Симметрия в пространстве Понятие правильного многогранника Элементы симметрии правильных многогранников. Симметрия в пространстве

Геометрия прекрасна тем, что, в отличие от алгебры, где не всегда понятно, что и зачем считаешь, дает наглядность объекта. Этот удивительный мир различных тел украшают собой правильные многогранники.

Общие сведения о правильных многогранниках

По мнению многих, правильные многогранники, или как их еще называют Платоновы тела, обладают неповторимыми свойствами. С этими объектами связано несколько научных гипотез. Когда начинаешь изучать данные геометрические тела, понимаешь, что практически ничего не знаешь о таком понятии, как правильные многогранники. Презентация этих объектов в школе не всегда проходит интересно, поэтому многие даже и не помнят, как они называются. В памяти большинства людей остается только куб. Ни одни тела в геометрии не обладают таким совершенством, как правильные многогранники. Все названия этих геометрических тел произошли из Древней Греции. Они означают количество граней: тетраэдр - четырехгранный, гексаэдр - шестигранный, октаэдр - восьмигранный, додекаэдр - двенадцатигранный, икосаэдр - двадцатигранный. Все эти геометрические тела занимали важнейшее место в концепции Платона о мироздании. Четыре из них олицетворяли стихии или сущности: тетраэдр - огонь, икосаэдр - воду, куб - землю, октаэдр - воздух. Додекаэдр воплощал все сущее. Он считался главным, поскольку был символом мироздания.

Обобщение понятия многогранника

Многогранником является совокупность конечного числа многоугольников такая, что:

  • каждая из сторон любого из многоугольников является одновременно и стороной только одного другого многоугольника по той же стороне;
  • от каждого из многоугольников можно дойти до других переходя по смежным с ним многоугольникам.

Многоугольники, составляющие многогранник, представляют собой его грани, а их стороны - ребра. Вершинами многогранников являются вершины многоугольников. Если под понятием многоугольник понимают плоские замкнутые ломаные, то приходят к одному определению многогранника. В том случае, когда под этим понятием подразумевают часть плоскости, что ограничена ломаными линиями, то следует понимать поверхность, состоящую из многоугольных кусочков. называют тело, лежащее по одну сторону плоскости, прилегающей к его грани.

Другое определение многогранника и его элементов

Многогранником называют поверхность, состоящую из многоугольников, которая ограничивает геометрическое тело. Они бывают:

  • невыпуклыми;
  • выпуклыми (правильные и неправильные).

Правильный многогранник - это выпуклый многогранник с максимальной симметрией. Элементы правильных многогранников:

  • тетраэдр: 6 ребер, 4 грани, 5 вершин;
  • гексаэдр (куб): 12, 6, 8;
  • додекаэдр: 30, 12, 20;
  • октаэдр: 12, 8, 6;
  • икосаэдр: 30, 20, 12.

Теорема Эйлера

Она устанавливает связь между числом ребер, вершин и граней, топологически эквивалентных сфере. Складывая количество вершин и граней (В + Г) у различных правильных многогранников и сравнивая их с количеством ребер, можно установить одну закономерность: сумма количества граней и вершин равняется числу ребер (Р), увеличенному на 2. Можно вывести простую формулу:

  • В + Г = Р + 2.

Эта формула верна для всех выпуклых многогранников.

Основные определения

Понятие правильного многогранника невозможно описать одним предложением. Оно более многозначное и объемное. Чтобы тело было признано таковым, необходимо, чтобы оно отвечало ряду определений. Так, геометрическое тело будет являться правильным многогранником при выполнении таких условий:

  • оно выпуклое;
  • одинаковое количество ребер сходится в каждой из его вершин;
  • все грани его - правильные многоугольники, равные друг другу;
  • все его равны.

