Примеры обратимых и необратимых процессов в физике. Второе начало термодинамики

Обратимый и необратимый процесс - это явления, действия, происходящие в той или иной сфере, которые с давних пор изучаются многими специалистами и учеными, а в некоторых теориях даже являются основополагающими.

Термин «рынок природы»

Основной составляющей различных самостоятельно организованных систем выступает необратимость, которая проявляется в самостоятельном развитии систем и их конкретной направленности. Данные действия подразделяются на обратимые и В случае если процесс происходит вследствие хода ступени с первой на следующую, то такое действие называется необратимым. Образцом такого действия выступает самоорганизация - действие развития мира, основанное на принципах «рынка природы».

Участником данного рынка выступает совокупная природа, которая выдумывает новейшие способы действий, способы организации, подобающие равенству систем. Одним из главных свойств рынка можно считать способность сформировать такой круг обратной связи, который определит тяготение к равноправию рынка. С экономической точки зрения понятие рынок - это весьма частичный факт «рынка природы», являющийся, соответственно, естественным средством сравнения разных форм организации общества.

Рынку свойственны разные динамические действия, возникающие в самостоятельно образованных системах. Его можно считать изобретением человечества.

Классификация динамичных действий

Динамичные действия разделяются на 2 вида: эволюционные и волнообразные. К первому относятся действия, которые нельзя повторить, ко второму, соответственно, повторяющиеся действия. Многие фундаментальные науки, в том числе химия и физика, обратимые и необратимые процессы ставят во главу угла.

Эволюционными или необратимыми действиями выступают те существенные изменения, которые даже при отсутствии различных воздействий протекают в последовательном направлении. Например, постоянная тенденция увеличения населения, роста общего объема производства и т. д.

Некоторые динамические, а также термодинамически обратимые и необратимые процессы, действия применяются отнюдь не в сопоставлении со знаменитыми идеографическими и номографическими точками зрения, как может показаться.

Вся структуризация их находится в плоскостях общей теории и не имеет абсолютно ничего общего с идеографией. В идеографической точке зрения отсутствует возможность установления каких-либо закономерностей. Соответственно, в эволюционном действии такая возможность присутствует. Данное действие неповторяемо только тогда, когда оно имеет определенную направленность, не имеет возможности владеть двумя и более звеньями, находящимися в одном и том же состоянии или находящимися на одном и том же уровне.

Однако это не значит, что невозможно найти формулу, проявляющую последовательность хода от одной части к следующей. Так, знаменитая формулировка развертывающегося строя 1, 2, 4, 8, ..., 2n. Но это не означает, что факт этот сам по себе нельзя повторить в указанном месте и времени, и он не повторится, с номографической точки зрения, в другое время и в другом месте, когда наблюдаются обратимые и необратимые процессы. Энтропия как физическое действие в тепловом процессе - яркий тому пример.

Волнообразные процессы

Волнообразные (обратимые, повторимые) действия — это те действия изменений, которые в настоящий отрезок времени обладают конкретным направлением и ежемоментно изменяют его. При обратимости действие, находясь в данное мгновение в одном состоянии и спустя время изменяя его, со временем может вновь вернуться в исходное состояние. К примеру, движения перемены рыночных цен, количества безработных, процентов на капитал и прочие. Конечно, указанные экономические элементы жизни могут меняться в различных направлениях. Рассматривая данные перемены как сплошные, движение данных колебаний можно представить в варианте извилистой линии, направленность которой в разные моменты будет разной. На данной кривой с легкостью можно увидеть, что, отходя от точки, находящейся на одной высоте, через некоторый промежуток времени можно миновать точку, находящуюся на таком же уровне. Однако это будет не та же, а другая точка, стоящая на такой же высоте, что и изначальная. Она, несомненно, будет соответствовать совершенно иному мгновению и иной структуре общих экономических условий в спросе, предложении, производстве, распределении и пр. Чтобы вторая точка вполне совпала с первой, нужно, чтобы все действия колебаний экономической действительности являлись обратимыми, чтобы отсутствовала возможность двигаться вперед или назад, чтобы к ним была неприменима категория времени. Конечно, бесспорно, что таковой совершенной обратимости в экономическом бытие нет, в нем есть всего лишь единичные заведомо необратимые действия.

Все действия взаимосвязаны между собой, поэтому необходимо брать каждый ход по связи с прочими, в том числе необратимыми, так как в каждое мгновение в той или иной связи, несомненно, будет свежая система условий. Необходимо принять, что все движения экономического существования необратимы. В этом случае также необходимо было бы признать, что необратимы и все действия колебаний природы. Следовательно, вышеуказанные замечания позволяют отвергнуть мысль об абсолютной обратимости. На перечисленных же критериях основываются необратимые и обратимые химические процессы, а также действия, происходящие в физике.

Нельзя утверждать, что в действительности те и иные действия протекают независимо и раздельно. Можно признать только их различие по принципам и подчеркнуть разграничение в построении академического исследования. Для того чтобы выделить эту мысль, целесообразно говорить не о безусловно, а о сравнительно обратимых действиях в экономическом существовании. Можно сделать вывод, что в относительном смысле следует рассуждать об обратимых действиях перемен компонентов экономического бытия.

Мысли обратимых и необратимых действий, равно как и мысли динамики и статики, принадлежат естествоведению в узком значении слова. Обратимые и необратимые процессы в физике, примеры которых достаточно многообразны, имеют в этой науке существенное значение. То же касается и химии.

