Распределение дискретной случайной величины математическое ожидание равно. Случайные величины

Величин.

Основные числовые характеристики случайных

Закон распределения плотностью характеризует случайную величину. Но часто он неизвестен, и приходится ограничиваться меньшими сведениями. Иногда даже выгоднее пользоваться числами, которые описывают случайную величину суммарно. Такие числа называют числовыми характеристиками случайной величины. Рассмотрим основные из них.

Определение: Математическим ожиданием М(Х) дискретной случайной величины называют сумму произведений всех возможных значений этой величины на их вероятности:

Если дискретная случайная величина Х принимает счётное множество возможных значений, то

Причем математическое ожидание существует, если данный ряд абсолютно сходится.

Из определения следует, что M(X) дискретной случайной величины есть неслучайная (постоянная) величина.

Пример: Пусть Х – число появлений события А в одном испытании, P(A) = p . Требуется найти математическое ожидание Х .

Решение: Составим табличный закон распределения Х :

X 0 1
P 1 - p p

Найдем математическое ожидание:

Таким образом, математическое ожидание числа появлений события в одном испытании равно вероятности этого события .

Происхождение термина математическое ожидание связано с начальным периодом возникновения теории вероятностей (XVI-XVIIвв.), когда область ее применения ограничивалась азартными играми. Игрока интересовало среднее значение ожидаемого выигрыша, т.е. математическое ожидание выигрыша.

Рассмотрим вероятностный смысл математического ожидания .

Пусть произведено n испытаний, в которых случайная величина Х приняла m 1 раз значение x 1 , m 2 раз значение x 2 , и так далее, и, наконец, она приняла m k раз значение x k , причём m 1 + m 2 +…+ + m k = n .

Тогда сумма всех значений, принятых случайной величиной Х , равна x 1 m 1 +x 2 m 2 +…+x k m k .

Среднее арифметическое всех значений, принятых случайной величиной Х ,равно:

так как – относительная частота значения для любого значения i = 1, …, k.

Как известно, если число испытаний n достаточно велико, то относительная частота приближённо равна вероятности появления события , следовательно,

Таким образом, .

Вывод: Математическое ожидание дискретной случайной величины приближённо равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины.

Рассмотрим основные свойства математического ожидания.

Свойство 1: Математическое ожидание постоянной величины равно самой постоянной величине:

М(С) = С.

Доказательство: Постоянную С можно рассматривать , которая имеет одно возможное значение С и принимает его с вероятностью р = 1. Следовательно, М(С) =С 1= С.



Определим произведение постоянной величины С на дискретную случайную величину Х как дискретную случайную величину СХ , возможные значения которой равны произведениям постоянной С на возможные значения Х СХ равны вероятностям соответствующих возможных значений Х :

СХ C C C
Х
Р

Свойство 2: Постоянный множитель можно выносить за знак математического ожидания:

M(CX) = CM(X).

Доказательство: Пусть случайная величина X задана законом распределения вероятностей:

X
P

Напишем закон распределения вероятностей случайной величины CX :

СX C C C
P

М(CX) = C + C = C + ) = C M(X).

Определение: Две случайные величины называются независимыми, если закон распределения одной из них не зависит от того, какие возможные значения приняла другая величина. В противном случае случайные величины зависимы.

Определение: Несколько случайных величин называются взаимно независимыми, если законы распределения любого числа из них не зависят от того, какие возможные значения приняли остальные величины.

Определим произведение независимых дискретных случайных величин X и Y как дискретную случайную величину XY , возможные значения которой равны произведениям каждого возможного значения X на каждое возможное значение Y . Вероятности возможных значений XY равны произведениям вероятностей возможных значений сомножителей.

Пусть даны распределения случайных величин X и Y:

X
P
Y
G

Тогда распределение случайной величины XY имеет вид:

XY
P

Некоторые произведения могут оказаться равными. В этом случае вероятность возможного значения произведения равна сумме соответствующих вероятностей. Например, если = , тогда вероятность значения равна

Свойство 3: Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M(XY) = M(X) M(Y).

