Решение однородного дифференциального уравнения 1 порядка. Что ещё можно изучить для лучшего понимания? Однородные уравнения


В некоторых задачах физики непосредственную связь между величинами, описывающими процесс, установить не удается. Но существует возможность получить равенство, содержащее производные исследуемых функций. Так возникают дифференциальные уравнения и потребность их решения для нахождения неизвестной функции.

Эта статья предназначена тем, кто столкнулся с задачей решения дифференциального уравнения, в котором неизвестная функция является функцией одной переменной. Теория построена так, что с нулевым представлением о дифференциальных уравнениях, вы сможете справиться со своей задачей.

Каждому виду дифференциальных уравнений поставлен в соответствие метод решения с подробными пояснениями и решениями характерных примеров и задач. Вам остается лишь определить вид дифференциального уравнения Вашей задачи, найти подобный разобранный пример и провести аналогичные действия.

Для успешного решения дифференциальных уравнений с Вашей стороны также потребуется умение находить множества первообразных (неопределенные интегралы) различных функций. При необходимости рекомендуем обращаться к разделу .

Сначала рассмотрим виды обыкновенных дифференциальных уравнений первого порядка, которые могут быть разрешены относительно производной, далее перейдем к ОДУ второго порядка, следом остановимся на уравнениях высших порядков и закончим системами дифференциальных уравнений.

Напомним, что , если y является функцией аргумента x .

Дифференциальные уравнения первого порядка.

    Простейшие дифференциальные уравнения первого порядка вида .

    Запишем несколько примеров таких ДУ .

    Дифференциальные уравнения можно разрешить относительно производной, произведя деление обеих частей равенства на f(x) . В этом случае приходим к уравнению , которое будет эквивалентно исходному при f(x) ≠ 0 . Примерами таких ОДУ являются .

    Если существуют значения аргумента x , при которых функции f(x) и g(x) одновременно обращаются в ноль, то появляются дополнительные решения. Дополнительными решениями уравнения при данных x являются любые функции, определенные для этих значений аргумента. В качестве примеров таких дифференциальных уравнений можно привести .

Дифференциальные уравнения второго порядка.

    Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    ЛОДУ с постоянными коэффициентами является очень распространенным видом дифференциальных уравнений. Их решение не представляет особой сложности. Сначала отыскиваются корни характеристического уравнения . При различных p и q возможны три случая: корни характеристического уравнения могут быть действительными и различающимися , действительными и совпадающими или комплексно сопряженными . В зависимости от значений корней характеристического уравнения, записывается общее решение дифференциального уравнения как , или , или соответственно.

    Для примера рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами . Корнями его характеристического уравнения являются k 1 = -3 и k 2 = 0 . Корни действительные и различные, следовательно, общее решение ЛОДУ с постоянными коэффициентами имеет вид

    Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Общее решение ЛНДУ второго порядка с постоянными коэффициентами y ищется в виде суммы общего решения соответствующего ЛОДУ и частного решения исходного неоднородного уравнения, то есть, . Нахождению общего решения однородного дифференциального уравнения с постоянными коэффициентами , посвящен предыдущий пункт. А частное решение определяется либо методом неопределенных коэффициентов при определенном виде функции f(x) , стоящей в правой части исходного уравнения, либо методом вариации произвольных постоянных.

    В качестве примеров ЛНДУ второго порядка с постоянными коэффициентами приведем

    Разобраться в теории и ознакомиться с подробными решениями примеров мы Вам предлагаем на странице линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами .

    Линейные однородные дифференциальные уравнения (ЛОДУ) и линейные неоднородные дифференциальные уравнения (ЛНДУ) второго порядка .

    Частным случаем дифференциальных уравнений этого вида являются ЛОДУ и ЛНДУ с постоянными коэффициентами.

    Общее решение ЛОДУ на некотором отрезке представляется линейной комбинацией двух линейно независимых частных решений y 1 и y 2 этого уравнения, то есть, .

    Главная сложность заключается именно в нахождении линейно независимых частных решений дифференциального уравнения этого типа. Обычно, частные решения выбираются из следующих систем линейно независимых функций:

    Однако, далеко не всегда частные решения представляются в таком виде.

    Примером ЛОДУ является .

    Общее решение ЛНДУ ищется в виде , где - общее решение соответствующего ЛОДУ, а - частное решение исходного дифференциального уравнения. О нахождении мы только что говорили, а можно определить, пользуясь методом вариации произвольных постоянных.

    В качестве примера ЛНДУ можно привести .

Дифференциальные уравнения высших порядков.