Связь с экономическими компонентами

Обратимый и необратимый процесс связан с экономикой. Существуют мнения о правильности переноса этих идей к экономическим. А есть мнения, что переносятся лишь термины и понятия.

Перенесение мыслей из одной науки в другую правомерно, если оно научно плодотворно, следовательно, иной выход для решения данной задачи отсутствует. Факты такого перенесения имеют место. Особенно много случаев перенесения идей из сферы общественного существования и социологии в сферу природных наук. Так, некоторые идеи и термины - сила, закон, ценность, принцип экономии - были научно плодотворны. Поэтому нельзя возражать против их правомерности. Во время Милля в экономике шли на заимствование идей динамики и статики, только возникает вопрос: «Отчего невозможно было бы увеличить круг употребления мыслей обратимых и необратимых действий?»

Приобретение определений из иных наук практически постоянно сопровождается их углублением или уточнением, а также кардинальным изменением. В этом случае передвинуты определения и точки зрения, увеличивая их, но при этом не лишая общего смысла.

Согласно вышеизложенному, невозможно говорить о полностью обратимых действиях в природе и в экономическом существовании. Здесь идет речь лишь о сравнительно обратимых действиях. Обратимый ход в чистом облике, в условном смысле, практически дан только в большем или в меньшем уровне приближения. С идеей, на которую опираются обратимые и необратимые процессы, циклы, соединено представление о вероятности или неосуществимости возобновления бывшего состояния элементов и тел или их системы. Вся разница в обоих случаях сводится к следующему. Обратимые и необратимые процессы в химии и физике имеют деяние со средством одного и того же субъекта в предметном смысле, в экономике этого нет. Когда утверждают, что качание маятника является действием обратимым, то в таком случае речь идет об одном и том же в предметном значении маятнике, однако это и не совсем правильно. Такого равенства нет в экономике.

Тезис «обратимый и необратимый процесс» в экономике необходимо рассматривать как единичный случай общего понятия.

Склонности

Когда мы рассматриваем экономическую действительность рыночного капиталистического общества и ее компоненты, у нас возникает закономерный вопрос: к каким из указанных действий изменений какие ее компоненты склонны? Практически все экономические элементы, взятые как отдельно, так и целиком, подвержены количественным и качественным переменам. Но в то время как для одних элементов, например для организации хозяйства, техники производства, потребностей и др., качественные изменения будут иметь столь же большое значение, как и количественные, для других элементов, таких как цена, учетный процент, рента и т. д., основное значение будут иметь количественные изменения. Значение качественных изменений здесь выступает преимущественно лишь тогда, когда меняется сама природа этих элементов, например, когда цена из вольной становится установленной или из рыночной — монопольной.

Выясняя впоследствии взаимоотношение экономических компонентов, их совокупности и обратимые и необратимые процессы, круговой процесс, цикл, необходимо иметь в виду следующее. Взятая целиком экономическая действительность представляет собой как бы целый поток многообразных и непрерывных количественных и качественных перемен.

Процессы в народном хозяйстве

В целостном представлении ход экономического становления видится необратимым исходя из того, что в нем присутствуют какие-либо компоненты, описывающие кривую необратимого течения изменения, по этой причине разрешено аргументировать, что ход развития народного хозяйства, протекающий во времени, не бывает намного более одного раза на одной и той же ступени.

В целом действие народного хозяйства представляется необратимым действием хода с одной ступени на другую. И потому дилемма перемен народного хозяйства — это прежде всего дилемма стадий его развития. Итак, движение развития народного хозяйства считается необратимым, отсюда следует, что без перерыва и без возврата изменяются совместные народнохозяйственные условия для хода перемен и всякого единичного компонента народного хозяйства. В абсолютном смысле ни один народно-хозяйственный элемент, анализируемый по связи со всем комплексом хозяйственных критериев, не может раскрывать обратимого хода.

Без труда можно увидеть и осознать, что простые действия конфигураций экономической сферы существенно отличаются, и что целесообразно разбить элементы хотя бы на несколько групп. Рассматриваемые аналитически в отдельности, элементы не могут быть определены к числу способных только к необратимым изменениям. Значительная совокупность экономических составляющих, прежде всего ценностных, к примеру заработная плата, товарные цены, и натуральных, таких как количество банкротств, процент безработных, обнаруживают обратимые действия конфигураций.

Разграничение процессов

Обратимые и необратимые процессы, примеры которых легко найти в экономике, неоднозначны. Конфигурации таких элементов, как размеры производства, количество населения, уровень потребностей, техники, размера товарооборота, резервы капиталов и т. д., состоят из нескольких компонентов, имеют сложное строение. Один компонент — это их общий рост, другой — темп роста. Рассматривая имеющийся фактический материал, по сути дела, можно отметить, что наклонность совместного увеличения и становления их предполагает собой необратимое движение, которое может прекратиться только под влиянием форс-мажора. С другой стороны, темп этого роста представляет собой зигзаг и наглядно является обратимым действием.

Отличие природных перемен самостоятельных составляющих хозяйственной жизни очевидно и бесспорно, и в то же время только при учете можно осознать вид динамики финансовой жизни. Присутствие составляющих, которые подвержены необратимым тенденциям, объясняет причины неповторимости народнохозяйственного движения и дает ленту непрерывного развития. Также установление элементов и их компонентов, подверженных обратимым волнообразным изменениям, дает шанс понять качания, которым подвержено общенародное хозяйство в целом и действия его развития. В конкретном виде народно-хозяйственное действие развития, естественно, едино. Однако отказ от разграничения элементарных действий классификации и изменения компонентов в связи с их связью к этим действиям означал бы, соответственно, и отказ от научного исследования определенной действительности. Указанное подтверждает термодинамически обратимые и необратимые процессы, случающиеся в природе.

