Смысл градиента. МА

Теоретический минимум

Переход от анализа функций одной переменной к анализу функций многих переменных - по крайней мере двух - приводит к значительному
усложнению теории. Помимо прочего теряется наглядность: если функция в общем случае задаёт кривую на плоскости, функция
- поверхность в пространстве, то функции большего числа аргументов уже не допускают подобной геометрической интерпретации.
С другой стороны теоретическое описание функций трёх и большего числа переменных уже принципиально не отличается от описания функций
двух переменных. Поэтому удобно вводить новые понятия именно на основе функций двух переменных, ещё позволяющих наглядно пояснять смысл
нововведений. Так поступим и при определении производной по направлению.

Напомним, что производная функции имеет простой геометрический смысл. Величина в точке равна угловому
коэффициенту касательной к графику этой функции в данной точке. Чем больше этот угловой коэффициент, тем больше угол, который составляет
касательная к графику с осью абсцисс. Чем больше этот угол, тем быстрее меняется функция в малой окрестности рассматриваемой точки. Таким образом,
производная позволяет определять скорость изменения функции.

Теперь обратимся к функции двух переменных. Она, как уже говорилось, определяет поверхность. Выберем точку этой поверхности и зададимся
вопросом о скорости изменения функции в этой точке. Здесь должно быть понятно, что вопрос сформулирован слишком грубо. Когда такой вопрос
ставился в отношении функции одной переменной, то там никаких проблем не было: аргумент мог изменяться только вдоль оси абсцисс. Если же у
функции хотя бы два аргумента, то её изменение определяется уже поведением двух аргументов. В связи с этим в вопрос о скорости изменения
функции следует ввести дополнение, задав направление, в котором будут изменяться её аргументы.

Начнём с частных случаев, а для примера возьмём известную из аналитической геометрии поверхность, которая задаётся уравнением

Поверхность представляет собой т.н. гиперболический параболоид (см. рис. 1).

Исследуем поведение функции в точке и её малой окрестности. Например, рассмотрим изменение этой функции
вдоль оси абсцисс. С геометрической точки зрения мы проводим плоскость ; с точки зрения формальной мы фиксируем один аргумент и
фактически переходим к функции одной переменной. А как исследовать функцию одной переменной известно - для этого существует понятие
производной. В терминологии анализа функций нескольких переменных производная функции по одной переменной при фиксированных остальных -
частная производная. Таким образом, в нашем примере скорость изменения функции в точке в направлении оси абсцисс
позволяет определить частная производная . Более того, мы можем расширить возможности этого инструмента.


Чтобы пояснить это, рассмотрим сечение параболоида плоскостью (см. рис. 2 - там сечение ограничивает вид поверхности сверху).
Это обычная парабола . Эта функция убывает при отрицательных значениях и возрастает при положительных значениях -
если рассматривается изменение функции вдоль оси абсцисс. Но мы можем рассмотреть и изменение функции в направлении, противоположном
направлению оси абсцисс - и тогда всё будет наоборот! При функция будет убывать, а при - возрастать. А частная производная
в данном случае даёт только правильную количественную характеристику скорости изменения функции, но неправильно определяет
характер монотонности. Это говорит о том, что всё-таки одной частной производной в данном случае недостаточно. Тем более что мы ведь
рассмотрели только удобный частный случай. Есть и второй удобный частный случай: рассмотреть изменение функции в направлении оси ординат -
там главную роль будет играть частная производная . Но как исследовать скорость изменения функции в произвольном направлении,
составляющем с осью абсцисс угол ?