Доказательство: Пусть независимые случайные величины X и Y заданы своими законами распределения вероятностей:

X
P
Y
G

Для упрощения выкладок ограничимся малым числом возможных значений. В общем случае доказательство аналогичное.

Составим закон распределения случайной величины XY :

XY
P

M(XY) =

M(X) M(Y).

Следствие: Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.

Доказательство: Докажем для трех взаимно независимых случайных величин X , Y , Z . Случайные величины XY и Z независимы, тогда получаем:

M(XYZ) = M(XY Z) = M(XY) M(Z) = M(X) M(Y) M(Z).

Для произвольного числа взаимно независимых случайных величин доказательство проводится методом математической индукции.

Пример: Независимые случайные величины X и Y

X 5 2
P 0,6 0,1 0,3
Y 7 9
G 0,8 0,2

Требуется найти M(XY) .

Решение: Так как случайные величины X и Y независимы, то M(XY)=M(X) M(Y)=(5 0,6+2 0,1+4 0,3) (7 0,8+9 0,2)= 4,4 7,4 = =32,56.

Определим сумму дискретных случайных величин X и Y как дискретную случайную величину X+Y , возможные значения которой равны суммам каждого возможного значения X с каждым возможным значением Y . Вероятности возможных значений X+Y для независимых случайных величин X и Y равны произведениям вероятностей слагаемых, а для зависимых случайных величин – произведениям вероятности одного слагаемого на условную вероятность второго.

Если = и вероятности этих значений соответственно равны , то вероятность (то же, что и ) равна .

Свойство 4: Математическое ожидание суммы двух случайных величин (зависимых или независимых) равно сумме математических ожиданий слагаемых:

M(X+Y) = M(X) + M(Y).

Доказательство: Пусть две случайные величины X и Y заданы следующими законами распределения:

X
P
Y
G

Для упрощения вывода ограничимся двумя возможными значениями каждой из величин. В общем случае доказательство аналогичное.

Составим все возможные значения случайной величины X+Y (предположим, для простоты, что эти значения различны; если – нет, то доказательство проводится аналогично):

X+Y
P

Найдем математическое ожидание этой величины.

M (X+Y ) = + + + +

Докажем, что + = .

Событие X = (его вероятность P(X = ) влечет за собой событие, состоящее в том, что случайная величина X + Y примет значение или (вероятность этого события, по теореме сложения, равна ) и обратно. Тогда = .

Аналогично доказываются равенства = = =

Подставляя правые части этих равенств в полученную формулу для математического ожидания, получим:

M(X + Y) = + ) = M(X) + M(Y).

Следствие: Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий слагаемых.

Доказательство: Докажем для трех случайных величин X , Y , Z . Найдем математическое ожидание случайных величин X +Y и Z :

M(X+Y+Z)=M((X+Y Z)=M(X+Y) M(Z)=M(X)+M(Y)+M(Z)

Для произвольного числа случайных величин доказательство проводится методом математической индукции.

Пример: Найти среднее значение суммы числа очков, которые могут выпасть при бросании двух игральных костей.

Решение: Пусть X – число очков, которое может выпасть на первой кости, Y – на второй. Очевидно, что случайные величины X и Y имеют одинаковые распределения. Запишем данные распределений X и Y в одну таблицу:

X 1 2 3 4 5 6
Y 1 2 3 4 5 6
P 1/6 1/6 1/6 1/6 1/6 1/6

M(X) = M(Y) (1+2+3+4+5+6) = =

M(X + Y) = 7.

Итак, среднее значение суммы числа очков, которые могут выпасть при бросании двух игральных костей равно 7 .

Теорема: Математическое ожидание M(X) числа появлений события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании: M(X) = np.