Специфика развития систем

Значимой чертой развития произвольной системы считается необратимость, проявляющаяся в определенной направленности ее перемен. Эти изменения подразумевают учет обстоятельства времени в соответственной теории. Формулы могут применяться для отображения действий, случающихся как в настоящий момент времени, так и в будущий, и в прошлый.

Д. С. Милль сформулировал представление о статике и динамике действий в явном виде. Оно базировалось и указывало на обратимые и необратимые процессы, круговой процесс. Неповторимость или необратимость означает только нереальность конфигурации направленности действий в конкретный отрезок времени, что типично для обратимых действий.

Затруднительность определенной экономической действительности принуждает упрощать ее, отрываться от большинства ее связей и особенностей. С данной точки зрения, каждая экономическая концепция предоставляет только условно верное отражение соответствующей части экономической действительности.

В качестве базы анализа экономического развития обязана быть взята именно целая система формирования финансовой деятельности сообщества. Но интегративная общая теория может быть выстроена только на основе проведения исследования развития раздельных конкретных исторических видов организации экономической деятельности.

Равновесие систем

Обратимый и необратимый процесс с экономической точки зрения рассматривали многое ученые. развил идею, что равновесие на рынке сводится к взаимному приспособлению персональных планов и исполняется по типу, какой бы следом за естественными науками стали нарекать «отрицательной обратной связью».

Дефиниция применима к сложным экономическим действиям, какие Н. Кондратьев именует обратимыми. Колыхания в экономике, включающие периодические изменения, это стоимости, проценты, заработная плата, на протяжении многих лет носят повторяющийся характер. Колебания подразделяются на длинные, средние и краткосрочные.

Принцип отрицательной обратной связи показывает только, как поддерживается неожиданно появляющийся режим в системе, но не позволяет обнаружить конструкцию происхождения установленного порядка, а также перехода от одной ступени развития к другой. Для этих целей необходимо устремиться к принципу В нем передовые изменения, образующиеся в системе, усиливаются и накапливаются. Неважно какая теория подвержена неожиданным уклонам от баланса, но, если она находится в изменчивом состоянии, из-за взаимодействия с окружающей средой эти покачивания обостряются и в итоге приводят к разгону минувшего распорядка и устройства. С другой стороны, в итоге взаимодействия компоненты старой системы приходят к слаженному поведению, благодаря чему в системе появляются совместные действия и формируются новый порядок и свежее соотношение.

Возникновение совокупных действий, как и образование и прогресс новых структур, связано с фактами случайности, каковые последовательно приводят к зыбкости системы.

Рынок — это открытая система, в которой происходит беспрерывное взаимодействие между покупателями и потребителями, продавцами и производителями. На рынке царит как случайный, так и спонтанный порядок. Так, при закупке и реализации продуктов всякий индивид непринужденно руководствуется сперва полезностью и необходимостью, а не их стоимостью. В действиях рыночных отношений две стороны приходят к общему выходу, а это впоследствии приводит к появлению неожиданного порядка, проявляющегося в балансе между спросом и предложением.

Заключительный аккорд

Итак, все движения самостоятельной организации имеют определенную направленность, что фактически является их важной чертой, в том числе и рынок в экономическом смысле. Первым изучал данные вопросы Д., который дал определение обратимых и необратимых действий в экономике. Целесообразно продолжать изучать эти действия, в том числе обратимые и необратимые процессы в природе. В химии и физике это направление, как уже упоминалось, считается фундаментальным, определяя, например, такие действия, как тепловые процессы. Обратимы, необратимы ли действия и процессы, происходящие в той или иной сфере жизни, считается немаловажным фактором, который необходимо знать.

Если на равновесную систему оказать какое-либо бесконечно малое внешнее воздействие, то в системе произойдут бесконечно малые изменения, приводящие ее в новое состояние равновесия. При таких непрерывных воздействиях в системе будет протекать равновесный процесс, при котором система непрерывно проходит последовательный ряд состояний, бесконечно близких к равновесным. Характерными особенностями равновесного процесса являются:

  • 1. Двухсторонность, так как направление процесса определяется бесконечно малым воздействием на систему.
  • 2. Отсутствие каких-либо потерь - при этом система совершает максимальную работу .
  • 3. Равенство сил, действующих на систему и противодействующих со стороны системы, или точнее, бесконечно малая их разность.
  • 4. Равенство температур (точнее, бесконечно малая их разность) системы и внешней среды, если система не изолирована адиабатной оболочкой.
  • 5. Бесконечно большая длительность процесса для любого конечного изменения состояния системы из-за бесконечно малой скорости процесса.

Процесс является неравновесным, когда он протекает вследствие конечного воздействия на равновесную систему. Однажды возникнув, он будет проходить в системе до тех пор, пока в ней вновь не наступит новое положение равновесия, т.е. он является односторонним, а вследствие конечной его скорости и наличия потерь работа неравновесного процесса меньше работы равновесного процесса , протекающего для между теми же начальным и конечным состояниями.

Различия между равновесным и неравновесным процессами можно показать на примере следующего мысленного эксперимента.

Рис. 1.1.

