Русская инженерная школа. История

Суть проекта «Русская Инженерная школа» заключается в построении многоуровневого непрерывного процесса подготовки инженерных кадров посредством политехнического мультидисциплинарного образования с сохранением и преумножением лучших традиций русской инженерной школы. Первый этап - создание Детской Технической школы "Самоделкин" - начальный уровень подготовки инженеров с последующим сопровождением и поддержкой талантливых детей. Детская Техническая школа работает по принципу дополнительного развивающего образования. Это политехническая подготовка школьников, которая включает в себя не только фундаментальные, технические знания, образовательный курс инженерного 3D моделирования на основе программы Creo, но и технологии развития целостной личности (коммуникативные навыки, навыки презентации и самопрезентации, командообразование и лидерские характеристики личности). Целевую группу на первом этапе реализации проекта составят дети – ученики школ в возрасте 10-15 лет в количестве 120 человек – первый год обучения (8 групп). Проект Русская Инженерная школа не ограничивается открытием Детской Технической школы. В перспективе (через 1 год) жизнедеятельность проекта развернётся на территории Приволжского федерального округа, а в дальнейшем (через 3 года) на территории всей Российской Федерации и будет включать в себя Молодёжный Инженерный центр - высшее учебное заведение и Русскую Инженерную школу - институт переподготовки и повышения квалификации инженерных кадров.

Цели

  1. Создать систему развития и поддержки научно-технического творчества детей и молодежи, возрождая исторические и фундаментальные ценности русской инженерной школы обучения, высокопрофессиональной и современной подготовки и переподготовки и повышения квалификации инженерных кадров

Задачи

  1. Сформировать группы для обучения в Детской Технической школе
  2. Организовать учебный процесс с использованием инновационных комплексных методик обучения техническим дисциплинам и единой преемственной системы обучения детей, молодёжи и инженеров по принципу проектно-командного обучения
  3. Координировать процесс обучения

Обоснование социальной значимости

В течение ближайших 5 лет с ведущих предприятий, определяющих экономическую политику России, 70% высококвалифицированных инженеров уйдут на пенсию. В целях сохранения конкурентоспособности, многие этапы технологического процесса, которые ранее осуществлялись вручную, переносятся на компьютер. Бумажные эскизы и чертежи уходят в прошлое. Математические расчёты движения механизмов и прочности деталей компьютеризированы. Для работы по современным технологиям нужны квалифицированные специалисты нового поколения. Решить проблему дефицита кадров стремятся как на государственном уровне, разрабатывая специальные программы, улучшающие качество образования, и вовлекая школьников в увлекательный мир информационных технологий, так и со стороны бизнеса, который уже ощущает кадровый голод. Переход от экономики технологий к экономике знаний требует подготовки соответствующих инновационно – ориентированных специалистов, в первую очередь, для реального сектора экономики. Это относится не только к выпускникам вузов, но и к работающим специалистам для обеспечения принципа непрерывности обучения в период трудовой деятельности. Очевидно, что именно университеты должны внести основной вклад в вопрос кадров. Обеспечить подготовку профессиональных кадров, отвечающих требованиям, предъявляемым современным промышленным производствам можно только путём создания специально организованных условий, которые будут являться важнейшим недостающим звеном в российской инновационной цепочке, призванной поднять отечественное промышленное производство на надлежащий технический и организационный уровень. Наш проект подразумевает развитие организации «Русская Инженерная школа», задачей которой является создание системы развития и поддержки научно-технического творчества детей и молодежи, возрождение исторических и фундаментальных ценностей русской технической школы обучения, высокопрофессиональной и современной подготовки, переподготовки и повышения квалификации инженерных кадров.

В начале XVIII в. в России насчитывалось уже около 180 мануфактур. Началась подготовка отечественных инженерно технических кадров в Пушкарской, Артиллерийской, Навигационной школах и Морской академии. В 1719 г. в Санкт Петербурге была открыта для всеобщего обозрения Кунсткамера первый естественно научный музей с просветительскими и на учно исследовательскими функциями. В 1725 г. была создана Академия наук, ставшая научным и учебным центром.