Свойства правильных многогранников

Существует 5 разных типов правильных многогранников:

  1. Куб (гексаэдр) - у него плоский угол при вершине составляет 90°. Он имеет 3-гранный угол. Сумма плоских углов у вершины составляет 270°.
  2. Тетраэдр - плоский угол при вершине - 60°. Он имеет 3-гранный угол. Сумма плоских углов у вершины - 180°.
  3. Октаэдр - плоский угол при вершине - 60°. Он имеет 4-гранный угол. Сумма плоских углов у вершины - 240°.
  4. Додекаэдр - плоский угол при вершине 108°. Он имеет 3-гранный угол. Сумма плоских углов у вершины - 324°.
  5. Икосаэдр - у него плоский угол при вершине - 60°. Он имеет 5-гранный угол. Сумма плоских углов у вершины составляет 300°.

Площадь поверхности этих геометрических тел (S) вычисляется, как площадь правильного многоугольника, умноженная на количество его граней (G):

  • S = (a: 2) х 2G ctg π/p.

Объем правильного многогранника

Эта величина вычисляется путем умножения объема правильной пирамиды, в основании которой находится правильный многоугольник, на число граней, а высота ее является радиусом вписанной сферы (r):

  • V = 1: 3rS.

Объемы правильных многогранников

Как и любое другое геометрическое тело, правильные многогранники имеют различные объемы. Ниже представлены формулы, по которым можно их вычислить:

  • тетраэдр: α х 3√2: 12;
  • октаэдр: α х 3√2: 3;
  • икосаэдр; α х 3;
  • гексаэдр (куб): 5 х α х 3 х (3 + √5) : 12;
  • додекаэдр: α х 3 (15 + 7√5) : 4.

Гексаэдр и октаэдр являются дуальными геометрическими телами. Иными словами, они могут получиться друг из друга в том случае, если центр тяжести грани одного принимается за вершину другого, и наоборот. Также дуальными являются икосаэдр и додекаэдр. Сам себе дуален только тетраэдр. По способу Евклида можно получить додекаэдр из гексаэдра с помощью построения «крыш» на гранях куба. Вершинами тетраэдра будут любые 4 вершины куба, не смежные попарно по ребру. Из гексаэдра (куба) можно получить и другие правильные многогранники. Несмотря на то что есть бесчисленное множество, правильных многогранников существует всего 5.

Радиусы правильных многоугольников

С каждым из этих геометрических тел связаны 3 концентрические сферы:

  • описанная, проходящая через его вершины;
  • вписанная, касающаяся каждой его грани в центре ее;
  • срединная, касающаяся всех ребер в середине.

Радиус сферы описанной рассчитывается по такой формуле:

  • R = a: 2 х tg π/g х tg θ: 2.

Радиус сферы вписанной вычисляется по формуле:

  • R = a: 2 х ctg π/p х tg θ: 2,

где θ - двухгранный угол, который находится между смежными гранями.

Радиус сферы срединной можно вычислить по следующей формуле:

  • ρ = a cos π/p: 2 sin π/h,

где h величина = 4,6 ,6,10 или 10. Отношение описанных и вписанных радиусов симметрично относительно p и q. Оно рассчитывается по формуле:

  • R/r = tg π/p х tg π/q.

Симметрия многогранников

Симметрия правильных многогранников вызывает основной интерес к этим геометрическим телам. Под ней понимают такое движение тела в пространстве, которое оставляет одно и то же количество вершин, граней и ребер. Другими словами, под действием преобразования симметрии ребро, вершина, грань или сохраняет свое первоначальное положение, или перемещается в исходное положение другого ребра, другой вершины или грани.

Элементы симметрии правильных многогранников свойственны всем видам таких геометрических тел. Здесь речь ведется о тождественном преобразовании, которое оставляет любую из точек в исходном положении. Так, при повороте многоугольной призмы можно получить несколько симметрий. Любая из них может быть представлена как произведение отражений. Симметрию, которая является произведением четного количества отражений, называют прямой. Если же она является произведением нечетного количества отражений, то ее называют обратной. Таким образом, все повороты вокруг прямой представляют собой прямую симметрию. Любое отражение многогранника - это обратная симметрия.