В цилиндре с поршнем, движущимся без трения, находится газ. На поршне находится несколько гирь определенной массы, например, по 100 г каждая. В исходном состоянии температура и давление газа одинаковы с внешними температурой и давлением (точка а на рис. 1.1); система находится в равновесном состоянии. Если снять одну из гирь, давление мгновенно уменьшится, равновесие нарушается, газ расширяется до достижения нового равновесия (точка b ). Эти изменения условно можно изобразить ломаной кривой а1b . При последующем снятии гирь эти процессы повторяются, а общий путь изображается кривой a1b2c3d4e . Как видно из рисунка, система находится в равновесии только в отдельные моменты - в точках а , b , c , d , e . Вообще работа определяется как произведение действующей силы на перемещение. Работа расширения газа, т.е. на графике она будет равна площади под кривой.

Если снова нагружать гири на поршень, путь процесса изобразится ломаной линией e5d6c7b8a , а работа внешних сил, затраченная на сжатие газа, равна площади под этой кривой, т.е. она больше работы расширения. Таким образом, хотя система и вернулась в исходное состояние, во внешней среде произошли изменения за счет различия работ расширения и сжатия газа.

Описанные процессы можно повторить, уменьшив вес каждой гири (например, 50 г каждая), но сохранив общую массу неизменной. Путь прямого процесса (расширения газа) тогда можно условно изобразить ломаной a1"b"2"b3"c"4"c5"d"6"d7"e"8"e . Работа расширения (площадь под крвой) будет больше, чем в предыдущем случае. Путь обратного процесса изображается линией e9"e"10"d11"d"12"c13"c"14"b15"b"16"a , а затраченная работа меньше предыдущей, т.е. работы расширения и сжатия сближаются.

Наконец, гири можно заменить песком с той же массой и снимать или нагружать песчинку за песчинкой. В этом случае отклонения системы от равновесного состояния в любой момент будут бесконечно малыми, а путь процесса в прямом и обратном направлениях будет описываться одной и той же плавной кривой ab"bc"cd"de"e . Такой процесс является равновесным, его работа максимальна и одинакова по абсолютной величине в том и другом направлениях.

Таким образом, система, совершившая равновесный процесс, может вернуться в исходное положение, пройдя в обратном направлении те же равновесные состояния, что и в прямом процессе. Это свойство равновесного процесса называется его обратимостью . Обратимым называется процесс, при котором система может вернуться в первоначальное состояние без каких-либо изменений как в самой системе, так и во внешней среде.

Примерами практически обратимых процессов могут служить агрегатные превращения веществ (испарение и конденсация, плавление и кристаллизация и т.п.) при соответствующих температурах, кристаллизация из насыщенных растворов.

Если же в результате протекания процесса в прямом и обратном направлениях в окружающей среде или в самой системе останутся какие-либо изменения, то процесс называется необратимым . Причиной необратимости процессов является их неравновесность.

В реальных условиях в подавляющем большинстве случаев протекают необратимые процессы, так как они идут с конечной скоростью при конечных разностях между силами, действующими на систему и им противодействующими, и сопровождаются неустранимыми потерями (трение, теплопередача и т.д.). Однако, использование в термодинамике понятия об обратимых процессах является целесообразным по ряду соображений.

Во-первых, любой реальный процесс всегда можно представить протекающим в условиях, сколь угодно близких к условиям протекания обратимого процесса, т.е. обратимый процесс можно рассматривать как предельный случай реального процесса. Этим же объясняется использование таких понятий как изолированная система, идеальный газ и т.п.

Во-вторых, сравнивая любой реальный процесс с обратимым, можно в каждом конкретном случае установить возможность повышения эффективности процесса.

В-третьих, только при обратимом процессе термодинамические параметры приобретают однозначность и становятся возможными термодинамические расчеты, определяющие изменения различных свойств системы в обратимом процессе. Найденные изменения в силу независимости изменения свойств системы от пути процесса будут совпадать с изменениями свойств в необратимом процессе при совпадении исходного и конечного состояний.

Основы термодинамики

Обратимые и необратимые тепловые процессы.

Термодинамический процесс называется обратимым, если он может происходить как в прямом, так и в обратном направлении, причем если такой процесс происходит сначала в прямом, а затем в обратном направлении и система возвращается в исходное состояние, то в окружающей среде и в этой системе не происходит никаких изменений.

Всякий процесс, не удовлетворяющий этим условиям, является необратимым.

Любой равновесный процесс является обратимым. Обратимость равновесного процесса, происходящего в системе, следует из того, что ее любое промежуточное состояние есть состояние термодинамического равновесия; независимо от того идет ли процесс в прямом или в обратном направлении. Реальные процессы сопровождаются рассеянием энергии (из-за трения, теплопроводности и т.д.), которая нами не рассматривается. Обратимые процессы – это идеализация реальных процессов. Их рассмотрение важно по 2-м причинам: 1) многие процессы в природе и технике практически обратимы; 2) обратимые процессы являются наиболее экономичными; имеют максимальный термический коэффициент полезного действия, что позволяет указать пути повышения КПД реальных тепловых двигателей.

Работа газа при изменении его объема.

Работа совершается только тогда, когда изменяется объем.