В 1722 году вышла первая русская книга о машинах "Наука статическая, или Механика" Г. Скорнякова Писарева Яков Козельский. «Механические предложения» и "Философские предложения"

РАЗВИТИЕ РУССКОЙ ТЕХНИЧЕСКОЙ НАУКИ НАЧАЛА XIX ВЕКА Русская техническая наука находилась в тесной связи с французской технической школой Аналогом Парижской политехнической школы был Петербургский институт корпуса инженеров путей сообщения, открытый в 1810 году. Формированию русской инженерной школы способствовали и довольно многочисленные отечественные научно технические журналы, начавшие выходить в России с 1825 года. В 1866 году было создано Русское Техническое общество

К концу XIX века в России было 19 высших технических школ Согласно статистическим данным 1901 1917 годов, за этот период было подготовлено в полтора раза больше инженеров, чем за предшествующие 35 лет Во второй половине XIX века Россия переживает бум мостостроительства

РОССИЙСКИЕ ПРОМЫШЛЕННЫЕ ВЫСТАВКИ XIX ВЕКА. ГИПЕРБОЛЫ ИНЖЕНЕРА ШУХОВА Первая Всероссийская выставка мануфактурных изделий" состоялась в Санкт Петербурге 9 мая 1829 г. Она положила начало целому ряду промышленных выставок, прошедших в Москве (1831, 1835, 1843, 1853, 1865, 1882), Петербурге (1833, 1839, 1849, 1861, 1870), Варшаве (1841, 1857) и др. городах России

ТРЕБОВАНИЯ К ПРОМЫШЛЕННОСТИ И ЕЕ ПРОДУКЦИИ СОГЛАСНО «УСТАВУ ПРОМЫШЛЕННОСТИ» Критерии оценки производителя: «польза, приносимая заведением тому месту, где оно существует, и окрестностям» ; «технические нововведения, улучшенные и уп рощенные приемы, иностранные или самим производителем или кем либо из его мастеров придуманные» ; «важность и употребительность изделий» ; «возможность производства изделия лучшего качества, если бы на них оказалось требование» .

Критерии оценки изделий: «степень важности фабрикации, которая зависит от того, туземные или иностранные материалы она обрабатывает, большему или меньшему числу рабочих доставляет средства к существованию, более или менее важной потребности жителей удовлетворяет, и не заменяет ли иностранных изделий вполне или большей частью» ; «необыкновенно обширное производство какой либо фабрикации» ; «введение и упрочение новой отрасли промышленности в таких местах, где был недостаток в заработке или первоначальный материал не имел надлежащей ценности» ; «введение новых машин, орудий и приемов, облегчающих и ускоряющих работу или удешевляющих изделие» ; «попечение об улучшении положения рабочих и об устранении опасности для их жизни и здоровья, сопряженной со свойством некоторых работ, а также предоставление им выгод, предохраняющих их от нищеты и беспомощности в случае болезни или утраты сил» и т. д.

С 1882 года национальные Всероссийские выставки стали включать в экспозицию вместе с разделами промышленности разделы искусства и называться художественно промышленными Крупнейшая художественно промышленная выставка прошла в 1896 г. в Нижнем Новгороде. Почетное место здесь заняли экспонаты (часы, оптические приборы, чертежи), связанные с именем известного русского изобретателя самоучки Ивана Кулибина Были здесь и модели паровой машины Ивана Ползунова. В современных разделах Александр Попов демонстрировал первый в мире радиоприемник, а электротехники показывали опыты с электричеством.

ШУХОВ ВЛАДИМИР ГРИГОРЬЕВИЧ (1853 1939) Инженер, архитектор, изобретатель, учёный; почётный член Академии наук СССР (1929), Герой Труда. Является изобретателем первых в мире гиперболоидных конструкций и металлических сетчатых оболочек строительных конструкций. Гиперболоидные конструкции в строительстве и архитектуре - сооружения в форме гиперболоида вращения или гиперболического параболоида (гипар). Такие конструкции, несмотря на свою кривизну, строятся из прямых балок.

Для Всероссийской промышленной и художественной выставки 1896 года в Нижнем Новгороде В. Г. Шухов построил восемь павильонов с первыми в мире перекрытиями в виде сетчатых оболочек, первое в мире перекрытие в виде стальной мембраны (Ротонда Шухова) и первую в мире гиперболоидную башню Шухов изобрёл также арочные конструкции покрытий с тросовыми затяжками. До нашего времени сохранились арочные: стеклянные своды покрытий В. Г. Шухова над крупнейшими московскими магазинами: Верхними торговыми рядами (ГУМ) и Фирсановским (Петровским) пассажем.