Вот для этого и вводится понятие производной по направлению. Строгое определение таково:

Несложно понять его структуру: она полностью аналогична структуре производной функции одной переменной. Действительно, по своей сути
производная - отношение приращения функции к вызвавшему его приращению аргумента. В случае функции одной переменной рассматривается
одна-единственная возможность изменения аргумента - в направлении оси абсцисс. В анализе функций одной переменной это естественное
направление. Когда аргументов становится больше, например, два, то нужно задать изменение аргумента в произвольном направлении.
Именно так и устроены аргументы у первого слагаемого в числителе дроби. Там написано положение точки, смещённой от точки
по прямой, составляющей с осью абсцисс угол . Таким образом, в числителе дроби под пределом написано приращение функции при
смещении в направлении, составляющем с осью абсцисс угол , в знаменателе находится параметр, описывающий величину смещения
аргументов в этом направлении.

Как обычно, по определению считать производную неудобно, поэтому доказывается следующая простая формула:
.
Обратите внимание: если вычисляем производную в направлении оси абсцисс, то , и получается частная производная по переменной .
Если же мы хотим вычислять производную в противоположном направлении, то , и частная производная приобретает знак минус.
При дифференцировании вдоль оси ординат производная по этому направлению совпадает с частной производной по переменной (угол ).

Теперь можно и обобщить на случай трёх аргументов (а там уже будет ясно обобщение на любое число переменных). В трёхмерном случае направление
определяется направляющими косинусами - косинусами углов, которые направление составляет с осями координат.
.

Заметим, что введение направляющего вектора даёт возможность записать производную по направлению в виде
скалярного произведения:
,
где .
Этот вектор называется градиентом функции . Свойства градиента подробнее рассматриваются в векторном анализе. Здесь остановимся
только на его геометрическом смысле, столь важном, например, в физических приложениях. Смысл производной по направлению совпадает
со смыслом производной функции одного аргумента. Величина производной характеризует скорость изменения функции в данной точке
в данном направлении. В каком-то направлении функция может изменяться быстрее, в каком-то медленнее. В направлении самого быстрого
изменения функции производная будет самая большая по модулю. С другой стороны производная по направлению - скалярное произведение
градиента функции и направляющего вектора данного направления:
.
Наибольшего значения это произведение достигает, когда косинус в правой части становится равным единице. А это возможно при
совпадении направления вектора и градиента функции. Следовательно, направление градиента функции и направлении, Таким образом,. переноса тепла. Так как градиент направлен в сторону скорейшего возрастания функции, то градиент, взятый со знаком минус, показывает
направление скорейшего убывания функции. Следовательно, в законе Фурье заложено распространение тепла в направлении скорейшего
убывания температуры.

Некоторые понятия и термины используются сугубо в узких рамках Другие же определения встречаются в областях, резко противоположных. Так, например, понятием "градиент" пользуется и физик, и математик, и специалист по маникюру или "Фотошопу". Что же такое градиент как понятие? Давайте разбираться.

Что говорят словари?

Что такое "градиент" специальные тематические словари трактуют в соотношении со своей спецификой. В переводе с латинского языка это слово обозначает - "тот, который идет, растет". А "Википедия" определяет это понятие как "вектор, указывающий направление возрастания величины". В толковых словарях мы видим значение этого слова как "изменение любой величины на одно значение". Понятие может нести как количественное, так и качественное значение.

Если коротко, то это плавный постепенный переход любой величины на одно значение, прогрессивное и непрерывное изменение в количестве или направлении. Вектор вычисляют математики, метеорологи. Это понятие применяют в астрономии, медицине, искусстве, компьютерной графике. Под схожим термином определяются совершенно не схожие виды деятельности.

Математические функции

Что такое градиент функции в математике? Это которого указывает направление роста функции в скалярном поле от одного значения к другому. Величина градиента рассчитывается с помощью определения частных производных. Для выяснения максимально быстрого направления роста функции на графике выбираются две точки. Они определяют начало и конец вектора. Скорость роста значения от одной точки к другой - это величина градиента. Математические функции, основанные на расчетах этого показателя, используются в векторной компьютерной графике, объектами которой являются графические изображения математических объектов.

Что такое градиент в физике?