Найдем в общем виде внешнюю работу, совершаемую газом при изменении его объема. Рассмотрим, например, газ, находящийся под поршнем в цилиндрическом сосуде. Если газ, расширяясь, передвигает поршень на бесконечно малое расстояние dl, то производит над ним работу

A=Fdl=pSdl=pdV, гдеS-площадь поршня,Sdl=dV-изменение объема системы. Таким образом,A=pdV.(1)

Полную работу А, совершаемую газом при изменении его объема от V1 доV2, найдем интегрированием формулы (1):A=pdV(отV1 доV2).(2)

Результат интегрирования определяется характером зависимости между давлением и объемом газа. Найденное для работы выражение (2) справедливо при любых изменениях объема твердых, жидких и газообразных тел.

П

Полная работа газа будет равна площади фигуры, ограниченной осью абсцисс, кривой и значениями V1,V2.

роизведенную при том или ином процессе работу можно изобразить графически с помощью кривой в координатахp,V.

Графически можно изображать только равновесные процессы – процессы, состоящие из последовательности равновесных состояний. Они протекают так, что изменение термодинамических параметров за конечный промежуток времени бесконечно мало. Все реальные процессы неравновесны (они протекают с конечной скоростью), но в ряде случаев их неравновесностью можно пренебречь (чем медленнее процесс протекает, тем он ближе к равновесному).

Первое начало термодинамики.

Существует 2 способа обмена энергией между телами:

    передача энергии через перенос тепла (посредством теплопередачи);

    через совершение работы.

Таким образом, можно говорить о 2-х формах передачи энергии от одних тел к другим: работе и теплоте. Энергия механического движения может превращаться в энергию теплового движения, и наоборот. При этих превращениях соблюдается закон сохранения и превращения энергии; применительно к термодинамическим процессам этим законом и является первое начало термодинамики:

∆U=Q-A или Q=∆U+A.(1)

Т.е, теплота, сообщаемая системе, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил. Это выражение в дифференциальной форме будет иметь вид Q=dU+A(2) , гдеdU- бесконечно малое изменение внутренней энергии системы,A- элементарная работа,Q– бесконечно малое количество теплоты.

Из формулы (1) следует, что в СИ количество теплоты выражается в тех же единицах, что работа и энергия, т.е. в джоулях(Дж).

Если система периодически возвращается в первоначальное состояние, то изменение ее внутренней энергии ∆U=0. Тогда, согласно 1-му началу термодинамики,A=Q,

Т.е вечный двигатель первого рода – периодически действующий двигатель, который совершал бы большую работу, чем сообщенная ему извне энергия, - невозможен (одна из формулировок 1-го начала термодинамики).

Применение 1-го начала термодинамики к изопроцессам и к адиабатическому процессу.

Среди равновесных процессов, происходящих с термодинамическими системами, выделяются изопроцессы, при которых один из основных параметров состояния сохраняется постоянным.

Изохорный процесс (V = const )

При таком процессе газ не совершает работы над внешними телами, т.е A=pdV=0.

Тогда, из 1-го начала термодинамики следует, что вся теплота, переданная телу, идет на увеличение его внутренней энергии: Q=dU. Зная, чтоdU m =C v dT.

Тогда для произвольной массы газа получим Q=dU=m\M*C v dT.

Изобарный процесс (p = const ).

При этом процессе работа газа при увеличении объема от V1 доV2 равнаA=pdV(отV1 доV2)=p(V2-V1) и определяется площадью фигуры, ограниченной осью абсцисс, кривойp=f(V) и значениямиV1,V2. Если вспомнить ур-е Менделеева-Клапейрона для выбранных нами 2-х состояний, то

pV 1 =m\M*RT 1 , pV 2 =m\M*RT 2 , откуда V 1 - V 2 = m\M*R\p(T 2 - T 1). Тогда выражение для работы изобарного расширения примет видA=m\M*R(T 2 -T 1)(1.1).

При изобарном процессе при сообщении газу массой mколичества теплоты

Q=m\M*C p dTего внутренняя энергия возрастает на величинуdU=m\M*C v dT. При этом газ совершает работу, определяемую выражением(1.1).

Изотермический процесс (T = const ).

Этот процесс описывается законом Бойля-Мариотта: pV=const.

Найдем работу изотермического расширения газа: A=pdV(отV1 доV2)=m/M*RTln(V2/V1)=m/M*RTln(p1/p2).

Т.к при Т=constвнутренняя энергия идеального газа не изменяется:dU=m/M*C v dT=0, то из 1-го начала термодинамики (Q=dU+A) следует, что для изотермического процессаQ=A, т.е все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил:Q=A=m/M*RTln(p1/p2)=m/M*RTln(V2

Следовательно, чтобы при расширении газа температура не понижалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.

Адиабатический процесс.

АП - это процесс, при котором отсутствует теплообмен (Q=0) между системой и окружающей средой. К адиабатическим можно отнести все быстропротекающие процессы. Из 1-го начала термодинамики (Q=dU+A) для адиабатического процесса следует, чтоA= -dU, т.е внешняя работа совершается за счет изменения внутренней энергии системы. Т.о,pdV= -m/M*C v dT(1).

Продифференцировав ур-е состояния для идеального газа,pV=m/M*RT, получим

PdV + Vdp=m/M*RdT.(2)

Исключим из ур-я (1) и (2) температуру T: (pdV+Vdp)/(pdV)= -R/C v = -(C p -C v)/C v .

Разделив переменные и учитывая, что C p /C v =, найдемdp/p= -dV/V.

Интегрируя это ур-е в пределах от p1 доp2 и соответственно отV1 доV2, а затем, потенцируя, придем к выражениюp2/p1=(V1/V2)  , илиp1(V1)  =p2(V2)  .Так как состояния 1 и 2 выбраны произвольно, то можно записать

pV  =const(ур-е адиабатического процесса или ур-е Пуассона).Здесь- показатель адиабаты (или коэффициент Пуассона),=(i+2)/i.