СТРОИТЕЛЬСТВО ОВАЛЬНОГО ПАВИЛЬОНА С СЕТЧАТЫМ СТАЛЬНЫМ ВИСЯЧИМ ПОКРЫТИЕМ ДЛЯ ВСЕРОССИЙСКОЙ ВЫСТАВКИ 1896 ГОДА В НИЖНЕМ НОВГОРОДЕ

ШУХОВСКИЙ МЕТАЛЛО СТЕКЛЯННЫЙ ДЕБАРКАДЕР КИЕВСКОГО ВОКЗАЛА В МОСКВЕ

Почему глупо сравнивать Россию и США по объёмам военных бюджетов

Александр Халдей

Не раз в нашей печати описывался военный бюджет США с раскрытием по статьям. Наши приходили в ужас от того, как американцы пилят бюджет, какие откаты там существуют. В прямом смысле слова чуть ли не золотые унитазы. Все организационные решения там технически избыточны и потому слишком затратны. Поэтому вложенный в оборону США доллар вовсе не сопоставим с вложенным в оборону России рублём.

Все уже не раз читали легенду или правду - уже не понять - о том, как мы и они решали проблемы записей в космосе в условиях невесомости: американцы изобретали дорогой прибор за астрономическую сумму, а наши применили химический карандаш. Не важно, правда это или шутка - суть отражена стопроцентно. Но наши скафандр и катапультное кресло пилота они до сих пор никак догнать не могут.

В Отечественную войну все страны проектировали бензобаки своих штурмовых самолётов. Везде использовался каучук, дорогой и среднеэффективный. Только русские на штурмовике Ил-2 протектировали бензобаки фиброй - дешёвой бумагой, которая набухая, запечатывала дыры лучше каучука. Протектированные фиброй бензобаки штурмовиков выдерживали более 70-ти попаданий, дыры от которых затягивала набухающая фибра, и не было утечки топлива и пожара. Причём, фибра так набухала, что затягивала дыры через заусенцы металла бензобака, чего не могла резина.

Про танк Т-34, который практически полностью ремонтировался в поле силами передвижных ремонтных мастерских с простыми инструментами, включая возможность сборки из деталей трёх уничтоженных танков одного боеспособного, даже говорить не стоит, потому что все это и так знают.

А вот примеры еще более оригинальные. На современных авианосцах уборка мусора на палубе и посадочной полосе - очень важное дело, так как даже пуговица, способная попасть в авиадвигатель, может вызвать аварию. Если вы посмотрите на видео, как убирают палубный мусор на американских авианосцах, то вы увидите огромную колёсную машину, стоящую кучу денег, где масса всякой техники, настроенной на подметание и уборку.

Как решили вопрос русские. К старенькому маленькому трактору или грузовику приделали старый списанный авиамотор от вертолёта Ми-15. Когда его включают, он как ветродуй сдувает с палубы всё, что там плохо лежит. Эффект лучше, чем от уборочной машины, денег вообще не потратили - вся техника из списанных единиц. Вот и сравнивай после этого бюджеты.

Под Одессой в начале войны наши столкнулись с румынами. Танков не было. Наши от отчаянья взяли 20 колхозных тракторов, обшили их железом типа как броня, воткнули трубы вместо пушек и погнали это на румын вместе с пехотой. Румыны, приняв эти макеты за новые неизвестные тяжёлые танки русских, бежали с поля боя.

Целые полки резиновых танков, самолётов и ракет вводят в заблуждение космические спутники США, обесценивая развединформацию о положении наших ударных сил. А история о том, как наша микроволновка в Югославии закрыла целый проект «самолётов-невидимок» «Стелс», давно стала легендой.

В истории противостояния России и Запада мы применяем два вида оружия: русскую инженерную школу и стратегию гонки за лидером. Лидер - это тот, кто идёт первым. Он имеет много ресурсов и вкладывается в экспериментальное производство. Но из экспериментов жизнь отсеивает от половины до двух третей инноваций. Тут работает закон Парето: 20% инноваций покрывают убытки на 80% неудачных исследований и приносят прибыль на этапе лидерства. Стратегия снятия пенок.

Гонка за лидером позволяет экономить ресурсы. Когда жизнь покажет, что работает, а что нет, догоняющие делают свою разработку, или копируя лидера, или делая аналоги и вводя туда свои усовершенствования. В результате положение быстро выравнивается, а догоняющий сэкономил кучу денег. Ведь он учитывает чужие ошибки, не платя за опыт свои средства. В итоге лидерство лидера всегда очень кратковременное и в узкой сфере. Цена стратегии очень велика и нецелесообразна для стран, где деньги не печатают, а зарабатывают.

Русская инженерная школа всегда отличалась тем, что на науку вечно не было денег, и приходилось применять находчивость и смекалку - свойства, начисто отсутствующие в Западной инженерной школе, которая не знает проблемы финансирования. Но русские считают, что с деньгами и дурак сможет, а вот ты попробуй без денег!