    Дифференциальные уравнения, допускающие понижение порядка.

    Порядок дифференциального уравнения , которое не содержит искомой функции и ее производных до k-1 порядка, может быть понижен до n-k заменой .

    В этом случае , и исходное дифференциальное уравнение сведется к . После нахождения его решения p(x) останется вернуться к замене и определить неизвестную функцию y .

    Например, дифференциальное уравнение после замены станет уравнением с разделяющимися переменными , и его порядок с третьего понизится до первого.

В настоящее время по базовому уровню изучения математики на изучение математики в старших классах предусмотрено всего 4 часа (2 часа алгебры, 2 часа геометрии). В сельских малокомплектных школах стараются увеличить количество часов за счет школьного компонента. Но если класс гуманитарный, то школьный компонент добавляется на изучение предметов гуманитарного направления. В маленьком селе зачастую школьнику выбирать не приходится, он учится в том классе; какой имеется в школе. Становиться же юристом, историком или журналистом (бывают такие случаи) не собирается, а хочет стать инженером или экономистом, поэтому ЕГЭ по математике должен сдать на высокие балы. При таких обстоятельствах, учителю математики приходится находить свой выход из создавшейся ситуации, к тому же по учебнику Колмогорова изучение темы «однородные уравнения» не предусмотрено. В прошлые годы для введения данной темы и закрепления мне требовалось два сдвоенных урока. К сожалению, проверка образовательного надзора у нас запретила сдвоенные уроки в школе, поэтому количество упражнений пришлось сократить до 45 минут, и соответственно уровень сложности упражнений понизить до среднего. Предлагаю вашему вниманию план-конспект урока по данной теме в 10 классе с базовым уровнем изучения математики в сельской мало комплектной школе.

Тип урока : традиционный.

Цель : научиться решать типичные однородные уравнения.

Задачи :

Познавательные :

Развивающие :

Воспитательные :

  • Воспитание трудолюбия через терпеливое выполнение заданий, чувства товарищества через работу в парах и группах.

Ход урока

I. Организационный этап (3 мин.)

II. Проверка знаний, необходимых для усвоения нового материала (10 мин.)

Выявить основные затруднения с дальнейшим разбором выполненных заданий. Ребята выполняют по выбору 3 варианта. Задания, дифференцированные по степени сложности и по уровню подготовленности ребят, с последующим объяснением у доски.

1 уровень . Решите уравнения:

  1. 3(х+4)=12,
  2. 2(х-15)=2х-30
  3. 5(2-х)=-3х-2(х+5)
  4. x 2 -10х+21=0 Ответы: 7;3

2 уровень . Решите простейшие тригонометрические уравнения и биквадратное уравнение:

ответы:

б) x 4 -13x 3 +36=0 Ответы: -2; 2; -3; 3

3 уровень. Решение уравнений методом замены переменных:

б) x 6 -9x 3 +8=0 Ответы:

III. Сообщение темы, установка целей и задач.

Тема: Однородные уравнения

Цель : научиться решать типичные однородные уравнения

Задачи :

Познавательные :

  • познакомиться с однородными уравнениями, научиться решать наиболее часто встречаемые виды таких уравнений.

Развивающие :

  • Развитие аналитического мышления.
  • Развитие математических навыков: научиться выделять основные признаки, по которым однородные уравнения отличаются от других уравнений, уметь устанавливать сходство однородных уравнений в их различных проявлениях.

IV. Усвоение новых знаний (15 мин.)

1. Лекционный момент.

Определение 1 (Записываем в тетрадь). Уравнение вида P(x;y)=0 называется однородным, если P(x;y) однородный многочлен.

Многочлен от двух переменных х и у называют однородным, если степень каждого его члена равна одному и тому же числу к.

Определение 2 (Просто ознакомление). Уравнения вида

называют однородным уравнением степени n относительно u(x) и v(x). Поделив обе части уравнения на (v(x))n, можно с помощью замены получить уравнение

Что позволяет упростить исходное уравнение. Случай v(x)=0 необходимо рассмотреть отдельно, так как на 0 делить нельзя.

2. Примеры однородных уравнений:

Поясните: почему они однородные, приведите свои примеры таких уравнений.

3. Задание на определение однородных уравнений:

Среди заданных уравнений определить однородные уравнения и объяснить свой выбор:

После того как объяснили свой выбор на одном из примеров показать способ решения однородного уравнения:

4. Решить самостоятельно:

Ответ:

б) 2sin x – 3 cos x =0

Разделим обе части уравнения на cos x, получим 2 tg x -3=0, tg x=⅔ , x=arctg⅔ +

5. Показать решение примера из брошюры «П.В. Чулков. Уравнения и неравенства в школьном курсе математики. Москва Педагогический университет «Первое сентября» 2006 стр.22». Как один из возможных примеров ЕГЭ уровня С.