Вычислим работу, совершаемую газом в адиабатическом процессе: A= -m/M*C v dT.

Если газ адиабатически расширяется от объема V1 доV2, то его температура уменьшается отT1 доT2 и работа расширения идеального газа

A= - m/M*C v dT=m/M* C v (T1-T2).

Изохорный, изобарный, изотермический и адиабатический процессы имеют одну особенность – они происходят при постоянной теплоемкости.

Эквиваленты теплоты и работы .

Обмен энергией между термодинамической системой и внешними телами может осуществляться 2мя качественно различными способами: путем совершения работы и путем теплообмена. В отсутствии внешних полей работа совершается при изменении объема или формы системы. Работа A", совершаемая внешнми телами над системой численно равна и противоположна по знаку работе, совершаемой самой системой.

Энтропия.

Помимо внутренней энергии, которая является только функциональной составляющей термодинамической системы, в термодинамике используется еще ряд других функций, описывающих состояние термодинамической системы. Особое место среди них занимает энтропия. Пусть Q - теплота, полученная термодинамической системой в изотермическом процессе, а T - температура, при которой произошла эта передача теплоты. Величина Q/ T называется приведенной теплотой. Приведенное количество теплоты, сообщаемое термодинамической системе на бесконечно малом участке процесса будет равно dQ / T. В термодинамике доказывается, что в любом обратимом процессе сумма приведенных количеств теплоты, передаваемая системе на бесконечно малых участках процесса равна нулю. Математически это означает, что dQ/T - есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от того, каким путем перешла система в такое состояние. Функция, полученный дифференциал которой равен dS= dQ/ T - называется энтропией. Энтропия определяется только состоянием термодинамической системы и не зависит от способа перехода системы в это состояние. S - энтропия. Для обратимых процессов delta S = 0. Для необратимых delta S > 0 - неравенство Клаудио. Неравенство Клаудио справедливо только для замкнутой системы. Только в замкнутой системе процессы идут так, что энтропия возрастает. Если система незамкнута и может обмениваться теплотой с окружающей средой, ее энтропия может вести себя любым образом; dQ = T dS ; При равновестном переходе системы из одного состояния в другое dQ = dU + dA ; delta S = (интеграл 1 - 2) dQ / T = (интеграл) (dU + dA) / T. Физический смысл имеет не сама энтропия, а разность энтропий при переходе системы из одного состояния в другое.

Связь энтропии с вероятностью состояния системы .

Более глубокий смысл энтропии скрывается в статической физике. Энтропия связывается с термодинамической вероятностью состояния системы. Термодинамическая вероятность состояния системы - это число способов, которыми может быть реализовано данное состояние макроскопической системы. Иными словами W - это число микросостояний, которые реализовывают данные макросостояния.

Больцман методами статистической физики показал, что энтропия S системы и термодинамическая вероятность связаны соотношением: S= k ln (W) ; где k - постоянная Больцмана. Термодинамическая вероятность W не имеет с математической вероятностью ничего общего. Из этого соотношения видно, что энтропия может рассматриваться как мера вероятности состояния термодинамической системы, энтропия является мерой неупорядоченной системы. Чем больше число микросостояний, реализующих данное макросостояние, тем больше ее энтропия.

Второй закон термодинамики .

Количество теплоты, полученное от нагревателя, не может быть целиком преобразовано в механическую работу циклически действующей тепловой машиной. Это и есть 2ой закон: в циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от источника энергии - нагревателя. (by Кельвин Copyright 1851). Второй закон связан с необратимостью процессов в природе. Возможна другая формулировка: невозможен процесс, единственным результатом которого была бы передача энергии путем теплообмена от холодного тела к горячему. Второй закон имеет вероятный характер. В отличие от закона сохранения энергии, второй закон применим лишь к системам, состоящим из очень большого числа частиц. Для таких систем необратимость процессов объясняется тем, что обратный переход должен был бы привести систему в состояние ничтожно малой вероятностью, практически не отличимой от невозможности.

Самопроизвольные процессы в изолированной системе всегда проходят в направлении перехода от маловероятного состояния в более вероятное.

Цикл Карно .

Для создания тепловой машины недостаточно просто иметь нагретое тело (нагреватель), требуется еще 2-е тело – холодильник. Т.о, рабочее тело передает теплоту от нагревателя к холодильнику и попутно совершает полезную работу.

Вкачестве рабочего тела Сади Карно выбрал идеальный газ. Он рассмотрел следующий процесс:

Кривые 1-2, 3-4 – изотермы, кривые 2-3,4-1 – адиабаты.

На участке 1-2 газ получает теплотуQ1 от нагревателя и, расширяясь, совершает работу (т.е расходует полученноеQ1 на совершение работы).Q1=∆U+A1, ∆U=0, т.к. T=const. Q1=A1.

На участке 2-3: газ совершает работу А2, которая равна убыли внутренней энергии; температура понижается. А2= - ∆U2 (температура понижается от Т1 до Т2).

На участке 3-4 :Vуменьшается, Т2=const. Внешние силы совершают работу по сжатию газаA3:Q2= -A3,Q2=A′. От системы отводится количество теплотыQ2: |Q2|=A3.

На участке 4-1 :Vуменьшается,Tувеличивается.A’4=∆U,Q=∆U+A, 0= ∆U4 +A4 =∆U4-A’4,A’4=∆U(внешние силы совершили работу, которая пошла на увеличение внутренней энергии.