Доказательство: Пусть X – число наступлений события A в n независимых испытаниях. Очевидно, общее число X появлений события A в этих испытаниях складывается из чисел появлений события в отдельных испытаниях. Тогда, если число появлений события в первом испытании, во втором, и так далее, наконец, – число появлений события в n -ом исытании, то общее число появлений события вычисляется по формуле:

По свойству 4 математического ожидания имеем:

M(X) = M( ) + … + M( ).

Так как математическое ожидание числа появлений события в одном испытании равно вероятности события, то

M( ) = M( )= … = M( ) = p.

Следовательно, M(X) = np.

Пример: Вероятность попадания в цель при стрельбе из орудия равна p = 0,6 . Найти среднее число попаданий, если будет произведено 10 выстрелов.

Решение: Попадание при каждом выстреле не зависит от исходов других выстрелов, поэтому рассматриваемые события независимы и, следовательно, искомое математическое ожидание равно:

M(X) = np = 10 0,6 = 6.

Итак, среднее число попаданий равно 6.

Теперь рассмотрим математическое ожидание непрерывной случайной величины.

Определение: Математическим ожиданием непрерывной случайной величины X, возможные значения которой принадлежат отрезку , называют определенный интеграл:

где f(x) – плотность распределения вероятностей.

Если возможные значения непрерывной случайной величины X принадлежат всей оси Ox, то

Предполагается, что данный несобственный интеграл сходится абсолютно, т.е. сходится интеграл Если бы это требование не выполнялось, то значение интеграла зависело бы от скорости стремления (в отдельности) нижнего предела к -∞, а верхнего предела – к +∞.

Можно доказать, что все свойства математического ожидания дискретной случайной величины сохраняются и для непрерывной случайной величины . Доказательство основано на свойствах определенных и несобственных интегралов.

Очевидно, чтоматематическое ожидание M(X) больше наименьшего и меньше наибольшего из возможных значений случайной величины X . Т.е. на числовой оси возможные значения случайной величины расположены слева и справа от ее математического ожидания. В этом смысле, математическое ожидание M(X) характеризует расположение распределения, и поэтому его часто называют центром распределения .

Как уже известно, закон распределения полностью характеризует случайную величину. Однако часто закон распределения неизвестен и приходится ограничиваться меньшими сведениями. Иногда даже выгоднее пользоваться числами, которые описывают случайную величину суммарно; такие числа называют числовыми характеристиками случайной величины .

К числу важных числовых характеристик относится математическое ожидание.

Математическое ожидание приближенно равно среднему значению случайной величины.

Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности.

Если случайная величина характеризуется конечным рядом распределения:

Х х 1 х 2 х 3 х п
Р р 1 р 2 р 3 р п

то математическое ожидание М(Х) определяется по формуле:

Математическое ожидание непрерывной случайной величины определяется равенством:

где – плотность вероятности случайной величины Х .

Пример 4.7. Найти математическое ожидание числа очков, выпадающих при бросании игральной кости.

Решение:

Случайная величина Х принимает значения 1, 2, 3, 4, 5, 6. Составим закон ее распределения:

Х
Р

Тогда математическое ожидание равно:

Свойства математического ожидания:

1. Математическое ожидание постоянной величины равно самой постоянной:

М (С) = С.

2. Постоянный множитель можно выносить за знак математического ожидания:

М (СХ) = СМ (X).

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M(XY) = M(X)M(Y).

Пример 4.8 . Независимые случайные величины X и Y заданы следующими законами распределения:

Х Y
Р 0,6 0,1 0,3 Р 0,8 0,2

Найти математическое ожидание случайной величины XY.

Решение .

Найдем математические ожидания каждой из данных величин:

Случайные величины X и Y независимые, поэтому искомое математическое ожидание:

M(XY) = M(X)M(Y)=

Следствие. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.

4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых:

М (X + Y) = М (X) + М (Y).

Следствие. Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий слагаемых.

Пример 4.9. Производится 3 выстрела с вероятностями попадания в цель, равными р 1 = 0,4; p 2 = 0,3 и р 3 = 0,6. Найти математическое ожидание общего числа попаданий.

Решение.