V . Решить для закрепления по учебнику Башмакова

стр 183 № 59 (1,5) или по учебнику под редакцией Колмогорова: стр81 №169 (а, в)

ответы:

VI . Проверочная, самостоятельная работа (7 мин.)

1 вариант 2 вариант
Решить уравнения:
а) sin 2 x-5sinxcosx+6cos 2 x=0 а) 3sin 2 x+2sin x cos x-2cos 2 x=0

б) cos 2 -3sin 2 =0

б)

Ответы к заданиям:

1 вариант а) Ответ: arctg2+πn,n € Z; б) Ответ: ±π/2+ 3πn,n € Z; в)

2 вариант а) Ответ: arctg(-1±31/2)+πn,n € Z; б) Ответ: -arctg3+πn, 0,25π+πk, ; в) (-5;-2); (5;2)

VII . Домашнее задание

№169 по Колмогорову, №59 по Башмакову.

2) 3sin 2 x+2sin x cos x =2 Указание: в правой части использовать основное тригонометрическое тождество 2(sin 2 x + cos 2 x)

Ответ: arctg(-1±√3) +πn ,

Использованная литература:

  1. П.В. Чулков. Уравнения и неравенства в школьном курсе математики. – М.: Педагогический университет «Первое сентября», 2006. стр. 22
  2. А. Мерзляк, В. Полонский, Е. Рабинович, М. Якир. Тригонометрия. – М.: «АСТ-ПРЕСС», 1998, стр. 389
  3. Алгебра для 8 класса под редакцией Н.Я. Виленкина. – М.: «Просвещение», 1997.
  4. Алгебра для 9 класса под редакцией Н.Я. Виленкина. Москва «Просвещение», 2001.
  5. М.И. Башмаков. Алгебра и начала анализа. Для 10-11 классов – М.: «Просвещение» 1993
  6. Колмогоров, Абрамов, Дудницын. Алгебра и начала анализа. Для 10-11 классов. – М.: «Просвещение», 1990.
  7. А.Г. Мордкович. Алгебра и начала анализа. Часть 1 Учебник 10-11 классы. – М.: «Мнемозина», 2004.

Однородные

На данном уроке мы рассмотрим так называемые однородные дифференциальные уравнения первого порядка . Наряду с уравнениями с разделяющимися переменными и линейными неоднородными уравнениями этот тип ДУ встречается практически в любой контрольной работе по теме диффуров. Если Вы зашли на страничку с поисковика или не очень уверенно ориентируетесь в дифференциальных уравнениях, то сначала настоятельно рекомендую проработать вводный урок по теме – Дифференциальные уравнения первого порядка . Дело в том, что многие принципы решения однородных уравнений и используемые технические приемы будут точно такими же, как и для простейших уравнений с разделяющимися переменными.

В чём отличие однородных дифференциальных уравнений от других типов ДУ? Это проще всего сразу же пояснить на конкретном примере.

Пример 1

Решение:
Что в первую очередь следует проанализировать при решении любого дифференциального уравнения первого порядка ? В первую очередь необходимо проверить, а нельзя ли сразу разделить переменные с помощью «школьных» действий? Обычно такой анализ проводят мысленно или пытаются разделить переменные на черновике.

В данном примере переменные разделить нельзя (можете попробовать поперекидывать слагаемые из части в часть, повыносить множители за скобки и т.д.). Кстати, в данном примере, тот факт, что переменные разделить нельзя, достаточно очевиден ввиду наличия множителя .

Возникает вопрос – как же решить этот диффур?

Нужно проверить, а не является ли данное уравнение однородным ? Проверка несложная, и сам алгоритм проверки можно сформулировать так:

В исходное уравнение:

вместо подставляем , вместо подставляем , производную не трогаем :

Буква лямбда – это условный параметр, и здесь он играет следующую роль: если в результате преобразований удастся «уничтожить» ВСЕ лямбды и получить исходное уравнение, то данное дифференциальное уравнение является однородным .

Очевидно, что лямбды сразу сокращаются в показателе степени:

Теперь в правой части выносим лямбду за скобки:

и обе части делим на эту самую лямбду:

В результате все лямбды исчезли как сон, как утренний туман, и мы получили исходное уравнение.

Вывод: Данное уравнение является однородным

Как решить однородное дифференциальное уравнение?

У меня очень хорошая новость. Абсолютно все однородные уравнения можно решить с помощью одной-единственной (!) стандартной замены.

Функцию «игрек» следует заменить произведением некоторой функции (тоже зависящей от «икс») и «икса»:

Почти всегда пишут коротко:

Выясняем, во что превратится производная при такой замене, используем правило дифференцирования произведения. Если , то:

Подставляем и в исходное уравнение :

Что даст такая замена? После данной замены и проведенных упрощений мы гарантировано получим уравнение с разделяющимися переменными. ЗАПОМИНАЕМ как первую любовь:) и, соответственно, .

После подстановки проводим максимальные упрощения:


Поскольку – это функция, зависящая от «икс», то её производную можно записать стандартной дробью: .
Таким образом:

Разделяем переменные, при этом в левой части нужно собрать только «тэ», а в правой части – только «иксы»:

Переменные разделены, интегрируем:


Согласно моему первому техническому совету из статьи Дифференциальные уравнения первого порядка константу во многих случаях целесообразно «оформить» в виде логарифма.

После того, как уравнение проинтегрировано, нужно провести обратную замену , она тоже стандартна и единственна:
Если , то
В данном случае:

В 18-19 случаях из 20 решение однородного уравнения записывают в виде общего интеграла .

Ответ: общий интеграл:

Почему почти всегда ответ однородного уравнения даётся в виде общего интеграла?
В большинстве случаев невозможно выразить «игрек» в явном виде (получить общее решение), а если и возможно, то чаще всего общее решение получается громоздким и корявым.

Так, например, в рассмотренном примере, общее решение получить можно, навешиваем логарифмы на обе части общего интеграла:

– ну, еще куда ни шло. Хотя, согласитесь, все равно кривовато.

Кстати, в данном примере я не совсем «прилично» записал общий интеграл. Это не ошибка , но в «хорошем» стиле, напоминаю, общий интеграл принято записывать в виде . Для этого сразу после интегрирования уравнения, константу следует записать без всякого логарифма (вот и исключение из правила!) :

И после обратной замены получить общий интеграл в «классическом» виде:

Полученный ответ можно проверить. Для этого нужно продифференцировать общий интеграл, то есть найти производную от функции, заданной неявно :

Избавляемся от дробей, умножая каждую часть уравнения на :

Получено исходное дифференциальное уравнение, значит, решение найдено правильно.

Желательно всегда проводить проверку. Но однородные уравнения неприятны тем, что проверять их общие интегралы обычно трудно – для этого необходима весьма и весьма приличная техника дифференцирования. В рассмотренном примере в ходе проверки уже пришлось находить не самые простые производные (хотя сам по себе пример достаточно простой). Если сможете проверить – проверяйте!

Пример 2

Проверить уравнение на однородность и найти его общий интеграл.

Ответ записать в виде

Это пример для самостоятельного решения – чтобы вы освоились в самом алгоритме действий. Проверку проведёте на досуге, т.к. здесь она достаточно сложнА, и я даже не стал её приводить, а то вы больше не придёте к такому маньяку:)

А теперь обещанный важный момент, упомянутый ещё в самом начале темы,
выделю жирными чёрными буквами:

Если в ходе преобразований мы «сбрасываем» множитель (не константу) в знаменатель, то РИСКУЕМ потерять решения!

И на самом деле с этим мы столкнулись в первом же примере вводного урока о дифференциальных уравнениях . В процессе решения уравнения «игрек» оказался в знаменателе: , но , очевидно, является решением ДУ и в результате неравносильного преобразования (деления) есть все шансы его потерять! Другое дело, что оно вошло в общее решение при нулевом значении константы. Сброс «икса» в знаменатель тоже можно не принимать во внимание, т.к. не удовлетворяет исходному диффуру.

Аналогичная история с третьим уравнением того же урока, в ходе решения которого мы «сбросили» в знаменатель. Строго говоря, здесь следовало проверить, а не является ли решением данного диффура? Ведь является! Но и тут «всё обошлось», поскольку эта функция вошла в общий интеграл при .

И если с «разделяющимися» уравнениями такое часто;) «прокатывает», то с однородными и некоторыми другими диффурами может и «не прокатить». С высокой вероятностью.