Для изотерм A=A1+A3=Q4-|Q2|.

Площадь под изотермой 3-4 меньше, чем под изотермой 1-2 |A’3|<|A1|,Q1>Q2газ получает от нагревателя больше теплоты, чем отдает холодильнику.

За полный цикл: ∆U=0, А=А1 – А’3 - ∆U2(=A2) +A’4, ∆U2=3/2*m/M*R(T2-T1).

A=Q1-|Q2| - 3/2*m/M*R(T2-T1) + (-3/2*m/M*R(T1-T2))=Q1-|Q2|.

Коэффициентом полезного действия тепловой машины называется отношение полезной работы, совершаемой за цикл, к количеству теплоты, полученной системой. Выражается в процентах. =(Q1-|Q2|)/Q1 * 100% (1), или =A/Q1 *100% (2). Эти формулы можно использовать для любой тепловой машины.

Теорема Карно: Q1/T1=|Q2|/T2 (для машины Карно).=(T1-T2)/T1 *100%.

КПД, определяемый формулами (1) и (2) – наибольший возможный. В реальных тепловых машинах КПД меньше.

2.5. Фазовые равновесия и фазовые превращения.

Фаза - это равновесное состояние вещества, отличающееся по своим физическим свойствам от других состояний того же вещества.

Переход вещества из одной фазы в другую называется фазовым переходом . При таких переходах меняются механические, тепловые, электрические и магнитные свойства вещества.

Тройная точка .

Кривые плавления и парообразования в пересекаются в точке A. Эту точку называют тройной точкой, т.к. если при давлении p тр. и температуре Tтр некоторые количества вещества в твердом, жидком и газообразном состояниях находятся в контакте, то без подведения или отвода тепла количество вещества, находящегося в каждом из 3х состояний, не изменяется

Из диаграммы состояний видно, что переход вещества при нагревании из твердого состояния в газообразное может совершиться, минуя жидкое состояние. Переход кристалл-жидкость-газ при нормальном атмосферном давлении происходит лишь у тех веществ, у которых давление в тройной точке ниже этого давления. Те же вещества, которых давление в тройной точке превышает атмосферное, в результате нагревания при атмосферном давлении не плавятся, а переходят в газообразное состояние.

Поскольку тройной точке соответствует вполне определенная температура, она может служить опорной точкой термодинамической шкалы.

Реальные газы .

При движении молекулы вдали от стенок сосуда, в котором заключен газ, на нее действуют силы притяжения соседних молекул, но равнодействующая всех этих сил в среднем равна нулю, т.к. молекулу со всех сторон окружает в среднем одинаковое число соседей. При приближении некоторой молекулы к стенке сосуда все остальные молекулы газа оказываются по одну сторону от нее и равнодействующая всех сил притяжения оказывается направленной от стенки сосуда внутрь газа. Это приводит к тому, что уменьшается импульс, передаваемый молекулой стенке сосуда. В результате давление газа на стенки сосуда уменьшается по сравнению с тем, каким оно было бы в отсутствие сил притяжения между молекулами: p = p идеального + delta p. Вместо уравнения идеального газа получаем p + delta p = nkT ; delta p = a/V(ст.2);

Где a - постоянная, зависящая от вида газа. Для одного моля газа получаем p+a/V(ст.2) = R T / V ; Поправка: при любых давлениях, объем газа не может стать равным нулю.

Уравнение Ван-дер-Ваальса :

(p + a / V (ст.2)) (V - b) = RT, где b - так называемый "запрещенный объем"

Критическая температура .

Было установлено, что из газообразного состояния в жидкое можно перевести любое вещество. Однако каждое вещество может испытать такое превращение лишь при температурах ниже определенной, так называемой критической температуры Tк. При температуре выше критической вещество не превращается в жидкость или твердое тело ни при каких давлениях. При критической температуре средняя кинетическая энергия теплового движения молекул вещества примерно равна модулю потенциальной энергии их связи в жидкости или твердом теле. Т. к. силы притяжения, действующие между молекулами разных веществ, различны, неодинакова и потенциальная энергия их связи, отсюда различными оказываются критические температуры для различных веществ.

Диаграмма состояний вещества .

Чем выше температура жидкости, тем больше плотность и давление ее пара. Геометрическим местом точек, отмечающих на диаграмме p, T равновесные состояния между жидким и газообразным состояниями вещества, является кривая AK (рисунок - график, правая часть параболы - CB выходит не из нуля, а чуть выше и правее; из точки A этой кривой, чуть дальше, выходит еще более широкая часть параболы - AK; все пространство делится на 3 части таким образом - твердое тело, жидкость и газ; оси - T и p).

Процесс испарения твердых тел называется сублимацией.

Обратимые и необратимые в термодинамическом смысле процессы. Процессы жизнедеятельности как пример необратимых процессов.

Обратимые и необратимые процессы , пути изменения состояния термодинамической системы.

Процесс называют обратимым , если он допускает возвращение рассматриваемой системы из конечного состояния в исходное через ту же последовательность промежуточных состояний, что и в прямом процессе, но проходимую в обратном порядке. При этом в исходное состояние возвращается не только система, но и среда. Обратимый процесс возможен, если и в системе, и в окружающей среде он протекает равновесно. При этом предполагается, что равновесие существует между отдельными частями рассматриваемой системы и на границе с окружающей средой. Обратимый процесс - идеализированный случай, достижимый лишь при бесконечно медленном изменении термодинамических параметров. Скорость установления равновесия должна быть больше, чем скорость рассматриваемого процесса.