В последнее время было много сказано о том, что русская инженерная школа, созданная при царе и продолженная при Советской власти, умерла в период реформ с разгромом промышленности и экспериментального производства. Да, это так, многое умерло. Но считать это фатальным нет причины. Технический прогресс закрывает старые технологии и делает ненужными прежние навыки, а новые условия требуют наработки новых приёмов и техник.

Так что наша инженерная школа возникает на ровном месте тогда, когда ставится задача решить какую-то проблему. Наши танки, самолёты и Крымский мост наглядное тому подтверждение. Нашлись и инженеры, и школа, и оборудование, и технологии.

Да, проблема в том, что всё это пока на импортном оборудовании. Но санкции животворящие так или иначе своё дело делают. Появляются не только свои помидоры, но и свои станки, хотя времени для этого нужно больше. А грустить по утраченной школе не надо - она ушла со старыми технологиями. Будут новые технологии - будет и новая школа.

Например, когда делали самолеты перед войной, их делали из дерева и требовались квалифицированные лекальщики-краснодеревщики. Это была элита рабочего класса, люди, с которыми даже доктора наук советовались. Но элиты не бывает много, и потому качественных самолётов из дерева не хватало, а попытка расширить производство привела к падению качества. Когда заменили трудоемкие детали из дерева штамповкой из алюминия, квалифицированные рабочие стали просто не нужны. Их закрыли новые технологии.

Сейчас многие функции квалифицированных инженеров и рабочих автоматизируются. Инженерная школа меняется на глазах. Нас сдерживает не отсутствие денег, а отсутствие заказчиков на наукоёмкую продукцию. Слишком разбита промышленность, чтобы мелкосерийным производством суметь поднять инженерную школу. Школа растёт только при массовом производстве. Очень важна преемственность поколений, так как мастерство передаётся из рук в руки. Для инженерной школы нужно не Сколково, а опытно-конструкторское производство.

Инженеры ОКР - это особая каста, как лётчики-испытатели. Если инженер ОКР не работал три месяца, он отстал и ему нужно месяц на врабатывание. Если он не работал полгода, нагонять ему придётся год-полтора. Если он не работал два-три года, он отстал навсегда и ему нужно почти учиться заново. ОКР - это как хирурги или лётчики. Им нужен каждодневный навык, иначе это теряется. То, что делают в сфере НИОКР, потом передаётся в массовое производство, и там оно подстраивается под крупную серию.

Пока в России во власти мало тех, кто понимает, что это такое и что победу приносят не нефтяники и не банкиры, не предприниматели и коммерсанты, и даже не рабочие. Победу приносят инженеры. Именно они побеждают в конкурентной войне корпораций и стран. Они делают себестоимость и определяют работу продажников. И пока власть не озаботится проблемами не предпринимателей, а инженеров, будущее страны останется проблемным.

А что нужно инженеру? Ему нужно три вещи: система образования, система финансирования и система заказа. Вот стратегия на уровне национальной идеи. Это тот рычаг Архимеда, которым можно перевернуть нашу экономику. Тот политик, кто поставит это во главу угла, превратит Россию в мирового лидера.


Министерство образования и науки Российской Федерации
Федеральное агентство по образованию
Северокавказский Государственный технический университет
Строительный факультет
Кафедра дизайна

Доклад по истории дизайна, науки и техники
«Русская инженерная школа ХIХ века»

Выполнила студентка группы Д- 091
Салова Виктория
Проверил доцент кафедры дизайна
Бударин Е.Л

Ставрополь 2012 год

В девятнадцатом веке критерием успеха деятельности любого профессора Института корпуса инженеров путей сообщения были проложенные им дороги, построенные мосты, шлюзы, каналы, причалы. Свидетельством авторитета русского инженера того времени, несущего персональную ответственность за реализацию сложного технического проекта, можно считать любимую фразу императора Николая I «Мы инженеры».
Русская инженерная школа с момента ее становления принципиально основывалась на единстве триады образование - наука - промышленность при ведущей роли ее промышленной компоненты. Именно на этих принципах более чем через сто лет в СССР была сформирована концепция генерального конструктора сложной технической системы. Важно, что со времен строительства Николаевской железной дороги и до эпохи советских атомных и ракетно-космических проектов генеральные конструкторы де-факто или де-юре подчинялись непосредственно первому лицу государства. Сегодня уже не вызывает сомнения, что только благодаря русской инженерной школе и системе инженерного образования в России стало возможно создание железнодорожной отрасли в 40–80-х годах XIX века и атомной и ракетно-космической отраслей в 40–80-х годах ХХ века. Эти два технологических прорыва на длительное время обеспечили вхождение России в число промышленных стран-лидеров, а также внесли огромный вклад в построение той технической среды, в которой человечество живет сегодня.
Чему мы научили американцев