Число попаданий при первом выстреле есть случайная величина Х 1 , которая может принимать только два значения: 1 (попадание) с вероятностью р 1 = 0,4 и 0 (промах) с вероятностью q 1 = 1 – 0,4 = 0,6.

Математическое ожидание числа попаданий при первом выстреле равно вероятности попадания:

Аналогично найдем математические ожидания числа попаданий при втором и третьем выстрелах:

М(Х 2) = 0,3 и М(Х 3)= 0,6.

Общее число попаданий есть также случайная величина, состоящая из суммы попаданий в каждом из трех выстрелов:

Х = Х 1 + Х 2 + Х 3 .

Искомое математическое ожидание Х находим по теореме о математическом, ожидании суммы.

Характеристики ДСВ и их свойства. Математическое ожидание, дисперсия, СКО

Закон распределения полностью характеризует случайную величину. Однако, когда невозможно найти закон распределения, или этого не требуется, можно ограничиться нахождением значений, называемых числовыми характеристиками случайной величины. Эти величины определяют некоторое среднее значение, вокруг которого группируются значения случайной величины, и степень их разбросанности вокруг этого среднего значения.

Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных значений случайной величины на их вероятности.

Математическое ожидание существует, если ряд, стоящий в правой части равенства, сходится абсолютно.

С точки зрения вероятности можно сказать, что математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины.

Пример. Известен закон распределения дискретной случайной величины. Найти математическое ожидание.

X
p 0.2 0.3 0.1 0.4

Решение:

9.2 Свойства математического ожидания

1. Математическое ожидание постоянной величины равно самой постоянной.

2. Постоянный множитель можно выносить за знак математического ожидания.

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Это свойство справедливо для произвольного числа случайных величин.

4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых.

Это свойство также справедливо для произвольного числа случайных величин.

Пусть производится n независимых испытаний, вероятность появления события А в которых равна р.

Теорема. Математическое ожидание М(Х) числа появления события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.

Пример. Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: M(Х)=3, M(Y)=2, Z=2X+3Y.

Решение:

9.3 Дисперсия дискретной случайной величины

Однако, математическое ожидание не может полностью характеризовать случайный процесс. Кроме математического ожидания надо ввести величину, которая характеризует отклонение значений случайной величины от математического ожидания.

Это отклонение равно разности между случайной величиной и ее математическим ожиданием. При этом математическое ожидание отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль.



Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

На практике подобный способ вычисления дисперсии неудобен, т.к. приводит при большом количестве значений случайной величины к громоздким вычислениям.

Поэтому применяется другой способ.

Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания .

Доказательство. С учетом того, что математическое ожидание М(Х) и квадрат математического ожидания М 2 (Х) – величины постоянные, можно записать:

Пример. Найти дисперсию дискретной случайной величины заданной законом распределения.

Х
Х 2
р 0.2 0.3 0.1 0.4

Решение: .

9.4 Свойства дисперсии

1. Дисперсия постоянной величины равна нулю. .

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат. .

3. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин. .

4. Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин. .

Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятности появления и непоявления события в каждом испытании.

9.5 Среднее квадратическое отклонение дискретной случайной величины

Средним квадратическим отклонением случайной величины Х называется квадратный корень из дисперсии.

Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин.

Решение:

6.1.2 Свойства математического ожидания

1. Математическое ожидание постоянной величины равно самой постоянной.

2. Постоянный множитель можно выносить за знак математического ожидания.

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Это свойство справедливо для произвольного числа случайных величин.

4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых.

Это свойство также справедливо для произвольного числа случайных величин.

Пример: M(X) = 5, M(Y) = 2. Найти математическое ожидание случайной величины Z , применив свойства математического ожидания, если известно, что Z=2X + 3Y .

Решение: M(Z) = M(2X + 3Y) = M(2X) + M(3Y) = 2M(X) + 3M(Y) = 2∙5+3∙2 =

1) математическое ожидание суммы равно сумме математических ожиданий

2) постоянный множитель можно вынести за знак математического ожидания

Пусть производится n независимых испытаний, вероятность появления события А в которых равна р. Тогда имеет место следующая теорема:

Теорема. Математическое ожидание М(Х) числа появления события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.

6.1.3 Дисперсия дискретной случайной величины

Математическое ожидание не может полностью характеризовать случайный процесс. Кроме математического ожидания надо ввести величину, которая характеризует отклонение значений случайной величины от математического ожидания.

Это отклонение равно разности между случайной величиной и ее математическим ожиданием. При этом математическое ожидание отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль.

Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

На практике подобный способ вычисления дисперсии неудобен, т.к. приводит при большом количестве значений случайной величины к громоздким вычислениям.

Поэтому применяется другой способ.

Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания .

Доказательство. С учетом того, что математическое ожидание М(Х) и квадрат математического ожидания М 2 (Х) – величины постоянные, можно записать:

Пример. Найти дисперсию дискретной случайной величины заданной законом распределения.

Х
Х 2
р 0.2 0.3 0.1 0.4

Решение: .

6.1.4 Свойства дисперсии

1. Дисперсия постоянной величины равна нулю. .

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат. .

3. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин. .

4. Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин. .

Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятности появления и непоявления события в каждом испытании.

Пример: Найти дисперсию ДСВ Х – числа появлений события А в 2-х независимых испытаниях, если вероятность появления события в этих испытаниях одинаковы и известно, что M(X) = 1,2.

Применим теорему из п. 6.1.2:

M(X) = np

M(X) = 1,2; n = 2. Найдём p :

1,2 = 2∙p

p = 1,2/2

q = 1 – p = 1 – 0,6 = 0,4

Найдём дисперсию по формуле :

D(X) = 2∙0,6∙0,4 = 0,48

6.1.5 Среднее квадратическое отклонение дискретной случайной величины

Средним квадратическим отклонением случайной величины Х называется квадратный корень из дисперсии.

(25)

Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин.

6.1.6 Мода и медиана дискретной случайной величины

Модой M o ДСВ называется наиболее вероятное значение случайной величины (т.е. значение, которое имеет наибольшую вероятность)

Медианой M e ДСВ называется значение случайной величины, которое делит ряд распределения пополам. Если число значений случайной величины чётное, то медиана находится как среднее арифметическое двух средних значений.

Пример: Найти моду и медиану ДСВ Х :

X
p 0.2 0.3 0.1 0.4

M e = = 5,5

Ход работы

1. Ознакомиться с теоретической частью данной работы (лекции, учебник).

2. Выполнить задание по своему варианту.

3. Составить отчет по работе.

4. Защитить работу.

2. Цель работы.

3. Ход работы.

4. Решение своего варианта.


6.4 Варианты заданий для самостоятельной работы

Вариант №1

1. Найти математическое ожидание, дисперсию, среднее квадратическое отклонение, моду и медиану ДСВ X, заданной законом распределения.

X
P 0.1 0.6 0.2 0.1

2. Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: M(Х)=6, M(Y)=4, Z=5X+3Y.

3. Найти дисперсию ДСВ Х – числа появлений события А в двух независимых испытаниях, если вероятности появления событий в этих испытаниях одинаковы и известно, что М (Х) = 1.

4. Дан перечень возможных значений дискретной случайной величины Х : x 1 = 1, x 2 = 2, x 3 = 5, а также известны математические ожидания этой величины и её квадрата: , . Найти вероятности , , , соответствующие возможным значениям , , и составить закон распределения ДСВ.

Вариант №2

X
P 0.3 0.1 0.2 0.4

2. Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: M(Х)=5, M(Y)=8, Z=6X+2Y.

3. Найти дисперсию ДСВ Х – числа появлений события А в трёх независимых испытаниях, если вероятности появления событий в этих испытаниях одинаковы и известно, что М (Х) = 0,9.

4. Дан перечень возможных значений дискретной случайной величины Х: x 1 = 1, x 2 = 2, x 3 = 4, x 4 = 10, а также известны математические ожидания этой величины и её квадрата: , . Найти вероятности , , , соответствующие возможным значениям , , и составить закон распределения ДСВ.

Вариант №3

1. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение ДСВ X, заданной законом распределения.

X
P 0.5 0.1 0.2 0.3

2. Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: M(Х)=3, M(Y)=4, Z=4X+2Y.

3. Найти дисперсию ДСВ Х – числа появлений события А в четырёх независимых испытаниях, если вероятности появления событий в этих испытаниях одинаковы и известно, что М (х) = 1,2.

Основные числовые характеристики дискретных и непрерывных случайных величин: математическое ожидание, дисперсия и среднее квадратическое отклонение. Их свойства и примеры.

Закон распределения (функция распределения и ряд распределения или плотность веро-ятности) полностью описывают поведение случайной величины. Но в ряде задач доста-точно знать некоторые числовые характеристики исследуемой величины (например, ее среднее значение и возможное отклонение от него), чтобы ответить на поставленный во-прос. Рассмотрим основные числовые характеристики дискретных случайных величин.

Определение 7.1. Математическим ожиданием дискретной случайной величины называ-ется сумма произведений ее возможных значений на соответствующие им вероятности:

М (Х ) = х 1 р 1 + х 2 р 2 + … + х п р п. (7.1)

Если число возможных значений случайной величины бесконечно, то , если полученный ряд сходится абсолютно.

Замечание 1. Математическое ожидание называют иногда взвешенным средним , так как оно приближенно равно среднему арифметическому наблюдаемых значений случайной величины при большом числе опытов.

Замечание 2. Из определения математического ожидания следует, что его значение не меньше наименьшего возможного значения случайной величины и не больше наибольше-го.

Замечание 3. Математическое ожидание дискретной случайной величины есть неслучай-ная (постоянная) величина. В дальнейшем увидим, что это же справедливо и для непре-рывных случайных величин.

Пример 1. Найдем математическое ожидание случайной величины Х - числа стандартных деталей среди трех, отобранных из партии в 10 деталей, среди которых 2 бракованных. Составим ряд распределения для Х . Из условия задачи следует, что Х может принимать значения 1, 2, 3. Тогда

Пример 2. Определим математическое ожидание случайной величины Х - числа бросков монеты до первого появления герба. Эта величина может принимать бесконечное число значений (множество возможных значений есть множество натуральных чисел). Ряд ее распределения имеет вид:

Х п
р 0,5 (0,5) 2 (0,5) п

+ (при вычислении дважды использовалась формула суммы бесконечно убывающей геометрической прогрессии: , откуда ).

Свойства математического ожидания.

1) Математическое ожидание постоянной равно самой постоянной:

М (С ) = С. (7.2)

Доказательство. Если рассматривать С как дискретную случайную величину, принимающую только одно значение С с вероятностью р = 1, то М (С ) = С ?1 = С .

2) Постоянный множитель можно выносит за знак математического ожидания:

М (СХ ) = С М (Х ). (7.3)

Доказательство. Если случайная величина Х задана рядом распределения


Тогда М (СХ ) = Сх 1 р 1 + Сх 2 р 2 + … + Сх п р п = С ( х 1 р 1 + х 2 р 2 + … + х п р п ) = СМ (Х ).

Определение 7.2. Две случайные величины называются независимыми , если закон распределения одной из них не зависит от того, какие значения приняла другая. В противном случае случайные величины зависимы .

Определение 7.3. Назовем произведением независимых случайных величин Х и Y случайную величину XY , возможные значения которой равны произведениям всех возможных значений Х на все возможные значения Y , а соответствующие им вероят-ности равны произведениям вероятностей сомножителей.