Если невозможно найти способ вернуть и систему, и тела в окружающей среде в исходное состояние, процесс изменения состояния системы называют необратимым .

Необратимые процессы могут протекать самопроизвольно только в одном направлении; таковы диффузия,теплопроводность, вязкое течение и другое. Для химической реакции применяют понятия термодинамической и кинетической обратимости, которые совпадают только в непосредственной близости к состоянию равновесия На практике нередко встречаются системы, находящиеся в частичном равновесии, т.е. в равновесии по отношению к определенного рода процессам, тогда как в целом система неравновесна. Например, образец закаленной стали обладает пространственной неоднородностью и является системой, неравновесной по отношению к диффузионным процессам, однако в этом образце могут происходить равновесные циклы механической деформации, поскольку времена релаксации диффузии и деформации в твердых телах отличаются на десятки порядков. Следовательно, процессы с относительно большим временем релаксации являются кинетически заторможенными и могут не приниматься во внимание при термодинамич. анализе более быстрых процессов.

Общее заключение о необратимости процессов в природе . Переход тепла от горячего тела к холодному и механической энергии во внутреннюю - это примеры наиболее типичных необратимых процессов. Число подобных примеров можно увеличивать практически неограниченно. Все они говорят о том, что процессы в природе имеют определенную направленность, никак не отраженную в первом законетермодинамики. Все макроскопические процессы в природе протекают только в одном определенном направлении . В обратном направлении они самопроизвольно протекать не могут. Все процессы в природе необратимы, и самые трагические из них - старение и смерть организмов.
Важность этого закона в том, что из него можно вывести заключение о необратимости не только процесса теплопередачи, но и других процессов в природе. Если бы тепло в каких-либо случаях могло самопроизвольно передаваться от холодных тел к горячим, то это позволило бы сделать обратимыми и другие процессы. Все процессы самопроизвольно протекают в одном определенном направлении. Они необратимы. Тепло всегда переходит от горячего тела к холодному, а механическая энергия макроскопических тел - во внутреннюю.
Направление процессов в природе указывается вторым законом термодинамики.

Пожалуйста, её ещё хотя бы несколькими предложениями и уберите это сообщение. Если статья останется недописанной, она может быть выставлена к удалению. Для указания на продолжающуюся работу над статьёй используйте шаблон {{subst: }} .

Обратимый процесс (то есть равновесный) - термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений.

Обратимый процесс можно в любой момент заставить протекать в обратном направлении, изменив какую-либо независимую переменную на бесконечно малую величину.

Обратимые процессы дают наибольшую работу. Бо́льшую работу от системы вообще получить невозможно. Это придает обратимым процессам теоретическую важность. На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему.

Следует отметить, что термодинамическая обратимость процесса отличается от химической обратимости . Химическая обратимость характеризует направление процесса, а термодинамическая - способ его проведения.

Понятия равновесного состояния и обратимого процесса играют большую роль в термодинамике. Все количественные выводы термодинамики применимы только к равновесным состояниям и обратимым процессам. В состоянии химического равновесия скорость прямой реакции равна скорости обратной реакции!

Примеры

Выпечка пирога - необратимый процесс. Гидролиз солей - обратимый процесс.

См. также

Напишите отзыв о статье "Обратимый процесс"

Ссылки

  • socrates.berkeley.edu/~ashvinv/Phy211/lecture3.pdf
  • www.britannica.com/EBchecked/topic/500473/reversibility

Отрывок, характеризующий Обратимый процесс

– А ты думаешь как? У него от всех званий набраны.
– А ничего не знают по нашему, – с улыбкой недоумения сказал плясун. – Я ему говорю: «Чьей короны?», а он свое лопочет. Чудесный народ!
– Ведь то мудрено, братцы мои, – продолжал тот, который удивлялся их белизне, – сказывали мужики под Можайским, как стали убирать битых, где страженья то была, так ведь что, говорит, почитай месяц лежали мертвые ихние то. Что ж, говорит, лежит, говорит, ихний то, как бумага белый, чистый, ни синь пороха не пахнет.
– Что ж, от холода, что ль? – спросил один.
– Эка ты умный! От холода! Жарко ведь было. Кабы от стужи, так и наши бы тоже не протухли. А то, говорит, подойдешь к нашему, весь, говорит, прогнил в червях. Так, говорит, платками обвяжемся, да, отворотя морду, и тащим; мочи нет. А ихний, говорит, как бумага белый; ни синь пороха не пахнет.
Все помолчали.
– Должно, от пищи, – сказал фельдфебель, – господскую пищу жрали.
Никто не возражал.
– Сказывал мужик то этот, под Можайским, где страженья то была, их с десяти деревень согнали, двадцать дён возили, не свозили всех, мертвых то. Волков этих что, говорит…
– Та страженья была настоящая, – сказал старый солдат. – Только и было чем помянуть; а то всё после того… Так, только народу мученье.
– И то, дядюшка. Позавчера набежали мы, так куда те, до себя не допущают. Живо ружья покидали. На коленки. Пардон – говорит. Так, только пример один. Сказывали, самого Полиона то Платов два раза брал. Слова не знает. Возьмет возьмет: вот на те, в руках прикинется птицей, улетит, да и улетит. И убить тоже нет положенья.

Последние материалы раздела:

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...

SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение
SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко...