Спектральная плотность случайного процесса. Пара преобразований Фурье

Спектральная плотность и сигнал связаны между собой парой преобразований Фурье:

Все свойства спектральной плотности объединены в основных теоремах о спектрах.

I. Свойство линейности.

Если имеется некоторая совокупность сигналов причём,…, то взвешенная сумма сигналов преобразуется по Фурье следующим образом:

Здесь - произвольные числовые коэффициенты.

II. Теорема о сдвигах.

Предположим, что для сигнала известно соответствие. Рассмотрим такой же сигнал, но возникающий на секунд позднее. Принимая точку за новое начало отсчёта времени, обозначим этот смещённый сигнал как. Введём замену переменной: . Тогда,


Модуль комплексного числа при любых равен 1, поэтому амплитуды элементарных гармонических составляющих, из которых складывается сигнал, не зависят от его положения на оси времени. Информация об этой характеристике сигнала заключена фазовом спектре.

III. Теорема масштабов.

Предположим, что исходный сигнал подвергнут изменению масштаба времени. Это означает, что роль времени играет новая независимая переменная (- некоторое вещественное число.) Если > 1, то происходит “ сжатие” исходного сигнала; если же 0<<1, то сигнал “растягивается” во времени. Если, то:

Произведём замену переменной, тогда, откуда следует:

При сжатии сигнала в раз на временной оси во столько же раз расширяется его спектр на оси частот. Модуль спектральной плотности при этом уменьшается в раз.

Очевидно, что при растягивании сигнала во времени (т.е. при <1) имеет место сужение спектра и увеличение модуля спектральной плотности.

IV. Теорема о спектре производной и неопределённого интеграла.

Пусть сигнал и его спектральная плоскость заданы. Будем изучать новый сигнал и поставим цель найти его спектральную плотность.

По определению:

Преобразование Фурье - линейная операция, значит, равенство (2.3) справедливо и по отношению к спектральным плотностям. Получаем по теореме о сдвигах:

Представляя экспоненциальную функцию рядом Тейлора:

подставляя этот ряд в (2.6) и ограничиваясь первыми двумя членами ряда, находим

Итак, дифференцирование сигнала по времени эквивалентно простой алгебраической операции умножения спектральной плотности на множитель. Поэтому говорят, что мнимое число является оператором дифференцирования, действующим в частотной области.

Вторая часть теоремы. Рассмотренная функция является неопределённым интегралом по отношению к функции. Интеграл это есть, значит - его спектральная плотность, а из формулы (2.7) равна:

Таким образом, множитель служит оператором интегрирования в частотной области.

V. Теорема о свёртке.

При суммировании сигналов их спектры складываются. Однако спектр произведения сигналов не равен произведению спектров, а выражается некоторым специальным интегральным соотношением между спектрами сомножителей.

Пусть и - два сигнала, для которых известны соответствия,. Образуем произведение этих сигналов: и вычислим его спектральную плотность. По общему правилу:

Применив обратное преобразование Фурье, выразим сигнал через его спектральную плотность и подставим результат в (2.9):

Изменив порядок интегрирования, будем иметь:

Интеграл, стоящий в правой части называют свёрткой функций и. Символически операция свёртки обозначается как *

Таким образом, спектральная плотность произведения двух сигналов с точностью до постоянного числового множителя равна свёртке спектральных плотностей сомножителей.

Периодическое продолжение импульса. Понятие спектральной плотности сигнала.Обратное преобразование Фурье. Условие существования спектральной плотности сигнала.Связь между длительностью импульса и шириной его спектра.Обобщенная формула Рэлея.Взаимная спектральная плотность сигналов. Энергетический спектр.Корреляционный анализ сигналов.Сравнение сигналов, сдвинутых во времени.

Цель лекции:

Получить спектральные характе­ристики непериодических (импульсных) сигналов методом обобщения рядов Фурье. Определить требования к ширине полосы пропускания радиотехнического устройства. Представить сигналы посредством их спектральных плотностей. Использовать энергетический спектр для получения различных инженерных оценок. Понять, как возникает потребность в сигналах со специально выбранными свойствами.

Пусть s (t) - одиночный импульсный сигнал конечной длительности. Дополнив его мысленно такими же сигналами, периодически следую­щими через некоторый интервал времени T, получим изученную ранее периодическую последовательность S пер (t), которая может быть представлена в виде комплексного ряда Фурье

(12.1) с коэффициентами . (12.2)

Для того, чтобы вернуться к одиночному импульсному сигналу, устремим к бесконечности период повторения Т. При этом очевидно:

а) частоты соседних гармоник nω 1 и (n+ l)ω 1 окажутся сколь угодно близкими, так что в формулах (12.1) и (12.2) дискретную переменную nω 1 можно заменить непрерывной переменной ω - текущей частотой;

б) амплитудные коэффициенты С n станут неограниченными малыми из-за наличия величины Т в знаменателе формулы (12.2).

Наша задача состоит теперь в нахождении предельного вида формулы (12.1) при T→∞.

Рассмотрим малый интервал частот Δω, образующий окрестность некоторого выбранного значения частоты ω 0 . В пределах этого интервала будет содержаться N=Δω/ω 1 = ΔωT/(2π) отдельных пар спектральных составляющих, частоты которых отличаются сколь угодно мало. Поэтому составляющие можно складывать так, как будто все они имеют одну и ту же частоту и характеризуются одинаковыми комплексными амплитудами

В результате находим комплексную амплитуду эквивалентного гармонического сигнала, отображающего вклад всех спектральных составляющих, содержащихся внутри интервала Δω

. (12.3)

Функция (12.4)

носит название спектральной плотности сигнала s (t). Формула (12.4) осуществляет преобразование Фурье данного сигнала.

Решим обратную задачу спектральной теории сигналов: найдем сигнал по его спектральной плотности, которую будем считать заданной.

Поскольку в пределе частотные интервалы между соседними гармониками неограниченно сокращаются, последнюю сумму следует заменить интегралом

. (12.5)

Эта важная формула называется обратным преобразованием Фурье для сигнала s(t).

Сформулируем окончательно фундаментальный результат: сигнал s (t) и его спектральная плотность S(ω) взаимно однозначно связаны прямым и обратным преобразованиями Фурье

, (12.6)

.

Спектральное представление сигналов открывает прямой путь к анализу прохождения сигналов через широкий класс радиотехнических цепей, устройств и систем.

Сигналу s(t) можно сопоставить его спектральную плотность s(ω) в том случае, если этот сигнал абсолютно интегрируем, т. е. существует интеграл

Подобное условие значительно сужает класс допустимых сигналов. Так, в указанном классическом смысле невозможно говорить о спектральной плотности гармонического сигнала и (t) =U m cosω 0 t , существующего на всей бесконечной оси времени.

Важный вывод: чем меньше длительность импульса, тем шире его спектр.

Под шириной спектра понимают частотный интервал, в пределах которого модуль спектральной плотности не меньше некоторого наперед задан­ного уровня, например, изменяется в пределах от |S| max , до 0.1|S| max .

Произведение ширины спектра импульса на его длительность есть постоянное число, зависящее только от формы импульса и, как правило, имеющее порядок единицы: Чем короче длительность импульса, тем шире должна быть полоса пропускания соответствующего усилителя. Короткие импульсные помехи имеют широкий спектр и поэтому могут ухудшать условия радиоприема в значительной полосе частот.

Математические модели многих сигналов, широко применяемых в радиотехнике, не удовлетворяют условию абсолютной интегрируемости, поэтому метод преобразований Фурье в обычном виде к ним неприменим. Однако можно говорить о спектральных плотностях таких сигналов, если допустить, что эти плотности описываются обобщенными функциями.

Пусть два сигнала и(t) и v (t), в общем случае комплексно-значные, определены своими обратными преобразованиями Фурье.

