этого маятника было то, что он мог свободно качаться во всех направлениях. Под ним было сделано ограждение с радиусом 6 м, внутри которого насыпали песок, чьей поверхности касалось острие маятника. После того как маятник привели в движение, стало очевидно, что плоскость качания поворачивается относительно пола по часовой стрелке. Это следовало из того, что при каждом следующем качании острие маятника делало отметку на 3 мм дальше предыдущего. Это отклонение и объясняет то, что Земля совершает вращение вокруг своей оси.

В 1887 году принцип действия маятника был продемонстрирован и в и, в Исаакиевском соборе Петербурга. Хотя сегодня увидеть его нельзя, так как теперь он хранится в фонде музея-памятника. Сделано это было для того, чтобы восстановить первоначальную внутреннюю архитектуру собора.


СДЕЛАЙ МОДЕЛЬ МАЯТНИКА ФУКО САМ


Переверни табуретку вверх ножками и положи на концы её ножек (по диагонали) какую-нибудь рейку. А к середине её подвесь небольшой груз (например, гайку)ни нити. Заставь его качаться так, чтобы плоскость качания проходила между ножек табуретки. Теперь медленно поворачивай табуретку вокруг её вертикальной оси. Тебе станет заметно, что маятник качается уже в другом направлении. На самом деле он качается всё также, а изменение произошло из-за поворота самой табуретки, которая в этом опыте играет роль Земли.


КРУТИЛЬНЫЙ МАЯТНИК

Это маятник Максвелла, он позволяет выявить ряд интересных закономерностей движения твердого тела. К диску, насаженному на ось, привязаны нити. Если закрутить нить вокруг оси, диск поднимется. Теперь отпускаем маятник, и он начинает совершать периодическое движение: диск опускается, нить раскручивается. Дойдя до нижней точки, по инерции диск продолжает вращаться, но теперь уже закручивает нить и поднимается вверх.

Обычно крутильный маятник применяется в механических наручных часах. Колесико-балансир под действием пружины вращается то в одну, то в другую сторону. Его равномерные движения обеспечивают точность хода часов.


СДЕЛАЙ КРУТИЛЬНЫЙ МАЯТНИК САМ


Вырежьте из плотного картона небольшой круг диаметром 6 – 8 см. На одной стороне кружка нарисуйте открытую тетрадь, а на другой стороне – цифру «5». С двух сторон круга проделайте иголкой 4 отверстия и вставьте 2 прочные нити. Закрепите их, чтобы они не выскакивали, узелками. Далее стоит лишь закрутить круг на 20 – 30 оборотов и натянуть нити в стороны. В результате вращения вы увидите картинку « 5 в моей тетрадке».
Приятно?


Ртутное сердце

Небольшая капля – лужица ртути, поверхности которой в её центре касается железная проволока – игла, залита слабым водяным раствором соляной кислоты, в котором растворена соль двухромовокислого калия.. ртуть в растворе соляной кислоты получает электрический заряд и поверхностное натяжение на границе cоприкасающихся поверхностей понижается. При соприкосновении иглы с поверхностью ртути заряд уменьшается и, следовательно, меняется поверхностное натяжение. При этом капля обретает более сферическую форму. Макушка капли наползает на иглу, а затем под действием силы тяжести соскакивает с неё. Внешне явление производит впечатление вздрагивания ртути. Этот первый импульс дает толчок колебаниям, капля раскачивается и «сердце» начинает пульсировать. Ртутное «сердце» - не вечный двигатель! Со временем длина иглы уменьшается, и её вновь приходится устанавливать в соприкосновение с поверхностью ртути.

Наряду с поступательным и вращательным движением колебательное движение играет большую роль в макро- и микромире.

Различают хаотические и периодические колебания. Периодические колебания характеризуются тем, что через определенные равные промежутки времени колеблющаяся система проходит одни и те же положения. В качестве примера можно привести кардиограмму человека, представляющую собой запись колебаний электрических сигналов сердца (рис. 2.1). На кардиограмме можно выделить период колебаний, т.е. время Т одного полного колебания . Но периодичность не есть исключительная особенность колебаний, ею обладает также и вращательное движение. Наличие положения равновесия является особенностью механического колебательного движения, тогда как вращение характеризуется так называемым безразличным равновесием (хорошо сбалансированное колесо или игорная рулетка, будучи раскрученными, останавливается в любом положении равновероятно). При механических колебаниях в любом положении, кроме положения равновесия, существует сила, стремящаяся вернуть колеблющуюся систему в начальное положение т.е. возвращающая сила, всегда направленная к положению равновесия. Наличие всех трех признаков отличает механическое колебание от остальных видов движения.

Рис. 2.1.

Рассмотрим конкретные примеры механических колебаний.

Зажмем в тиски один конец стальной линейки, а другой, свободный, отведем в сторону и отпустим. Под действием сил упругости линейка будет возвращаться в исходное положение, которое является положением равновесия. Проходя через это положение (которое является положением равновесия), все точки линейки (кроме зажатой части) будут иметь определенную скорость и определенный запас кинетической энергии. По инерции колеблющаяся часть линейки пройдет положение равновесия и будет совершать работу против внутренних сил упругости за счет убыли кинетической энергии. Это приведет к возрастанию потенциальной энергии системы. Когда кинетическая энергия полностью исчерпается, потенциальная энергия достигнет максимума. Сила упругости, действующая на каждую колеблющуюся точку, также достигнет максимума и будет направлена к положению равновесия. Это описано в подразделах 1.2.5 (соотношение (1.58)), 1.4.1, а также в 1.4.4 (см. рис. 1.31) на языке потенциальных кривых. Так будет повторяться до тех пор, пока полная механическая энергия системы не перейдет во внутреннюю энергию (энергию колебаний частиц твердого тела) и не рассеется в окружающее пространство (напомним, что силы сопротивления относятся к диссипативным силам).

Таким образом, в рассматриваемом движении есть повторяемость состояний и есть силы (силы упругости), стремящиеся вернуть систему в положение равновесия. Следовательно, линейка будет совершать колебательное движение.

Другой известный всем пример - колебания маятника. Положение равновесия маятника отвечает низшему положению его центра тяжести (в этом положении потенциальная энергия, обусловленная силами тяжести, минимальна). В отклоненном положении на маятник будет действовать момент силы относительно оси вращения, стремящийся вернуть маятник в положение равновесия. В этом случае также есть все признаки колебательного движения. Понятно, что в отсутствии силы тяжести (в состоянии невесомости) не будут выполнены оговоренные выше условия: в состоянии невесомости отсутствует сила тяжести и возвращающий момент этой силы. И здесь маятник, получив толчок, будет двигаться по окружности, то есть совершать не колебательное, а вращательное движение.

Колебания могут быть не только механическими. Так, например, можно говорить о колебаниях заряда на пластинах конденсатора, соединенного параллельно с катушкой индуктивности (в колебательном контуре), или напряженности электрического поля в конденсаторе. Их изменение со временем описывается уравнением, подобным тому, что определяет механическое смещение от положения равновесия маятника. Ввиду того, что одинаковыми уравнениями можно описывать колебания самых различных физических величин, оказывается очень удобным рассмотрение колебаний безотносительно к тому, какая физическая величина колеблется. Это порождает систему аналогий, в частности, электромеханическую аналогию. Для определенности будем пока рассматривать механические колебания. Рассмотрению подлежат только периодические колебания, при которых значения изменяющихся в процессе колебаний физических величин повторяются через равные промежутки времени.

Величина, обратная периоду Т колебаний (как и времени одного полного оборота при вращении), выражает число полных колебаний, совершаемых в единицу времени, и называется частотой (это просто частота, она измеряется в герцах или с -1)

(при колебаниях так же, как при вращательном движении).

Угловая скорость связывается с введенной соотношением (2.1) частотой v формулой

измеряется в рад/с или с -1 .

Естественно начать анализ колебательных процессов с наиболее простых случаев колебательных систем с одной степенью свободы. Число степеней свободы - это число независимых переменных, необходимых для полного определения положения в пространстве всех частей данной системы . Если, например, колебания маятника (груз на нити и др.) ограничены плоскостью, в которой только и может перемещаться маятник, и если нить маятника нерастяжима, то достаточно задать только один угол отклонения нити от вертикали или только величину смещения от положения равновесия - для груза, колеблющегося вдоль одного направления на пружине, чтобы полностью определить его положение. В этом случае мы говорим, что рассматриваемая система обладает одной степенью свободы. Тот же маятник, если он может занимать любое положение на поверхности сферы, на которой лежит траектория его движения, обладает двумя степенями свободы. Возможны и трехмерные колебания, как это имеет место, например, при тепловых колебаниях атомов кристаллической решетки (см. подраздел 10.3). Для анализа процесса в реальной физической системе мы выбираем его модель, заранее ограничив исследование рядом условий.

  • Здесь и далее период колебаний будет обозначаться той же буквой, что и кинетическаяэнергия - Т (не путать!).
  • В главе 4 «Молекулярная физика» будет дано и другое определение числа степеней свободы.


Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...