Фото: И. Томашкевич. 1899
Основы русской инженерной школы были заложены в стенах Института корпуса инженеров путей сообщения, созданного указом императора Александра I в 1809 году. В 30–40-х годах XIX века этот институт уже сильнейший научно-технический вуз России, а уровень образования его выпускников соответствует высшему европейскому классу того времени. Лекции по математике здесь читают академики М. В. Остроградский и В. Я. Буняковский. В 1835 году М. С. Волков стал читать первый в России курс «Построение железных дорог», а уровень требований к проработке даже курсовых проектов обеспечивал возможность немедленно начинать строительство. Первое свидетельство тому - завершение русскими инженерами-путейцами (всего через семь лет после первой железной дороги Стефенсона в Англии) в 1837 году железной дороги Петербург-Царское Село. Еще через четыре года, в 1841-м, профессор П. П. Мельников завершает разработку еще более грандиозного по тем временам проекта строительства железной дороги Москва - Петербург, а в 1843 году по указу императора начинается строительство этой дороги длиной 650 верст. Одно из наиболее важных свидетельств готовности российских инженеров к этой грандиозной стройке - издание в 1842 году «Курса строительного искусства» в трех частях М. С. Волкова, Н. И. Липина и Н. Ф. Ястржембского. Специальным указом Николай I поручил возглавить строительство профессорам Мельникову и Крафту и подчинил их непосредственно своей особе. Из 184 мостов, построенных на Николаевской дороге, восемь относятся к категории больших с двумя-девятью пролетами. Мельников поручил проектирование этих мостов выпускнику Института корпуса путей сообщения инженеру-поручику Д. И. Журавскому, что, очевидно, свидетельствует о чрезвычайно высоком уровне подготовки выпускников, которым доверяли такие сложные проекты. При строительстве самого большого Веребьинского моста «великий поручик» впервые применил разработанную им теорию раскосных ферм и фактически стал основоположником теории мостостроения и науки о сопротивлении материалов. В этой связи следует отметить, что в США, по данным статистики, с 1878-го по 1887 год, то есть более чем через тридцать лет после работ Журавского, произошло свыше 250 аварий мостов - американские инженеры строили мосты, по-прежнему полагаясь на интуицию, а не на расчеты.
Строительство Николаевской железной дороги было завершено в 1851 году, то есть через восемь лет после начала работ. Всего же за сорок лет (1837–1877) с момента завершения строительства первой в России Царскосельской железной дороги российскими инженерами-путейцами было проложено около 20 тыс. верст железных дорог в чрезвычайно сложных природных условиях. Как следствие, к концу XIX века Россия располагала многотысячным корпусом инженеров мирового уровня, аккумулировавших огромный практический, научный и образовательный опыт предыдущих поколений. Авторитет отечественной системы подготовки инженеров в этот период был столь высок, что президент Бостонского (ныне Массачусетского) университета распространил систему подготовки инженеров Императорского высшего технического училища (ныне Московский государственный технический университет им. Н. Э. Баумана) вначале на возглавляемый им университет, а затем и на другие высшие учебные заведения Америки. Именно наличие в России системы инженерного образования, собственного инженерного корпуса, имеющего опыт научной, образовательной деятельности и реализации проектов мирового уровня, позволило построить в рекордно короткие сроки - всего за 15 лет (1891–1905) - Транссибирскую магистраль. При этом, по выражению журналистов того времени, Транссибирская магистраль была построена «русскими материалами, за русские деньги и русскими руками». Строительство великой магистрали внесло громадный вклад в промышленный подъем России и инициировало создание к 1917 году десятков крупных промышленных предприятий, производивших рельсы, паровозы и вагоны. Кроме того, это строительство имело долговременный геополитический эффект, так как привело к интенсивному обрусению Сибири: с 1897-го по 1917 год в Сибирь переселились более десяти миллионов человек.

Накануне и после 1917 года страну покинули тысячи высокообразованных людей, в том числе около трех тысяч дипломированных инженеров, внесших впоследствии значительный вклад в развитие высокотехнологичных отраслей как в Европе, так и в США. К их числу принадлежал и профессор Института путей сообщения С. П. Тимошенко, который в 1911 году был уволен из Киевского университета по политическим мотивам, эмигрировал в Европу, а в 1922 году переехал в США. Уже в первые дни пребывания в Нью-Йорке он отметил низкий уровень технического образования, отсутствие интереса к инженерной науке, безграмотность проектов металлических конструкций городских сооружений. За достаточно короткое время Тимошенко стал одним из наиболее авторитетных специалистов Америки, объясняя это тем, что «основная подготовка в математике и основных технических предметах давала нам огромное преимущество перед американцами при решении новых нешаблонных задач». Созданные им в 30-х годах школы прикладной механики в Анн-Арборе, Стенфордском и Калифорнийском университетах приобрели широкую известность и воспитали целую плеяду учеников. По словам члена Французской академии наук Поля Жермена, «русский Тимошенко научил американцев прочностным расчетам». Тем не менее, вспоминая годы Второй мировой войны, Тимошенко снова констатирует, что «война ясно показала всю отсталость Америки в деле организации инженерного образования». И только энергичные действия правительства США, выделившего средства для расширения исследовательской деятельности и подготовки докторов в области технических наук, в последующие годы позволили исправить эту ситуацию. Уже на склоне лет ученый писал: «Обдумывая причину наших достижений в Америке, я прихожу к заключению, что немалую долю в этом деле сыграло образование, которое нам дали русские высшие инженерные школы».
Знания по плану

Фото: ИТАР-ТАСС
Основные достижения русской инженерной школы, в том числе ключевая идея единства промышленности, науки и образования, были положены в основу промышленного развития России и после революции. Русская инженерная школа и после 1917 года сохранила научно-техническое и организационное единоначалие и опиралась на персональную ответственность генеральных конструкторов, чьим объективным критерием успеха деятельности были созданные ими образцы гражданской и военной техники, а также заводы по ее производству. По наследству перешли и высокий престиж естественнонаучного образования, и умение привлекать достижения фундаментальной науки к решению сложных технических проблем. Эта преемственность, собственно, и позволила СССР в 40–80-х годах ХХ века совершить технологический прорыв, в результате которого были созданы атомная и ракетно- космическая отрасли, и далее на этой основе реализовать вариант плановой «экономики знаний», цель которой заключалась прежде всего в достижении мирового военного лидерства. В тот период триада «промышленность - наука - образование» действительно представляла собой единый взаимоувязанный национальный комплекс. Численными критериями успешного функционирования этой триады служили тактико-технические характеристики и технологические и экономические показатели (дальность, масса, точность, срок службы, технологичность и трудоемкость процесса серийного производства и т. д.) создаваемых систем вооружения, необходимых для достижения военного превосходства или паритета.
Наиболее впечатляющим свидетельством успешного функционирования триады плановой «экономики знаний» и ее научно-образовательного раздела выступают разработка и серийное производство таких высокотехнологичных, наукоемких объектов, как атомные подводные лодки, сверхзвуковые бомбардировщики, ракетно-космические системы и т. д. Более того, сохранившаяся к настоящему времени часть промышленной компоненты этой триады не только обеспечивает военный паритет России на мировой арене, но и демонстрирует высокую эффективность в рыночных условиях. Действительно, в 2004 году доля России на мировом рынке вооружений составила 18,4% (6,4 млрд долларов), а в 2006-м достигла 21,6% (8,7 млрд долларов), что обеспечило России второе место после США. На мировом рынке космических услуг доля России составляет 11% благодаря ракетно-космическим системам, разработанным почти полвека назад в конструкторских бюро Королева и Челомея, знаменитых «семерке» и «пятисотке».

Фото: ИТАР-ТАСС
Плановая «экономика знаний» основывалась на достижениях фундаментальной науки, что предопределило успешное выполнение в СССР целого ряда стратегически важных государственных проектов. К их числу относится создание промышленности разделения изотопов - одного из наиболее сложных и важных направлений атомного проекта. Научным руководителем проекта, несущим персональную ответственность за его реализацию, а фактически и генеральным конструктором первого диффузионного завода был академик И. К. Кикоин - один из лучших представителей русской инженерной школы ХХ века, в котором уникально сочетались ученый-исследователь, инженер, конструктор и руководитель большого коллектива. В середине 50-х годов Кикоин, руководя проблемой разделения изотопов, возглавил грандиозный инновационный проект, не имевший аналогов в мировой практике, - создание завода разделения изотопов урана центрифужным методом. Практическая реализация этого метода основывалась на ключевых идеях, одна из которых, принадлежащая Кикоину, обеспечила решение важнейшей проблемы передачи легкой и тяжелой фракций от центрифуги к центрифуге. В 1957 году начинает работать небольшой опытный завод газовых центрифуг, далее принимается решение о строительстве первого промышленного центрифужного завода. Именно эти заводы, созданные в СССР полвека назад при решающем вкладе фундаментальной науки, заложили основы современной российской промышленности разделения изотопов, которая демонстрирует высокую эффективность и в условиях рыночной экономики, обеспечивая долю страны на мировом рынке низкообогащенного урана в размере 40%, а на рынке топлива для АЭС - 17%.
Плановая «экономика знаний» СССР принципиально опиралась на «культ знаний», особенно в области точных наук, который в результате целенаправленной политики государству удалось сформировать и поддерживать до 1991 года. Умение решать сложные научные и технические задачи на основе фундаментальных знаний открывало путь к государственному и общественному признанию, материальному благополучию, вхождению во властные структуры и, что не менее важно, масштабному техническому творчеству. На приобретение этих умений и знаний через многолетний, кропотливый труд на школьной и вузовской ступенях была нацелена естественнонаучная компонента массовой образовательной системы СССР. Школьная и вузовская ступени были неразрывно связаны. В первую очередь решались задачи фундаментального освоения школьниками, а затем и студентами дисциплин естественнонаучного цикла. В традиции советской средней школы было выделение большого количества учебных часов на достаточно глубокое изучение математики и физики. Вступительные экзамены в технические вузы охватывали всю теоретическую часть школьной программы по этим дисциплинам. Когда профессор С. П. Тимошенко, ставший на тот момент одним из знаменитейших американских ученых и педагогов, посетил СССР в 1959 году после многих десятилетий работы в США, то дал следующую оценку советскому образованию: «Общая организация школ и методов преподавания очень похожа на ту, что имела место в дореволюционные годы. После хаоса, порожденного революционным экспериментаторством, традиционная система была восстановлена… уровень советской системы инженерной подготовки существенно превосходит оценки американских экспертов». Для инженерного образования в России наступил золотой век.

Фото: ИТАР-ТАСС
На младших курсах всех технических вузов СССР изучались фундаментальные основы высшей математики и общей физики, на которые опирались базовые и специализированные курсы инженерных дисциплин. Благодаря этому в СССР технические вузы, независимо от специализации, фактически готовили специалистов широкого профиля, способных быстро адаптироваться к работе в любой технической области. Не менее важно и то, что определенная избыточность системы массовой подготовки инженерных кадров обеспечивала возможность формирования технически подготовленного и грамотного управляющего персонала предприятий и государственных структур. Высокая эффективность советской системы образования при подготовке инженерных кадров отмечалась не только Тимошенко, но и многими другими американскими экспертами, детально изучавшими эту систему после запуска первого искусственного спутника Земли.
О высокой эффективности советской системы подготовки кадров свидетельствуют и события, произошедшие после распада СССР. Это успехи на мировом рынке труда эмигрировавших в последние 10–15 лет из России и стран СНГ ученых и высококвалифицированных специалистов - воспитанников советской системы образования. Так, по данным Российской академии наук, Комиссии по образованию Совета Европы и Фонда науки, за последние десять лет в зарубежных университетах, научно-исследовательских организациях и компаниях трудоустроены не менее 250–300 тыс. высокообразованных россиян. Другими словами, образовательная и научная база, комплекс практических навыков и умений, уровень общей культуры этих специалистов оказались вполне достаточными для их востребованности и быстрой трудовой и социальной адаптации в таких странах с рыночной «экономикой знаний», как США, Канада и государства Западной Европы.
Хотя сегодня задачи, которые ста
и т.д.................

В 1876 году Америка принимала у себя Всемирную Выставку. Страна, лишь недавно законодательно отменившая рабство (на восемь лет позже, чем Россия), стояла на пороге грандиозного промышленного подъёма. Американцы прекрасно понимали, что развитие национальной промышленности совершенно невозможно без большого числа высокообразованных и патриотически настроенных инженеров и техников, которых должны готовить национальные инженерные школы. Именно поэтому особое внимание на Филадельфийской Выставке привлёк один из экспонатов, представленный Императорским Московским Техническим Училищем. Экспонатом этим была система практической подготовки инженеров.

Уникальный случай: методика преподавания не только была представлена на всемирной промышленной выставке, но и получила медаль. Более того, уже после окончания выставки завязывается длительная переписка между директором Бостонского Технологического Института профессором Джоном Ронклем и директором ИМТУ Виктором Карловичем Делла-Восом.

Профессор Ронкль не просто восхищён русским методом обучения: он предпринимает все усилия для того, чтобы ввести методики ИМТУ сначала в своём институте, а затем - и во всей стране. И сообщает он об этом не только своему коллеге - директору, но и в канцелярию Его Императорского Величества и американскому посланнику в Петербурге

В чём же заключалась эта знаменитая в веке девятнадцатом, постоянно с гордостью упоминаемая в середине века двадцатого и оставшаяся к нашему времени более в воспоминаниях, русская методика обучения инженеров? Она имела три основных составляющих:

  • Глубокая практическая подготовка, основанная на реальной работе студентов в условиях, максимально приближенных к тем, с которыми им после придётся иметь дело на заводах и фабриках;
  • Серьёзное изучение теоретических предметов на уровне, не уступающем преподаванию этих же предметов в классических университетах;
  • Постоянная взаимовыгодная связь высшей технической школы с промышленностью.
Система складывалась не сразу. Уникальность ИМТУ состояла в том, что онf развивалfсь на базе Ремесленного Учебного Заведения, и практическая подготовка, которой не знали школы, основанные сразу как высшие, была во многом наследием обучения ремёслам. И тем более важно, что ещё в сороковые годы был совершён качественный поворот от обучения ремеслу к обучению промышленности. Небольшой, но правильно устроенный механический завод, созданный при заведении А.А. Розенкампфом, позволил воспитывать техников совсем другого уровня. Уже в то время прекрасно понимали необходимость сочетания обучения практического с основательной теоретической подготовкой и, что всегда оставалось отличительной особенностью выпускников Училища, - формирования у будущих инженеров способности решать новые, неизвестные ранее задачи. Не случайно долгие годы практически вся инженерная элита страны состояла из выпускников ИМТУ-МВТУ.

Закономерно и то, что качественный переход от обучения ремеслу к инженерному образованию состоялся именно в середине девятнадцатого столетия. Именно в это время в России начинается серьёзное развитие промышленности, потребовавшее большого числа специалистов, умеющих проектировать и эксплуатировать сложные машины, а также разрабатывать и реализовывать новые, неизвестные до этого времени технологии.

Всего за двадцать с небольшим лет Заведение прошло путь от обучения ни на что более неспособных детей портняжному и сапожному ремёслам к формированию учёных мастеров для промышленности, обладающих знаниями, вполне достаточными для инженера. Огромная заслуга в повышении уровня теоретической подготовки воспитанников принадлежит А.С. Ершову, который, будучи сам выпускником Московского Университета , заботился о привлечении в Заведение преподавателей с высоким уровнем знаний и о качестве читаемых курсов.

Наконец, при В.К. Делла-Восе русская школа обучения инженеров в том виде, в котором она восхитила посетителей и жюри всемирной выставки 1876 года, сформировалась окончательно. И это не случайно. Ещё в 1862 году, почти за шесть лет до назначения директором МРУЗ, В.К. Делла-Вос составляет докладную записку, в которой излагает свои взгляды на пути развития промышленности и технического образования в России:

Став директором ИМТУ, Виктор Карлович успешно воплощает эти идеи в жизнь. Примечательно, что, постоянно говоря о необходимости формирования национальных технических кадров, саму техническую науку он видит достоянием всего человечества:

Тем не менее инженерные школы в наиболее промышленно развитых странах: Германии, России, США, Франции, всё-таки остались разными, с присущими каждой стране национальными особенностями. Наиболее близкой к русской являлась система французская, в которой тоже большое внимание уделялось практическому обучению. Американцы сделали упор на широту образования, немцы - на его глубину. Однако слова профессора Ронкля: «...заслуга в постановке на должное основание преподавания промышленных искусств навсегда останется за Вами», навсегда вошли в историю высшего технического образования.

Сформировавшаяся в середине девятнадцатого века система обучения инженеров ИМТУ дожила до наших дней. Мы ещё прочитаем мнения о важности сочетания теоретической и практической подготовки знаменитых профессоров начала века. Мы ещё увидим, как будут обеспокоены невозможностью проводить необходимое количество практических занятий преподаватели во время эвакуации Училища в Ижевск (1941-43). Сохраняя преемственность традиций, русская школа дала стране в разные исторические периоды многих знаменитых инженеров и учёных, таких как В.Г. Шухов, А.Н. Туполев, С.П. Королёв. Даже в годы существования «железного занавеса » диплом МВТУ признавался во всём мире.

Слова о признании за Россией полного успеха в решении задачи технического образования вынесены на внутреннюю сторону обложки книги «МВТУ имени Н.Э. Баумана. 150». Отголосками практического обучения ныне остаются учебные мастерские и производственные практики, которые, по многим причинам, часто от Заведения не зависящим, не дают сейчас такого практического опыта, как это было сто лет назад.

Связи с промышленностью тоже не так взаимовыгодны, как хотелось бы, ввиду плачевного состояния последней. Тем не менее наша инженерная школа до сих пор является одной из самых авторитетных в мире, и хочется верить, что в дальнейшем обстановка станет более благоприятной, и о русской школе обучения инженеров будут продолжать говорить с таким же восхищением, как это происходит уже почти полторы сотни лет



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...