Найдем скалярное произведение этих сигналов, выразив один из них, например v (t), через его спектральную плотность

Полученное соотношение представляет собой обобщенную формулу Рэлея. Легко запоминающаяся трактовка этой формулы такова: скалярное произведение двух сигналов с точностью до коэффициента пропорционально скалярному произведению их спектральных плотностей. Если сигналы тождественно совпадают, то скалярное произведение становится равным энергии

. (12.7)

Назовем взаимным энергетическим спектром вещественных сигналов u (t) и v (t) функцию

, (12.8)

такую, что

. (4.9)

Нетрудно заметить, что Re W uv (ω)-четная, а Im W uv (ω)-нечетная функция частоты. Вклад в интеграл (12.9) дает только вещественная часть, поэтому

. (12.10)

Последняя формула дает возможность проанализировать «тонкую структуру» взаимосвязи сигналов.

Более того, обобщенная формула Рэлея, представленная в виде (12.10), указывает на принципиальный путь, позволяющий уменьшить степень связи между двумя сигналами, добившись в пределе их ортогональности. Для этого один из сигналов необходимо подвергнуть обработке в особой физической системе, называемой частотным фильтром. К этому фильтру предъявляется требование: не пропускать на выход спектральные составляющие, находящиеся в пределах частотного интервала, где вещественная часть взаимного энергетического спектра велика. Частотная зависимость коэффициента передачи такого ортогонализирующего фильтра будет обладать резко выраженным минимумом в пределах указанной области частот.

Спектральное представление энергии сигнала легко получить из обобщенной формулы Рэлея, если в ней сигналы и(t) и v (t) считать одинаковыми. Формула (12.8), выражающая спектральную плотность энергии, приобретает вид

Величина W u (ω) носит название спектральной плотности энергии сигнала и(t), или, короче, его энергетического спектра. Формула (3.2) при этом запишется так

. (12.12)

Соотношение (4.12) известно как формула Рэлея (в узком смысле), которая констатирует следующее: энергия любого сигнала есть результат суммирования вкладов от различных интервалов частотной оси.

Изучая сигнал с помощью его энергетического спектра, мы неизбежно теряем информацию, которая заключена в фазовом спектре сигнала, поскольку в соответствии с формулой (4.11) энергетический спектр есть квадрат модуля спектральной плотности и не зависит от ее фазы.

Обратимся к упрощенной идее работы импульсного радиолокатора, предназначенного для измерения дальности до цели. Здесь информация об объекте измерения заложена в величине τ - задержке по времени между зондирующим и принятым сигналами. Формы зондирующего и (t) и принятого и (t-τ) сигналов одинаковы при любых задержках. Структурная схема устройства обработки радиолокационных сигналов, предназначенного для измерения дальности, может выглядеть так, как это изображено на рисунке 12.1.

Рисунок 12.1 - Устройство для измерения времени задержки сигналов

Рассмотрим так называемую энергетическую форму интеграла Фурье. В главе 5 были приведены формулы (7.15) и (7.16), дающие переход от функции времени к изображению Фурье и обратно. Если рассматривается некоторая случайная функция времени х (с), то для нее эти формулы могут быть записаны в виде

и проинтегрируем по всем

заменим выражением (11.54):

Величина, находящаяся в квадратных скобках (11.57), как нетрудно видеть, является исходной функцией времени (11.55). Поэтому в результате получается так называемая формула Релея (теорема Парсеваля), которая и соответствует энергетической форме интеграла Фурье:

Правая часть (11.58) и (11.39) представляет собой величину, пропорциональную энергии рассматриваемого процесса. Так, например, если рассматривается ток, протекающий по некоторому резистору с сопротивлением К, то энергия, выделившаяся в этом резисторе за время и будет

Формулы (11.58) и (11.59) и выражают энергетическую форму интеграла Фурье.

Однако эти формулы неудобны тем, что для большинства процессов энергия за бесконечный интервал времени стремится также к бесконечности. Поэтому удобнее иметь дело не с энергией, а со средней мощностью процесса, которая будет получена, если энергию поделить на интервал наблюдения. Тогда формулу (11.58) можно представить в виде

Вводя обозначение

носит название спектральной плотности. Важным

По своему физическому смыслу спектральная плотность есть величина, которая пропорциональна средней мощности процесса в интервале частот от со до со + й?со.

В некоторых случаях спектральную плотность рассматривают только для положительных частот, удваивая ее при этом, что можно сделать, так как спектральная плотность является четной функцией частоты. Тогда, например, формула (11.62) должна быть записана в виде

- спектральная плотность для положительных частот.

так как при этом формулы получают более симметричный характер.

Весьма важным обстоятельством является то, что спектральная плотность и корреляционная функция случайных процессов представляют собой взаимные преобразования Фурье, т. е. они связаны интегральными зависимостями типа (11.54) и (11.55). Это свойство приводится без доказательств .

Таким образом, могут быть записаны следующие формулы:

Так как спектральная плотность и корреляционная функция представляют собой четные вещественные функции, то иногда формулы (11.65) и (11.66) представляют в более простом виде;

)

Это вытекает из того, что имеют место равенства:

и мнимые части могут быть отброшены после подстановки в (11.65) и (11.66), так как слева стоят вещественные функции.

заключается в том, что чем уже график спектральной плотности (рис, 11.16, а), т. е. чем меньшие частоты представлены в спектральной плотности, тем медленнее изменяется величина х во времени. Наоборот, чем шире график спектральной плотности (рис. 11.16, б), т. е. чем большие частоты представлены в спектральной плотности, тем тоньше структура функции х (г) и тем быстрее происходят изменения.г во времени.

Как видно из этого рассмотрения, связь между видом спектральной плотности и видом функции времени получается обратной но сравнению со связью между корреляционной функцией и самим процессом (рис. 11.14). Отсюда вытекает, что более широкому графику спектральной плотности должен соответствовать более узкий график корреляционной функции и наоборот.

И 8 (со). Эти функции, в отличие от импульсных функций, рассматривавшихся в главе 4, являются четными. Это означает, что функция 8 (т) расположена симметрично относительно начала координат и может быть определена следующим образом;

Аналогичное определение относится к функции 8 (со). Иногда в рассмотрение вводят нормированную спектральную плотность, являющуюся изображением Фурье нормированной корреляционной функции (11.52):

и следовательно,

где О - дисперсия.

Взаимные спектральные плотности также являются мерой связи между двумя случайными величинами. При отсутствии связи взаимные спектральные плотности равны нулю.

Рассмотрим некоторые примеры.

Эта функция изображена на рис. 11.17, а. Соответствующее ей изображение Фурье на основании табл. 11.3 будет

Спектр процесса состоит из единственного пика типа импульсной функции, расположенной в начале координат (рис. 11,17, б).

Это означает, что вся мощность рассматриваемого процесса сосредоточена на пулевой частоте, что и следовало ожидать.

Эта функция изображена на рис. 11.18, а, В соответствии с табл. 11.3 спектральная плотность будет

3. Для периодической функции, разлагаемой в ряд Фурье

кроме периодической части будет содержать непериодическую составляющую, то спектр этой функции будет содержать, наряду с отдельными линиями типа импульсной функции, также и непрерывную часть (рис. 11.20). Отдельные пики на графике спектральной плотности указывают на присутствие в исследуемой функции скрытых нериодичностей.

не содержит периодической части, то она будет иметь непрерывный спектр без ярко выраженных пиков.

Рассмотрим некоторые стационарные случайные процессы, имеющие значение при исследовании систем управления. Будем рассматривать только центрированные

При этом средний квадрат случайной величины будет равен дисперсии:

учет постоянного смещения в системе управления является элементарным.

(рис. 11.21, а):

Пример такого процесса - тепловые шумы резистора, которые дают уровень спектральной плотности хаотического напряжения на этом резисторе

Абсолютная температура.

На основании (11,68) спектральной плотности (11.71) соответствует корреляционная функция

отсутствует корреляция между последующими и предыдущими значениями случайной величины х.

а следовательно, бесконечно большая мощность.

Чтобы получить физически реальный процесс, удобно ввести понятие белого шума с ограниченной спектральной плотностью (рис. 11.21, б):

Полоса частот для спектральной плотности.

Этому процессу соответствует корреляционная функция

Среднеквадратичное значение случайной величины пропорционально корню квадратному из полосы частот:

Часто бывает удобнее аппроксимировать зависимость (11.73) плавной кривой. Для этой цели можно, например, использовать выражение

Коэффициент, определяющий ширину полосы частот.

Процесс приближается к белому шуму, так

как для этих частот

Интегрирование (11.77) по всем частотам дает возможность определить дисперсию:

Поэтому спектральная плотность (11.77) может быть записана в другом виде:

Корреляционная функция для этого процесса

Корреляционная функция также изображена на рис. 11.21, в.

Переход от одного значения к другому совершается мгновенно. Интервалы времени подчиняются закону распределения Пуассона (11.4).

График такого вида получается, например, в первом приближении при слежении радиолокатором за движущейся целью. Постоянное значение скорости соответствует движению цели по прямой. Перемена знака или величины скорости соответствует маневру цели.

Будет средним значением интервала времени, в течение которого угловая скорость сохраняет постоянное значение. Применительно к радиолокатору это значение будет средним временем движения цели по прямой.

Для определения корреляционной функции необходимо найти среднее значение произведения

При нахождении этого произведения могут быть два случая.

относятся к одному интервалу. Тогда среднее значение произведения угловых скоростей будет равно среднему квадрату угловой скорости или дисперсии:

относятся к разным интервалам. Тогда среднее значение произведения скоростей будет равно пулю:

так как произведения с положительным и отрицательным знаками будут равновероятными. Корреляционная функция будет равна

Вероятность нахождения их в разных интервалах.

Вероятность отсутствия

Для интервала времени

так как эти события независимые.

В результате для конечного промежутка Ат получаем

Знак модуля при т поставлен вследствие того, что выражение (11.80) должно соответствовать четной функции. Выражение для корреляционной функции совпадает с (11.79). Поэтому спектральная плотность рассматриваемого процесса должна совпадать с (11.78):

Заметим, что в отличие от (11.78) формула спектральной плотности (11.81) записана для угловой скорости процесса (рис. 11.22). Если перейти от угловой скорости к углу, то получится нестационарный случайный процесс с дисперсией, стремящейся к бесконечности. Однако в большинстве случаев следящая система, на входе которой действует этот процесс, обладает астатизмом первого и более высоких порядков. Поэтому первый коэффициент ошибки с0 у следящей системы равен нулю и ее ошибка будет определяться только входной скоростью и производными более высоких порядков, относительно которых процесс стационарен. Это дает возможность использовать спектральную плотность (11.81) при расчете динамической ошибки следящей системы.

3. Нерегулярная качка. Некоторые объекты, например корабли, самолеты и другие, находясь под действием нерегулярных возмущений (нерегулярное волнение, атмосферные возмущения и т. п.), движутся но случайному закону Так как сами объекты имеют определенную им свойственную, частоту колебаний, то они обладают свойством подчёркивать те частоты возмущений, которые близки к их собственной частоте колебаний. Получающееся при этом случайное движение объекта называют нерегулярной качкой в отличие от регулярной качки, представляющей собой периодическое движение.

Типичный график нерегулярной качки изображен на рис. 11.23. Из рассмотрения этого графика видно, что, несмотря на случайный характер, это

движение довольно близко к периодическому.

В практике корреляционную функцию нерегулярной качки часто аппроксимируют выражением

Дисперсия.

находятся обычно путем обработки экспериментальных данных (натурных испытаний).

Корреляционной функции (11.82) соответствует спектральная плотность (см. табл. 11.3)

Неудобством аппроксимации (11.82) является то, что этой формулой можно описать поведение какой-либо одной величины нерегулярной качки (угла, угловой скорости или углового ускорения), В этом случае величина О будет соответствовать дисперсии угла, скорости или ускорения.

Если, например, записать формулу (11.82) для угла, то этому процессу будет соответствовать нерегулярная камка с дисперсией для угловых скоростей, стремящейся к бесконечности, т. е. это будет физически нереальный процесс.

Более удобная формула для аппроксимации угла качки

Однако и эта аппроксимация соответствует физически нереальному процессу, так как дисперсия углового ускорения получается стремящейся к бесконечности.

Для получения конечной дисперсии углового ускорения требуются еще более сложные формулы аппроксимации, которые здесь не приводятся.

Типичные кривые для корреляционной функции и спектральной плотности нерегулярной качки приведены на рис. 11.24.

В статистической радиотехнике и физике при изучении детерминированных сигналов и случайных процессов широко используется их спектральное представление в виде спектральной плотности, которая базируется на преобразовании Фурье .