3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M (XY ) = M (X )M (Y ). (7.4)

Доказательство. Для упрощения вычислений ограничимся случаем, когда Х и Y принимают только по два возможных значения:

Следовательно, M (XY ) = x 1 y 1 ?p 1 g 1 + x 2 y 1 ?p 2 g 1 + x 1 y 2 ?p 1 g 2 + x 2 y 2 ?p 2 g 2 = y 1 g 1 (x 1 p 1 + x 2 p 2) + + y 2 g 2 (x 1 p 1 + x 2 p 2) = (y 1 g 1 + y 2 g 2) (x 1 p 1 + x 2 p 2) = M (X )?M (Y ).

Замечание 1. Аналогично можно доказать это свойство для большего количества возможных значений сомножителей.

Замечание 2. Свойство 3 справедливо для произведения любого числа независимых случайных величин, что доказывается методом математической индукции.

Определение 7.4. Определим сумму случайных величин Х и Y как случайную величину Х + Y , возможные значения которой равны суммам каждого возможного значения Х с каждым возможным значением Y ; вероятности таких сумм равны произведениям вероятностей слагаемых (для зависимых случайных величин - произведениям вероятности одного слагаемого на условную вероятность второго).

4) Математическое ожидание суммы двух случайных величин (зависимых или незави-симых) равно сумме математических ожиданий слагаемых:

M (X + Y ) = M (X ) + M (Y ). (7.5)

Доказательство.

Вновь рассмотрим случайные величины, заданные рядами распределения, приведен-ными при доказательстве свойства 3. Тогда возможными значениями X + Y являются х 1 + у 1 , х 1 + у 2 , х 2 + у 1 , х 2 + у 2 . Обозначим их вероятности соответственно как р 11 , р 12 , р 21 и р 22 . Найдем М (Х +Y ) = (x 1 + y 1)p 11 + (x 1 + y 2)p 12 + (x 2 + y 1)p 21 + (x 2 + y 2)p 22 =

= x 1 (p 11 + p 12) + x 2 (p 21 + p 22) + y 1 (p 11 + p 21) + y 2 (p 12 + p 22).

Докажем, что р 11 + р 22 = р 1 . Действительно, событие, состоящее в том, что X + Y примет значения х 1 + у 1 или х 1 + у 2 и вероятность которого равна р 11 + р 22 , совпадает с событием, заключающемся в том, что Х = х 1 (его вероятность - р 1). Аналогично дока-зывается, что p 21 + p 22 = р 2 , p 11 + p 21 = g 1 , p 12 + p 22 = g 2 . Значит,

M (X + Y ) = x 1 p 1 + x 2 p 2 + y 1 g 1 + y 2 g 2 = M (X ) + M (Y ).

Замечание . Из свойства 4 следует, что сумма любого числа случайных величин равна сумме математических ожиданий слагаемых.

Пример. Найти математическое ожидание суммы числа очков, выпавших при броске пяти игральных костей.

Найдем математическое ожидание числа очков, выпавших при броске одной кости:

М (Х 1) = (1 + 2 + 3 + 4 + 5 + 6)Тому же числу равно математическое ожидание числа очков, выпавших на любой кости. Следовательно, по свойству 4 М (Х )=

Дисперсия .

Для того, чтобы иметь представление о поведении случайной величины, недостаточно знать только ее математическое ожидание. Рассмотрим две случайные величины: Х и Y , заданные рядами распределения вида

Х
р 0,1 0,8 0,1
Y
p 0,5 0,5

Найдем М (Х ) = 49?0,1 + 50?0,8 + 51?0,1 = 50, М (Y ) = 0?0,5 + 100?0,5 = 50. Как видно, мате-матические ожидания обеих величин равны, но если для Х М (Х ) хорошо описывает пове-дение случайной величины, являясь ее наиболее вероятным возможным значением (при-чем остальные значения ненамного отличаются от 50), то значения Y существенно отсто-ят от М (Y ). Следовательно, наряду с математическим ожиданием желательно знать, на-сколько значения случайной величины отклоняются от него. Для характеристики этого показателя служит дисперсия.