Понятие градиента распространено во многих отраслях физики: градиент оптики, температуры, скорости, давления и т. д. В этой отрасли понятие обозначает меру возрастания или убывание величины на единицу. Вычисляется расчетами как разница между двумя показателями. Рассмотрим некоторые из величин подробнее.

Что такое градиент потенциала? В работе с электростатическим полем определяются две характеристики: напряженность (силовая) и потенциал (энергетическая). Эти разные величины связаны со средой. И хотя они и определяют разные характеристики, все же имеют связь между собой.

Для определения напряженности силового поля используется градиент потенциала - величина, которая определяет быстроту изменения потенциала по направлению силовой линии. Как рассчитать? Разность потенциалов двух точек электрического поля вычисляется по известному напряжению с помощью вектора напряженности, который равен градиенту потенциала.

Термины метеорологов и географов

Впервые понятие градиента было применено именно метеорологами для определения изменения величины и направления различных метеорологических показателей: температуры, давления, скорости и силы ветра. Он является мерой количественного изменения различных величин. В математику термин ввел Максвелл уже значительно позднее. В определении погодных условий существуют понятия вертикального и горизонтального градиентов. Рассмотрим их подробнее.

Что такое градиент температуры вертикальный? Это величина, которая показывает изменение показателей, вычисленное на высот в 100 м. Может быть как положительного направления, так и отрицательного, в отличие от горизонтального, который всегда положителен.

Градиент показывает на местности величину или угол уклона. Вычисляется как отношение высоты к длине проекции пути на определенном участке. Выражается в процентах.

Медицинские показатели

Определение "градиент температурный" можно встретить также среди медицинских терминов. Он показывает разницу в соответствующих показателях внутренних органов и поверхности тела. В биологии градиент физиологический фиксирует изменение в физиологии любого органа или организма в целом на любой стадии его развития. В медицине показатель метаболический - интенсивность обмена веществ.

Не только физики, но и медики используют этот термин в работе. Что такое градиент давления в кардиологии? Такое понятие определяет разность кровяного давления в любых связанных между собой отделах сердечно-сосудистой системы.

Убывающий градиент автоматии - это показатель уменьшения частоты возбуждений сердца в направлении от его основания к верху, возникающие автоматически. Кроме того, кардиологи место поражения артерии и его степень выявляют благодаря контролю над разностью амплитуд систолических волн. Иными словами, с помощью амплитудного градиента пульса.

Что такое градиент скорости?

Когда говорят о скорости изменения некой величины, то подразумевают под этим быстроту изменения по времени и в пространстве. Другими словами градиент скорости определяет изменение пространственных координат в соотношении с временными показателями. Этот показатель вычисляют метеорологи, астрономы, химики. Градиент скорости сдвига слоев жидкости определяют в нефтегазовой промышленности, для вычисления скорости подъема жидкости по трубе. Такой показатель тектонических движений - это область расчетов сейсмологов.

Экономические функции

Для обоснования важных теоретических выводов понятием градиента широко пользуются экономисты. При решении задач потребителя используется функция полезности, которая помогает представить предпочтения из множества альтернатив. "Функция бюджетных ограничений" - термин, используемый для обозначения множества потребительских наборов. Градиенты в этой области используют для вычисления оптимальных потреблений.

Градиент цвета

Термин "градиент" знаком творческим личностям. Хоть они и далеки от точных наук. Что такое градиент для дизайнера? Так как в точных науках - это постепенное увеличение величины на единицу, так и в цвете этот показатель обозначает плавный, растянутый переход оттенков одного цвета от более светлого к темному, или же наоборот. Художники так и называют этот процесс - "растяжка». Возможен переход и к разным сопутствующим цветам в одной гамме.

Градиентные растяжки оттенков в окраске помещений заняли прочную позицию среди методик дизайна. Новомодный стиль омбре - плавное перетекание оттенка от светлого к темному, от яркого к бледному - эффектно преобразует любое помещения в доме и в офисе.