Чтобы лучше разобраться в элементах симметрии правильных многогранников, можно взять пример тетраэдра. Любая прямая, которая будет проходить через одну из вершин и центр этой геометрической фигуры, будет проходить и через центр грани, противоположной ей. Каждый из поворотов на 120 и 240° вокруг прямой принадлежит к множественному числу симметрий тетраэдра. Поскольку у него по 4 вершины и грани, то получается всего восемь прямых симметрий. Любая из прямых, проходящих через середину ребра и центр этого тела, проходит через середину его противоположного ребра. Любой поворот на 180°, называемый полуоборотом, вокруг прямой является симметрией. Поскольку у тетраэдра есть три пары ребер, то получится еще три прямые симметрии. Исходя из вышеизложенного, можно сделать вывод, что общее число прямых симметрий, и в том числе тождественное преобразование, будет доходить до двенадцати. Других прямых симметрий у тетраэдра не существует, но при этом у него есть 12 обратных симметрий. Следовательно, тетраэдр характеризуется всего 24 симметриями. Для наглядности можно построить модель правильного тетраэдра из картона и убедиться, что это геометрическое тело действительно имеет всего 24 симметрии.

Додекаэдр и икосаэдр - наиболее близкие к сфере тела. Икосаэдр обладает наибольшим числом граней, наибольшим и плотнее всего может прижаться к вписанной сфере. Додекаэдр обладает наименьшим угловым дефектом, наибольшим телесным углом при вершине. Он может максимально заполнить свою описанную сферу.

Развертки многогранников

Правильные которых мы все склеивали в детстве, имеют много понятий. Если есть совокупность многоугольников, каждая сторона которых отождествлена с только одной стороной многогранника, то отождествление сторон должно соответствовать двум условиям:

  • от каждого многоугольника можно перейти по многоугольникам, имеющим отождествленную сторону;
  • отождествляемые стороны должны иметь одинаковую длину.

Именно совокупность многоугольников, которые удовлетворяют эти условия, и называется разверткой многогранника. Каждое из этих тел имеет их несколько. Так, например, у куба их насчитывается 11 штук.

Слайд 2

Симметрия относительно точки Симметрия относительно прямой А А1 О Точки А и А1 называются симметричными относительно точки О (центр симметрии), если О – середина отрезка АА1. Точка О считается симметричной самой себе. А А1 a Точки А и А1 называются симметричными относительно прямой (ось симметрии), если прямая проходит через середину отрезка АА1 и перпендикулярна к этому отрезку. Каждая точка прямой считается симметричной самой себе. a a a

Слайд 3

Симметрия относительно плоскости А Точки А и А1 называются симметричными относительно плоскости (плоскость симметрии), если плоскость проходит через середину отрезка АА1 и перпендикулярна к этому отрезку. Каждая точка плоскости считается симметричной самой себе. А1 О

Слайд 4

Если фигура имеет центр (ось, плоскость) симметрии, то говорят, что она обладает центральной (осевой, зеркальной) симметрией. Фигура может иметь один или несколько центров симметрии (осей симметрии, плоскостей симметрии). О А Центр симметрии О А Плоскость симметрии О А a А1 Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры. Центр, ось, плоскость симметрии фигуры. А1 Ось симметрии А1

Слайд 5

С симметрией мы часто встречаемся в архитектуре.

Слайд 6

Почти все кристаллы, встречающиеся в природе, имеют ось или плоскость симметрии. В геометрии центр, оси и плоскости симметрии многогранника называются элементами симметрииэтого многогранника. Апатит Золото

Слайд 7

Кальцит (двойник) Поваренная соль Лед

Слайд 8

Альмандин Ставролит (двойник)

Слайд 9

Правильный тетраэдр составлен их четырех равносторонних треугольников и в каждой вершине сходятся 3 ребра. 4 грани, 4 вершины и 6 ребер. Сумма плоских углов при каждой вершине равна 1800 Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и в каждой его вершине сходится равное число ребер. В каждом правильном многограннике сумма числа и вершин равна числу рёбер,увеличенному на 2. грани вершины ребра Г + В = Р + 2 60+ 60 + 60

Слайд 10

Мы различаем правильный тетраэдр и правильную пирамиду. В отличие от правильного тетраэдра, все ребра которого равны, в правильной треугольной пирамиде боковые ребра равны друг другу, но они могут быть не равны ребрам основания пирамиды. «тетра» - 4 Названия многогранников пришли из Древней Греции и в них указывается число граней.

Слайд 11

Правильный тетраэдр не имеет центра симметрии. Осей симметрии – 3. Плоскостей симметрии – 6. Прямая, проходящая через середины двух противоположных ребер, является его осью симметрии. Плоскость, проходящая через ребро перпендикулярно к противоположному ребру, - ось симметрии. Элементы симметрии тетраэдра.

Слайд 12

Куб составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Следовательно, сумма плоских углов при каждой вершине равна 2700. 6 граней, 8 вершин и 12 ребер «гекса» - 6 Куб, гексаэдр.

Слайд 13

Куб имеет 9 плоскостей симметрии.

Слайд 14

Правильный октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Сумма плоских углов при каждой вершине равна 2400. «окта» - 8 Октаэдр имеет 8 граней, 6 вершин и 12 ребер

Слайд 15

Правильный икосаэдр составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти правильных треугольников. Следовательно, сумма плоских углов при каждой вершине равна 3000. «икоса» - 20 Икосаэдр имеет 20 граней, 12 вершин и 30 ребер

Слайд 16

Правильный додекаэдр составлен из двенадцати правильных шестиугольников. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 3240. «додека» - 12 Додекаэдр имеет 12 граней, 20 вершин и 30 ребер.

Слайд 17

Первым свойства правильных многогранников описал древнегреческий ученый Платон. Именно поэтому правильные многогранники называют также телами Платона. Платон 428 – 348 г. до н.э. Платон считал, что мир строится из четырёх «стихий» - огня, земли, воздуха и воды, а атомы этих «стихий» имеют форму четырёх правильных многогранников.

Слайд 18

огонь воздух вода земля Правильные многогранники в философской картине мира Платона. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр – как самый обтекаемый – воду; куб – самая устойчивая из фигур – землю, а октаэдр – воздух.

Слайд 19

вселенная Пятый многогранник – додекаэдр символизировал весь мир и почитался главнейшим.

Слайд 20

Большой интерес к формам правильных многогранников проявляли скульпторы, архитекторы, художники. Их поражало совершенство, гармония многогранников. Леонардо да Винчи (1452 – 1519) увлекался теорией многогранников и часто изображал их на своих полотнах. Сальвадор Дали на картине «Тайная вечеря» изобразил И. Христа со своими учениками на фоне огромного прозрачного додекаэдра.

Слайд 21

Архимед 287 – 212 гг. до н.э. Это многогранники, которые получаются из платоновых тел в результате их усечения. усечённый тетраэдр, усечённый гексаэдр (куб), усечённый октаэдр, усечённый додекаэдр, усечённый икосаэдр. Архимед описал полуправильные многогранники

Слайд 22

Усеченный тетраэдр Выполняя простейшие сечения, мы можем получить необычные многогранники. Усеченный тетраэдр получится, если у тетраэдра срезать его четыре вершины.

Слайд 23

Усеченный куб Срезав вершины получим новые грани – треугольники. А из граней куба получатся грани – восьмиугольники. Усеченный куб получится, если у куба срезать все его восемь вершин.

Понятие правильного многогранника (тетраэдр, октаэдр, икосаэдр, куб, додекаэдр).

Определение. Выпуклый многогранник называется правильным, если все его грани равные правильные многоугольники и в каждой его вершине сходится одно и то же число рёбер.

Свойства.

· Все рёбра правильного многогранника равны друг другу;

· Все двугранные углы, содержащие две грани с общим ребром, равны.

Существует только пять типов правильных многогранников:

· Правильный тетраэдр составлен из четырёх равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников. Следовательно, сумма плоских углов при каждой вершине равна .

· Правильный октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников. Следовательно, сумма плоских углов при каждой вершине равна .

· Правильный икосаэдр составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна .

· Куб (гексаэдр) составлен из шести квадратов. Каждая вершина куба является вершиной трёх квадратов. Следовательно, сумма плоских углов при каждой вершине равна .

· Правильный додекаэдр составлен из двенадцати правильных пятиугольников.

Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Тогда сумма плоских углов при каждой вершине равна .

2. Теорема Эйлера .

Теорема Эйлера . Для числа граней Г, числа вершин В и числа рёбер Р любого выпуклого многогранника справедливо соотношение Г+В-Р=2.

Пусто n – число рёбер каждой грани, а m – число рёбер сходящихся в каждой вершине. Так как каждое ребро принадлежит двум граням, то n Г=2Р. Каждое ребро содержит по две вершины, значит m В=2Р. Из последних двух равенств и теоремы Эйлера составим систему

.

Решая эту систему, получим , и .

Найдём число вершин, рёбер и граней правильных многогранников:

· Правильный тетраэдр (n =3, m =3)

Р=6, Г=4, В=4.

· Правильный октаэдр (n =3, m =4)

Р=12, Г=8, В=6.

· Правильный икосаэдр(n =3, m =5)

Р=30, Г=20, В=12.

· Куб(n =4, m =3)

Р=12, Г=6, В=8.

· Правильный додекаэдр(n =5, m =3)

· Р=30, Г=12, В=20.

Элементы симметрии правильных многогранников.

Рассмотрим элементы симметрий правильных многогранников.

Правильный тетраэдр

Правильный тетраэдр (рис.1) не имеет центра симметрии.

Оси симметрий тетраэдра (рис.2) проходят через середины двух противоположных рёбер, таких осей симметрий три.


Рис. 2

Рассмотрим плоскости симметрий тетраэдра (рис. 3). Плоскость α, проходящая через ребро AB перпендикулярно ребру CD , будет являться плоскостью симметрии правильного тетраэдра ABCD . Таких плоскостей симметрий шесть.

Рис. 3

Симметрия куба

1. Центр симметрии - центр куба (точка пересечения диагоналей куба) (рис. 4).

2. Плоскости симметрии: три плоскости симметрии, проходящие через середины параллельных ребер; шесть плоскостей симметрии, проходящие через противолежащие ребра (рис. 5).

Рис. 5

3. Оси симметрии: три оси симметрии, проходящие через центры противолежащих граней; четыре оси симметрии, проходящие через противолежащие вершины; шесть осей симметрии, проходящие через середины противолежащих ребер (рис. 6).

Элементы симметрии правильных многогранников Геометрия. 10 класс.

Тетраэдр - (от греческого tetra – четыре и hedra – грань) - правильный многогранник, составленный из 4 равносторонних треугольников. Из определения правильного многогранника следует, что все ребра тетраэдра имеют равную длину, а грани - равную площадь.

Элементы симметрии тетраэдра

Тетраэдр имеет три оси симметрии, которые проходят через середины скрещивающихся рёбер.

Тетраэдр имеет 6 плоскостей симметрии, каждая из которых проходит через ребро тетраэдра перпендикулярно скрещивающемуся с ним ребру.

Октаэдр - (от греческого okto – восемь и hedra – грань) - правильный многогранник, составленный из 8 равносторонних треугольников. Октаэдр имеет 6 вершин и 12 ребер. Каждая вершина октаэдра является вершиной 4 треугольников, таким образом, сумма плоских углов при вершине октаэдра составляет 240° .

Элементы симметрии октаэдра

Три из 9 осей симметрии октаэдра проходят через противоположные вершины, шесть - через середины ребер. Центр симметрии октаэдра - точка пересечения его осей симметрии.

Три из 9 плоскостей симметрии тетраэдра проходят через каждые 4 вершины октаэдра, лежащие в одной плоскости.

Шесть плоскостей симметрии проходят через две вершины, не принадлежащие одной грани, и середины противоположных ребер.

Икосаэдр – (от греческого ico - шесть и hedra - грань) правильный выпуклый многогранник, составленный из 20 правильных треугольников. Каждая из 12 вершин икосаэдра является вершиной 5 равносторонних треугольников, поэтому сумма углов при вершине равна

Элементы симметрии икосаэдра

Правильный икосаэдр имеет 15 осей симметрии, каждая из которых проходит через середины противоположных параллельных ребер. Точка пересечения всех осей симметрии икосаэдра является его центром симметрии.

Плоскостей симметрии также 15.Плоскости симметрии проходят через четыре вершины, лежащие в одной плоскости, и середины противолежащих параллельных ребер.

Куб или гексаэдр (от греческого hex - шесть и hedra - грань) составлен из 6 квадратов. Каждая из 8 вершин куба является вершиной 3 квадратов, поэтому сумма плоских углов при каждой вершине равна 2700. У куба 12 ребер, имеющих равную длину.

Элементы симметрии куба

Ось симметрии куба может проходить либо через середины параллельных ребер, не принадлежащих одной грани, либо через точку пересечения диагоналей противоположных граней. Центром симметрии куба является точка пересечения его диагоналей.

Через центр симметрии проходят 9 осей симметрии.

Плоскостей симметрии у куба также 9 и проходят они либо через противоположные ребра

(таких плоскостей-6), либо через середины противоположных ребер (таких - 3).

Додекаэдр (от греческого dodeka – двенадцать и hedra– грань) это правильный многогранник, составленный из 12 равносторонних пятиугольников. Додекаэдр имеет 20 вершин и 30 ребер. Вершина додекаэдра является вершиной трех пятиугольников, таким образом, сумма плоских углов при каждой вершине равна 3240.

Элементы симметрии додекаэдра

Додекаэдр имеет центр симметрии и 15 осей симметрии. Каждая из осей проходит через середины противолежащих параллельных ребер.

Додекаэдр имеет 15 плоскостей симметрии. Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра.

Развертки правильных многогранников

Развертка- это способ развернуть многогранник на плоскость после проведения разрезов по нескольким ребрам. Развертка представляет собой плоский многоугольник, составленный из меньших многоугольников - граней исходного многогранника. Один и тот же многогранник может иметь несколько разных разверток.

Элементами симметрии называются вспомогательные геометрические образы (точка, линия, плоскость и их сочетания), с помощью которых мысленно можно совместить в пространстве равные грани кристалла (многогранника). При этом под симметрией кристалла понимается закономерное повторение в пространстве равных его граней, а также вершин и ребер.

Различают три основных элемента симметрии кристаллов – центр симметрии, плоскость симметрии и оси симметрии.

Центром симметрии называется воображаемая точка внутри кристалла, равноудаленная от его элементов ограничения (т. е. противоположных вершин, середин ребер и граней). Центр симметрии является точкой пересечения диагоналей правильной фигуры (куба, параллелепипеда) и обозначается буквой С , а по международной системе Германа-Могена – I.

Центр симметрии в кристалле может быть только один. Однако имеются кристаллы, в которых центр симметрии вообще отсутствует. При решении вопроса о том, имеется ли центр симметрии в Вашем кристалле, необходимо руководствоваться следующим правилом:

«При наличии центра симметрии в кристалле каждой его грани соответствует равная и противоположная ей грань».

На практических занятиях с лабораторными моделями наличие или отсутствие центра симметрии в кристалле устанавливается следующим образом. Кладем кристалл какой-либо его гранью на плоскость стола. Проверяем, присутствует ли сверху равная и параллельная ей грань. Повторяем ту же операцию для каждой грани кристалла. Если каждой грани кристалла отвечает сверху равная и параллельная ей грань, то центр симметрии в кристалле присутствует. Если хотя бы для одной грани кристалла не найдется сверху равной и параллельной ей грани, то центра симметрии в кристалле нет.

Плоскостью симметрии (обозначается буквой Р, по международной символике – m) называется воображаемая плоскость, проходящая через геометрический центр кристалла и разделяющая его на две зеркально равные половины. Кристаллы, имеющие плоскость симметрии, обладают двумя свойствами. Во-первых, две его половины, разделенные плоскостью симметрии, равны по объему; во-вторых, они равны, как отражения в зеркале.

Для проверки зеркального равенства половин кристалла необходимо из каждой его вершины провести воображаемые перпендикуляр к плоскости и продолжить его на то же расстояние от плоскости. Если каждой вершине соответствует с противоположной стороны кристалла зеркально отраженная ей вершина, то плоскость симметрии в кристалле присутствует. При определении плоскостей симметрии на лабораторных моделях кристалл ставится в фиксированное положение и затем мысленно рассекается на равные половины. Проверяется зеркальное равенство полученных половин. Считаем, сколько раз мы можем мысленно рассечь кристалл на две зеркально равные части. Помните, что кристалл при этом должен быть неподвижен!

Число плоскостей симметрии в кристаллах варьирует от 0 до 9. Например, в прямоугольном параллелепипеде находим три плоскости симметрии, т. е. 3Р.

Осью симметрии называется воображаемая линия, проходящая через геометрический центр кристалла, при повороте вокруг которой кристалл несколько раз повторяет свой внешний вид в пространстве, т. е. самосовмещается. Это означает, что после поворота на некоторый угол на место одних граней кристалла становятся другие, равные им грани.

Основной характеристикой оси симметрии является наименьший угол поворота, при котором кристалл первый раз «повторяется» в пространстве. Этот угол называется элементарным углом поворота оси и обозначается α, например:

Элементарный угол поворота любой оси обязательно содержится целое число раз в 360°, т. е. (целое число), где n – порядок оси.

Таким образом, порядком оси называется целое число, показывающее, сколько раз элементарный угол поворота данной оси содержится в 360°. Иначе, порядок оси – это число «повторений» кристалла в пространстве при полном его повороте вокруг данной оси.

Оси симметрии обозначаются буквой L, порядок оси - маленькой цифрой справа внизу, например, L 2 .

В кристаллах возможны следующие оси симметрии и соответствующие им элементарные углы поворота.

Таблица 1

Соотношение осей симметрии и элементарных углов поворота

В любом кристалле существует бесконечное количество осей симметрии первого порядка, поэтому на практике они не определяются.

Осей симметрии 5-го и любого порядка выше 6-го в кристаллах вообще не существует. Эта особенность кристаллов формулируется как закон симметрии кристаллов. Закон симметрии кристаллов объясняется специфичностью их внутреннего строения, а именно – наличием пространственной решетки, которая не допускает возможности существования осей 5-го, 7-го, 8-го и так далее порядков.

В кристалле может быть несколько осей одного и того же порядка. Например, в прямоугольном параллелепипеде присутствуют три оси 2-го порядка, т. е. 3L 2.

В кубе - 3 оси 4-го порядка, 4 оси 3-го порядка и 6 осей 2-го порядка. Оси симметрии наивысшего порядка в кристалле называют главными.

Нахождение осей симметрии на моделях во время лабораторных занятий осуществляется в следующем порядке. Кристалл берется кончиками пальцев одной руки за его противоположные точки (вершины, середины ребер или граней). Воображаемая ось ставится перед собой вертикально; запоминается какой-либо характерный внешний вид кристалла. Затем кристалл вращается другой рукой вокруг воображаемой оси до тех пор, пока его первоначальный внешний вид не «повторится» в пространстве. Считаем, сколько раз кристалл «повторяется» в пространстве при полном повороте вокруг данной оси. Это и будет ее порядок. Аналогичным образом проверяются все другие теоретически возможные направления прохождения оси симметрии в кристалле. Данные оси симметрии называются простыми.

Кроме них существуют сложные оси симметрии, называемые зеркально-поворотными и инверсионными. Зеркально-поворотная ось симметрии представляет собой мысленное сочетание простой оси и перпендикулярной ей плоскости симметрии. Зеркально-поворотные оси могут быть тех же порядков, что простые, но на практике используется только ось 4-го порядка, которая обозначается L 4 2 и всегда ровна L 2, но не наоборот.