Определение 7.5. Дисперсией (рассеянием) случайной величины называется математическое ожидание квадрата ее отклонения от ее математического ожидания:

D (X ) = M (X - M (X ))². (7.6)

Найдем дисперсию случайной величины Х (числа стандартных деталей среди отобранных) в примере 1 данной лекции. Вычислим значения квадрата отклонения каждого возможно-го значения от математического ожидания:

(1 - 2,4) 2 = 1,96; (2 - 2,4) 2 = 0,16; (3 - 2,4) 2 = 0,36. Следовательно,

Замечание 1. В определении дисперсии оценивается не само отклонение от среднего, а его квадрат. Это сделано для того, чтобы отклонения разных знаков не компенсировали друг друга.

Замечание 2. Из определения дисперсии следует, что эта величина принимает только неотрицательные значения.

Замечание 3. Существует более удобная для расчетов формула для вычисления дисперсии, справедливость которой доказывается в следующей теореме:

Теорема 7.1. D (X ) = M (X ²) - M ²(X ). (7.7)

Доказательство.

Используя то, что М (Х ) - постоянная величина, и свойства математического ожидания, преобразуем формулу (7.6) к виду:

D (X ) = M (X - M (X ))² = M (X ² - 2X?M (X ) + M ²(X )) = M (X ²) - 2M (X )?M (X ) + M ²(X ) =

= M (X ²) - 2M ²(X ) + M ²(X ) = M (X ²) - M ²(X ), что и требовалось доказать.

Пример. Вычислим дисперсии случайных величин Х и Y , рассмотренных в начале этого раздела. М (Х ) = (49 2 ?0,1 + 50 2 ?0,8 + 51 2 ?0,1) - 50 2 = 2500,2 - 2500 = 0,2.

М (Y ) = (0 2 ?0,5 + 100²?0,5) - 50² = 5000 - 2500 = 2500. Итак, дисперсия второй случайной величины в несколько тысяч раз больше дисперсии первой. Таким образом, даже не зная законов распределения этих величин, по известным значениям дисперсии мы можем утверждать, что Х мало отклоняется от своего математического ожидания, в то время как для Y это отклонение весьма существенно.

Свойства дисперсии.

1) Дисперсия постоянной величины С равна нулю:

D (C ) = 0. (7.8)

Доказательство. D (C ) = M ((C - M (C ))²) = M ((C - C )²) = M (0) = 0.

2) Постоянный множитель можно выносить за знак дисперсии, возведя его в квадрат:

D (CX ) = C ²D (X ). (7.9)

Доказательство. D (CX ) = M ((CX - M (CX ))²) = M ((CX - CM (X ))²) = M (C ²(X - M (X ))²) =

= C ²D (X ).

3) Дисперсия суммы двух независимых случайных величин равна сумме их дисперсий:

D (X + Y ) = D (X ) + D (Y ). (7.10)

Доказательство. D (X + Y ) = M (X ² + 2XY + Y ²) - (M (X ) + M (Y ))² = M (X ²) + 2M (X )M (Y ) +

+ M (Y ²) - M ²(X ) - 2M (X )M (Y ) - M ²(Y ) = (M (X ²) - M ²(X )) + (M (Y ²) - M ²(Y )) = D (X ) + D (Y ).

Следствие 1. Дисперсия суммы нескольких взаимно независимых случайных величин равна сумме их дисперсий.

Следствие 2. Дисперсия суммы постоянной и случайной величин равна дисперсии случайной величины.

4) Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:

D (X - Y ) = D (X ) + D (Y ). (7.11)

Доказательство. D (X - Y ) = D (X ) + D (-Y ) = D (X ) + (-1)²D (Y ) = D (X ) + D (X ).

Дисперсия дает среднее значение квадрата отклонения случайной величины от среднего; для оценки самого отклонения служит величина, называемая средним квадратическим отклонением.

Определение 7.6. Средним квадратическим отклонением σ случайной величины Х называется квадратный корень из дисперсии:

Пример. В предыдущем примере средние квадратические отклонения Х и Y равны соответственно



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...