Оптики используют специальные линзы в солнцезащитных очках. Что такое градиент в очках? Это изготовление линзы особым способом, когда сверху вниз цвет переходит от более темного к более светлому оттенку. Изделия, изготовленные по такой технологии, защищают глаза от солнечного излучения и позволяют рассматривать предметы даже при очень ярком свете.

Цвет в веб-дизайне

Тем, кто занимается веб-дизайном и компьютерной графикой, хорошо знаком универсальный инструмент "градиент", с помощью которого создается масса самых разнообразных эффектов. Переходы цвета преображаются в блики, причудливый фон, трехмерность. Манипуляции с оттенками, создание света и тени придает объем векторным объектам. В этих целях используются несколько видов градиентов:

  • Линейный.
  • Радиальный.
  • Конусовидный.
  • Зеркальный.
  • Ромбовидный.
  • Градиент шума.

Градиентная красота

Для посетительниц салонов красоты вопрос о том, что такое градиент, не станет неожиданным. Правда, и в этом случае знание математических законов и основ физики не обязательно. Речь идет все так же о цветовых переходах. Объектом градиента становятся волосы и ногти. Техника омбрэ, что в переводе с французского обозначает "тон" пришла в моду от спортивных любительниц серфинга и других пляжных развлечений. Естественным образом выгоревшие и вновь отросшие волосы стали хитом. Модницы стали специально окрашивать волосы с еле заметным переходом оттенков.

Техника омбре не прошла мимо маникюрных салонов. Градиент на ногтях создает окраску с постепенным осветлением пластины от корня к краю. Мастера предлагают горизонтальный, вертикальный, с переходом и другие разновидности.

Рукоделие

Рукодельницам понятие "градиент" знакомо еще с одной стороны. Техника подобного плана используется в создании вещей ручной работы в стиле декупаж. Таким способом создают новые вещи под старину, или реставрируют старые: комоды, стулья, сундуки и прочее. Декупаж подразумевает нанесение узора с помощью трафарета, основой для которого служит градиент цвета, как фон.

Художники по тканям взяли на вооружение окраску таким способом для новых моделей. Платья с расцветкой градиент покорили подиумы. Моду подхватили рукодельницы - вязальщицы. Трикотажные вещи с плавным переходом цвета пользуются успехом.

Подводя итог определению "градиент", можно сказать об очень обширной области человеческой деятельности, в которой находится место этому термину. Не всегда замена синонимом "вектор" оказывается подходящей, так как вектор - это все-таки понятие функциональное, пространственное. В чем определяется общность понятия - это постепенное изменение определенной величины, субстанции, физического параметра на единицу за определенный период. В цвете - это плавный переход тона.

Градиент (вектор) Градиент (от лат. gradiens, род. падеж gradientis -шагающий), вектор , показывающий направление наискорейшего изменения некоторой величины, значение которой меняется от одной точки пространства к другой (см. Поля теория ). Если величина выражается функцией u (х , у , z ), то составляющие Г. равны ═Г. обозначается знаком grad u . Г. в некоторой точке направлен по нормали к поверхности уровня в этой точке, длина Г. равна Понятием Г. широко пользуются в физике, метеорологии, океанологии и др., чтобы охарактеризовать скорость изменения в пространстве какой-либо величины при перемещении на единицу длины в направлении Г.: например, Г. давления, Г. температуры, Г. влажности, Г. скорости ветра, Г. солёности, Г. плотности морской воды. Г. электрического потенциала называется напряжённостью электрического поля.

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Градиент (вектор)" в других словарях:

    Вектор Словарь русских синонимов. градиент сущ., кол во синонимов: 2 вектор (5) … Словарь синонимов

    Вектор градиент, вектор градиента … Орфографический словарь-справочник

    градиент - Изменение значения некоторой величины на единицу расстояния в заданном направлении. Топографический градиент — это изменение высоты местности на измеренном по горизонтали расстоянии. }

Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...