Инверсионная ось симметрии представляет собой мысленное сочетание простой оси симметрии и центра симметрии. На практике и в теории используются только инверсионные оси 4-го и 6-го порядка. Они обозначаются Li 4 и Li 6 .

Сочетание всех элементов симметрии кристалла, записанное условными обозначениями, называется его формулой симметрии . В формуле симметрии сначала перечисляются оси симметрии, затем плоскости симметрии и последним показывается наличие центра симметрии. Между обозначениями не ставится точек или запятых. Например, формула симметрии прямоугольного параллелепипеда: 3L 3 3PC; куба – 3L 4 4L 3 6L 2 9PC.

Виды симметрии кристаллов

Видами симметрии называются возможные в кристаллах сочетания элементов симметрии. Каждому виду симметрии соответствует определенная формула симметрии.

Всего для кристаллов теоретически доказано наличие 32 видов симметрии. Таким образом, всего существует 32 формулы симметрии кристаллов.

Все виды симметрии объединяются в 7 ступеней симметрии с учетом наличия характерных элементов симметрии.

1. Примитивная – объединяются виды симметрии, представленные только одиночными осями симметрии разного порядка: L 3 , L 4 , L 6 .

2. Центральная – помимо одиночных осей симметрии присутствует центр симметрии; кроме того, наряду с наличием четных осей симметрии появляется еще плоскость симметрии: L 3 С, L 4 PC, L 6 PC.

3. Планальная (план – плоскость, греч.) – присутствуют одиночная ось и плоскости симметрии: L 2 2P, L 4 4P.

4. Аксиальная (аксис – ось, греч.) – присутствуют только оси симметрии: 3L 2 , L 3 3L 2 , L 6 6L 2 .

5. Планаксиальная – присутствуют оси, плоскости и центр симметрии: 3L 2 3PC, L 4 4L 2 5PC.

6. Инверсионно-примитивная – наличие единственной инверсионной оси симметрии: L i 4 , L i 6 .

7. Инверсионно-планальная – наличие, помимо инверсионной оси, простых осей и плоскостей симметрии: L i 4 4L 2 2P, L i 6 3L 2 3P.

В каждую ступень симметрии объединяется разное количество видов симметрии: от 2 до 7.

Сингонии

Сингонией называется группа видов симметрии, обладающих одноименной главной осью симметрии и одинаковым общим уровнем симметрии (син – сходный, гониа – угол, дословно: сингония – сходноугольность, греч.). Переход от одной сингонии к другой сопровождается повышением степени симметрии кристаллов.

Всего выделяют 7 сингоний. В порядке последовательного повышения степени симметрии кристаллов они располагаются следующим образом.

1. Триклинная сингония (клин – угол, наклон, греч.) получила название с учетом той особенности кристаллов, что между всеми гранями углы всегда косые. Кроме С других элементов симметрии нет.

2. Моноклинная (монос – один, греч.) – в одном направлении между гранями кристаллов угол всегда косой. В кристаллах могут присутствовать L 2 , P и С. Ни один из элементов симметрии не повторяется хотя бы дважды.

3. Ромбическая – получила название по характерному поперечному сечению кристаллов (вспомните углы ромбические 1-го рода).

4. Тригональная – названа по характерному поперечному сечению (треугольник) и многогранным углам (тригональный, дитригональный). Обязательно присутствует одна L 3 .

5. Тетрагональная – характерны поперечное сечение в форме квадрата и многогранные углы – тетрагональный и дитетрагональный. Обязательно присутствует L 4 или L i4 .

6. Гексагональная – сечение в форме правильного шестиугольника, многогранные углы – гексагональный и дигексагональный. обязательно присутствие одной L 6 или L i 6 .

7. Кубическая – типична кубическая форма кристаллов. Характерно сочетание элементов симметрии 4L 3 .

Сингонии объединяются в 3 категории : низшую, среднюю и высшую.


Похожая информация.




Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...