Проанализируем уже прорешанные задачи этого урока: в Примере 1 был «сброс» икса, однако не может быть решением уравнения . А вот в Примере 2 мы разделили на , но это тоже «сошло с рук»: поскольку , то решения потеряться не могли, их тут попросту нет. Но «счастливые случаи» я, конечно же, устроил специально, и не факт, что на практике попадутся именно они:

Пример 3

Решить дифференциальное уравнение

Не правда ли простой пример? ;-)

Решение: однородность этого уравнения очевидна, но всё равно – на первом шаге ОБЯЗАТЕЛЬНО проверяем, нельзя ли разделить переменные . Ибо уравнение тоже однородно, но переменные в нём преспокойно разделяются. Да, бывают и такие!

После проверки на «разделяемость» проводим замену и максимально упрощаем уравнение:

Разделяем переменные, слева собираем «тэ», справа – «иксы»:

И вот здесь СТОП. При делении на мы рискуем потерять сразу две функции. Так как , то это функции:

Первая функция, очевидно, является решением уравнения . Проверяем вторую – подставляем и её производную в наш диффур:

– получено верное равенство, значит, функция является решением.

И эти решения мы рискуем потерять .

Кроме того, в знаменателе оказался «икс», однако замена подразумевает, что он не равен нулю. Запомните это факт. Но! Обязательно проверяем , является ли решением ИСХОДНОГО дифференциального уравнения. Нет, не является.

Берём всё это на заметку и продолжаем:

Надо сказать, с интегралом левой части повезло, бывает гораздо хуже.

Собираем в правой части единый логарифм, и сбрасываем оковы:

И вот только теперь обратная замена :

Умножим все слагаемые на :

Теперь следует проверить – вошли ли в общий интеграл «опасные» решения . Да, оба решения вошли в общий интеграл при нулевом значении константы: , поэтому их не нужно дополнительно указывать в ответе :

общий интеграл:

Проверка . Даже не проверка, а сплошное удовольствие:)

Получено исходное дифференциальное уравнение, значит, решение найдено верно.

Для самостоятельного решения:

Пример 4

Выполнить проверку на однородность и решить дифференциальное уравнение

Общий интеграл проверить дифференцированием.

Полное решение и ответ в конце урока.

Рассмотрим пару примеров, когда однородное уравнение задано с готовыми дифференциалами.

Пример 5

Решить дифференциальное уравнение

Это очень интересный пример, прямо целый триллер!

Решение будем привыкать оформлять компактнее. Сначала мысленно либо на черновике убеждаемся в том, что переменные тут разделить нельзя, после чего проводим проверку на однородность – на чистовике её обычно не проводят (если специально не требуется) . Таким образом, почти всегда решение начинается с записи: «Данное уравнение является однородным, проведем замену: … ».

Если однородное уравнение содержит готовые дифференциалы, то его можно решить модифицированной заменой:

Но я не советую использовать такую подстановку, поскольку получится Великая китайская стена дифференциалов, где нужен глаз да глаз. С технической точки зрения выгоднее перейти к «штриховому» обозначению производной, для этого делим все члены уравнения на :

И уже здесь мы совершили «опасное» преобразование! Нулевому дифференциалу соответствует – семейство прямых, параллельных оси . Являются ли они корнями нашего ДУ? Подставим и в исходное уравнение:

Данное равенство справедливо, если , то есть, при делении на мы рисковали потерять решение , и мы его потеряли – так как оно уже не удовлетворяет полученному уравнению .

Следует заметить, что если бы нам изначально было дано уравнение , то о корне речи бы не шло. Но у нас он есть, и мы его вовремя «отловили».

Продолжаем решение стандартной заменой :
:

После подстановки максимально упрощаем уравнение:

Разделяем переменные:

И вот здесь снова СТОП: при делении на мы рискуем потерять две функции. Так как , то это функции:

Очевидно, что первая функция является решением уравнения . Проверяем вторую – подставляем и её производную :

– получено верное равенство , значит, функция тоже является решением дифференциального уравнения.

И при делении на мы эти решения рискуем потерять. Впрочем, они могут войти в общий интеграл. Но могут и не войти

Берём это на заметку и интегрируем обе части:

Интеграл левой части стандартно решается с помощью выделения полного квадрата , но в диффурах гораздо удобнее использовать метод неопределенных коэффициентов :

Используя метод неопределенных коэффициентов, разложим подынтегральную функцию в сумму элементарных дробей:


Таким образом:

Находим интегралы:

– так как у нас нарисовались одни логарифмы, то константу тоже заталкиваем под логарифм.

Перед обратной заменой снова упрощаем всё, что можно упростить :

Сбрасываем цепи:

И обратная замена :

Теперь вспоминаем о «потеряшках»: решение вошло в общий интеграл при , а вот – «пролетело мимо кассы», т.к. оказалось в знаменателе. Поэтому в ответе оно удостаивается отдельной фразы, и да – не забываем о потерянном решении , которое, к слову, тоже оказалось внизу.

Ответ: общий интеграл: . Ещё решения:

Здесь не так трудно выразить общее решение:
, но это уже понты.

Удобные, впрочем, для проверки. Найдём производную:

и подставим в левую часть уравнения:

– в результате получена правая часть уравнения, что и требовалось проверить.

Следующий диффур – самостоятельно:

Пример 6

Решить дифференциальное уравнение

Полное решение и ответ в конце урока. Попробуйте заодно для тренировки и здесь выразить общее решение.

В заключительной части урока рассмотрим еще пару характерных задач по теме:

Пример 7

Решить дифференциальное уравнение

Решение: Идём проторенной дорогой. Данное уравнение является однородным, проведем замену :


С «иксом» тут всё в порядке, но вот что с квадратным трёхчленом? Поскольку он неразложим на множители : , то решений мы точно не теряем. Всегда бы так! Выделяем в левой части полный квадрат и интегрируем:



Упрощать тут нечего, а посему обратная замена :

Ответ: общий интеграл:

Пример 8

Решить дифференциальное уравнение

Это пример для самостоятельного решения.

Итак :

При неравносильных преобразованиях ВСЕГДА проверяйте (по крайне мере, устно) , не теряете ли вы решения! Какие это преобразования? Как правило, сокращение на что-то или деление на что-то. Так, например, при делении на нужно проверить, являются ли функции решениями дифференциального уравнения. В то же время при делении на необходимость в такой проверке уже отпадает – по причине того, что этот делитель не обращается в ноль.

Вот ещё одна опасная ситуация:

Здесь, избавляясь от , следует проверить, не является ли решением ДУ. Часто в качестве такого множителя встречается «икс», «игрек», и сокращая на них, мы теряем функции , которые могут оказаться решениями.

С другой стороны, если что-то ИЗНАЧАЛЬНО находится в знаменателе, то повода для такого беспокойства нет. Так, в однородном уравнении можно не беспокоиться о функции , так как она «заявлена» в знаменателе.

Перечисленные тонкости не теряют актуальность, даже если в задаче требуется найти только частное решение. Существует пусть маленький, но шанс, что мы потеряем именно требуемое частное решение. Правда задача Коши в практических заданиях с однородными уравнениями запрашивается довольно редко. Тем не менее, такие примеры есть в статье Уравнения сводящиеся к однородным , которую я рекомендую изучить «по горячим следам» чтобы закрепить свои навыки решения.

Существуют и более сложные однородные уравнения. Сложность состоит не в замене переменной или упрощениях, а в достаточно трудных или редких интегралах, которые возникают в результате разделения переменных. У меня есть примеры решений таких однородных уравнений – страшненькие интегралы и страшненькие ответы. Но о них не будем, потому что на ближайших уроках (см. ниже) ещё успею вас замучить я хочу вас видеть свежими и оптимистичными!

Успешного продвижения!

Решения и ответы:

Пример 2: Решение: проверим уравнение на однородность, для этого в исходное уравнение вместо подставим , а вместо подставим :

В результате получено исходное уравнение, значит, данное ДУ является однородным.

Однородное дифференциальное уравнение первого порядка - это уравнение вида
, где f - функция.

Как определить однородное дифференциальное уравнение

Для того, чтобы определить, является ли дифференциальное уравнение первого порядка однородным, нужно ввести постоянную t и заменить y на ty и x на tx : y → ty , x → tx . Если t сократится, то это однородное дифференциальное уравнение . Производная y′ при таком преобразовании не меняется.
.

Пример

Определить, является ли данное уравнение однородным

Решение

Делаем замену y → ty , x → tx .


Делим на t 2 .

.
Уравнение не содержит t . Следовательно, это однородное уравнение.

Метод решения однородного дифференциального уравнения

Однородное дифференциальное уравнение первого порядка приводится к уравнению с разделяющимися переменными с помощью подстановки y = ux . Покажем это. Рассмотрим уравнение:
(i)
Делаем подстановку:
y = ux ,
где u - функция от x . Дифференцируем по x :
y′ =
Подставляем в исходное уравнение (i) .
,
,
(ii) .
Разделяем переменные. Умножаем на dx и делим на x ( f(u) - u ) .

При f(u) - u ≠ 0 и x ≠ 0 получаем:

Интегрируем:

Таким образом, мы получили общий интеграл уравнения (i) в квадратурах:

Заменим постоянную интегрирования C на ln C , тогда

Опустим знак модуля, поскольку нужный знак определяется выбором знака постоянной C . Тогда общий интеграл примет вид:

Далее следует рассмотреть случай f(u) - u = 0 .
Если это уравнение имеет корни, то они являются решением уравнения (ii) . Поскольку уравнение (ii) не совпадает с исходным уравнением, то следует убедиться, что дополнительные решения удовлетворяют исходному уравнению (i) .

Всякий раз, когда мы, в процессе преобразований, делим какое либо уравнение на некоторую функцию, которую обозначим как g(x, y) , то дальнейшие преобразования справедливы при g(x, y) ≠ 0 . Поэтому следует отдельно рассматривать случай g(x, y) = 0 .

Пример решения однородного дифференциального уравнения первого порядка

Решить уравнение

Решение

Проверим, является ли данное уравнение однородным. Делаем замену y → ty , x → tx . При этом y′ → y′ .
,
,
.
Сокращаем на t .

Постоянная t сократилась. Поэтому уравнение является однородным.

Делаем подстановку y = ux , где u - функция от x .
y′ = (ux) ′ = u′ x + u (x) ′ = u′ x + u
Подставляем в исходное уравнение.
,
,
,
.
При x ≥ 0 , |x| = x . При x ≤ 0 , |x| = - x . Мы пишем |x| = ± x подразумевая, что верхний знак относится к значениям x ≥ 0 , а нижний - к значениям x ≤ 0 .
,
Умножаем на ± dx и делим на .

При u 2 - 1 ≠ 0 имеем:

Интегрируем:

Интегралы табличные ,
.

Применим формулу:
(a + b)(a - b) = a 2 - b 2 .
Положим a = u , .
.
Возьмем обе части по модулю и логарифмируем,
.
Отсюда
.

Таким образом имеем:
,
.
Опускаем знак модуля, поскольку нужный знак обеспечивается выбором знака постоянной C .

Умножаем на x и подставляем ux = y .
,
.
Возводим в квадрат.
,
,
.

Теперь рассмотрим случай, u 2 - 1 = 0 .
Корни этого уравнения
.
Легко убедиться, что функции y = ± x удовлетворяют исходному уравнению.

Ответ

,
,
.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Например, функция
- однородная функция первого измерения, так как

- однородная функция третьего измерения, так как

- однородная функция нулевого измерения, так как

, т.е.
.

Определение 2. Дифференциальное уравнение первого порядкаy " = f (x , y ) называется однородным, если функцияf (x , y ) есть однородная функция нулевого измерения относительноx иy , или, как говорят,f (x , y ) – однородная функция степени нуль.

Его можно представить в виде

что позволяет определить однородное уравнение как такое дифференциальное, которое можно преобразовать к виду (3.3).

Замена
приводит однородное уравнение к уравнению с разделяющимися переменными. Действительно, после подстановкиу = xz получим
,
Разделяя переменные и интегрируя, найдем:


,

Пример 1.Решить уравнение.

Δ Полагаем у = zx ,
Подставляем эти выраженияy иdy в данное уравнение:
или
Разделяем переменные:
и интегрируем:
,

Заменяя z на, получим
.

Пример 2. Найти общее решение уравнения.

Δ В данном уравнении P (x ,y ) =x 2 -2y 2 ,Q (x ,y ) =2xy – однородные функции второго измерения, следовательно, данное уравнение является однородным. Его можно представить в виде
и решать так же, как и представленное выше. Но используем другую форму записи. Положимy = zx , откудаdy = zdx + xdz . Подставляя эти выражения в исходное уравнение, будем иметь

dx +2 zxdz = 0 .

Разделяем переменные, считая

.

Интегрируем почленно это уравнение

, откуда

то есть
. Возвращаясь к прежней функции
находим общее решение

Пример 3 . Найти общее решение уравнения
.

Δ Цепочка преобразований: ,y = zx ,
,
,
,
,
,
,
,
, ,
.

Лекция 8.

4. Линейные дифференциальные уравнения первого порядка Линейное дифференциальное уравнение первого порядка имеет вид

Здесь – свободный член, называемый также правой частью уравнения. В этом виде будем рассматривать линейное уравнение в дальнейшем.

Если
0, то уравнение (4.1а) называется линейным неоднородным. Если же
0, то уравнение принимает вид

и называется линейным однородным.

Название уравнения (4.1а) объясняется тем, что неизвестная функция y и её производнаявходят в него линейно, т.е. в первой степени.

В линейном однородном уравнении переменные разделяются. Переписав его в виде
откуда
и интегрируя, получаем:
,т.е.


При делении на теряем решение
. Однако оно может быть включено в найденное семейство решений (4.3), если считать, чтоС может принимать и значение 0.

Существует несколько методов решения уравнения (4.1а). Согласно методу Бернулли , решение ищется в виде произведения двух функций отх :

Одна из этих функций может быть выбрана произвольно, так как лишь произведение uv должно удовлетворять исходному уравнению, другая определяется на основании уравнения (4.1а).

Дифференцируя обе части равенства (4.4), находим
.

Подставляя полученное выражение производной , а также значениеу в уравнение (4.1а), получаем
, или

т.е. в качестве функции v возьмём решение однородного линейного уравнения (4.6):

(Здесь C писать обязательно, иначе получится не общее, а частное решение).

Таким образом, видим, что в результате используемой подстановки (4.4) уравнение (4.1а) сводится к двум уравнениям с разделяющимися переменными (4.6) и (4.7).

Подставляя
иv (x) в формулу (4.4), окончательно получаем

,

.

Пример 1. Найти общее решение уравнения

 Положим
, тогда
. Подставляя выраженияив исходное уравнение, получим
или
(*)

Приравняем нулю коэффициент при :

Разделяя переменные в полученном уравнении, имеем


(произвольную постояннуюC не пишем), отсюдаv = x . Найденное значениеv подставляем в уравнение (*):

,
,
.

Следовательно,
общее решение исходного уравнения.

Отметим, что уравнение (*) можно было записать в эквивалентном виде:

.

Произвольно выбирая функцию u , а неv , мы могли полагать
. Этот путь решения отличается от рассмотренного только заменойv наu (и, следовательно,u наv ), так что окончательное значениеу оказывается тем же самым.

На основании изложенного выше получаем алгоритм решения линейного дифференциального уравнения первого порядка.


Отметим далее, что иногда уравнение первого порядка становится линейным, если у считать независимой переменной, аx – зависимой, т.е. поменять ролиx иy . Это можно сделать при условии, чтоx иdx входят в уравнение линейно.

Пример 2 . Решить уравнение
.

    По виду это уравнение не является линейным относительно функции у .

Однако если рассматривать x как функцию оту , то, учитывая, что
,его можно привести к виду

(4.1 б )

Заменив на,получим
или
. Разделив обе части последнего уравнения на произведениеydy , приведем его к виду

, или
. (**)

Здесь P(y)=,
. Это линейное уравнение относительноx . Полагаем
,
. Подставляя эти выражения в (**), получаем

или
.

Выберем vтак, чтобы
,
, откуда
;
. Далее имеем
,
,
.

Т.к.
, то приходим к общему решению данного уравнения в виде

.

Отметим, что в уравнение (4.1а) P (x ) иQ (x ) могут входить не только в виде функций от x , но и констант:P = a ,Q = b . Линейное уравнение

можно решать и с помощью подстановки y=uv и разделением переменных:

;
.

Отсюда
;
;
; где
. Освобождаясь от логарифма, получаем общее решение уравнения

(здесь
).

При b = 0 приходим к решению уравнения

(см. уравнение показательного роста (2.4) при
).

Сначала интегрируем соответствующее однородное уравнение (4.2). Как указано выше, его решение имеет вид (4.3). Будем считать сомножитель С в (4.3) функцией отх , т.е. по существу делаем замену переменной

откуда, интегрируя, находим

Отметим, что согласно (4.14) (см. также (4.9)), общее решение неоднородного линейного уравнения равно сумме общего решения соответствующего однородного уравнения (4.3) и частного решения неоднородного уравнения, определяемого вторым слагаемым, входящим в (4.14) (и в (4.9)).

При решении конкретных уравнений следует повторять приведённые выше выкладки, а не использовать громоздкую формулу (4.14).

Применим метод Лагранжа к уравнению, рассмотренному в примере 1 :

.

Интегрируем соответствующее однородное уравнение
.

Разделяя переменные, получаем
и далее
. Решение выражения формулойy = Cx . Решение исходного уравнения ищем в видеy = C (x )x . Подставив это выражение в заданное уравнение, получим
;
;
,
. Общее решение исходного уравнения имеет вид

.

В заключение отметим, что к линейному уравнению приводится уравнение Бернулли

, (
)

которое можно записать в виде

.

Заменой
оно приводится к линейному уравнению:

,
,
.

Уравнения Бернулли также решаются изложенными выше методами.

Пример 3 . Найти общее решения уравнения
.

 Цепочка преобразований:
,
,,
,
,
,
,
,
,
,
,
,
,
,



Последние материалы раздела:

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...