Если процесс имеет конечную энергию и квадратично интегрируем (а это нестационарный процесс), то для одной реализации процесса можно определить преобразование Фурье как случайную комплексную функцию частоты:

X (f) = ∫ − ∞ ∞ x (t) e − i 2 π f t d t . {\displaystyle X(f)=\int \limits _{-\infty }^{\infty }x(t)e^{-i2\pi ft}dt.} (1)

Однако она оказывается почти бесполезной для описания ансамбля. Выходом из этой ситуации является отбрасывание некоторых параметров спектра, а именно спектра фаз, и построении функции, характеризующей распределение энергии процесса по оси частот. Тогда согласно теореме Парсеваля энергия

E x = ∫ − ∞ ∞ | x (t) | 2 d t = ∫ − ∞ ∞ | X (f) | 2 d f . {\displaystyle E_{x}=\int \limits _{-\infty }^{\infty }|x(t)|^{2}dt=\int \limits _{-\infty }^{\infty }|X(f)|^{2}df.} (2)

Функция S x (f) = | X (f) | 2 {\displaystyle S_{x}(f)=|X(f)|^{2}} характеризует, таким образом, распределение энергии реализации по оси частот и называется спектральной плотностью реализации. Усреднив эту функцию по всем реализациям можно получить спектральную плотность процесса.

Перейдем теперь к стационарному в широком смысле центрированному случайному процессу x (t) {\displaystyle x(t)} , реализации которого с вероятностью 1 имеют бесконечную энергию и, следовательно, не имеют преобразования Фурье. Спектральная плотность мощности такого процесса может быть найдена на основании теоремы Винера-Хинчина как преобразование Фурье от корреляционной функции:

S x (f) = ∫ − ∞ ∞ k x (τ) e − i 2 π f τ d τ . {\displaystyle S_{x}(f)=\int \limits _{-\infty }^{\infty }k_{x}(\tau)e^{-i2\pi f\tau }d\tau .} (3)

Если существует прямое преобразование, то существует и обратное преобразование Фурье , которое по известной определяет k x (τ) {\displaystyle k_{x}(\tau)} :

k x (τ) = ∫ − ∞ ∞ S x (f) e i 2 π f τ d f . {\displaystyle k_{x}(\tau)=\int \limits _{-\infty }^{\infty }S_{x}(f)e^{i2\pi f\tau }df.} (4)

Если полагать в формулах (3) и (4) соответственно f = 0 {\displaystyle f=0} и τ = 0 {\displaystyle \tau =0} , имеем

S x (0) = ∫ − ∞ ∞ k x (τ) d τ , {\displaystyle S_{x}(0)=\int \limits _{-\infty }^{\infty }k_{x}(\tau)d\tau ,} (5)
σ x 2 = k x (0) = ∫ − ∞ ∞ S x (f) d f . {\displaystyle \sigma _{x}^{2}=k_{x}(0)=\int \limits _{-\infty }^{\infty }S_{x}(f)df.} (6)

Формула (6) с учетом (2) показывает, что дисперсия определяет полную энергию стационарного случайного процесса, которая равна площади под кривой спектральной плотности. Размерную величину S x (f) d f {\displaystyle S_{x}(f)df} можно трактовать как долю энергии, сосредоточенную в малом интервале частот от f − d f / 2 {\displaystyle f-df/2} до f + d f / 2 {\displaystyle f+df/2} . Если понимать под x (t) {\displaystyle x(t)} случайный (флуктуационный) ток или напряжение, то величина S x (f) {\displaystyle S_{x}(f)} будет иметь размерность энергии [В 2 /Гц] = [В 2 с]. Поэтому S x (f) {\displaystyle S_{x}(f)} иногда называют энергетическим спектром . В литературе часто можно встретить другую интерпретацию: σ x 2 {\displaystyle \sigma _{x}^{2}} – рассматривается как средняя мощность, выделяемая током или напряжением на сопротивлении 1 Ом. При этом величину S x (f) {\displaystyle S_{x}(f)} называют спектром мощности случайного процесса.

Энциклопедичный YouTube

    1 / 3

    Спектр и спектральная плотность

    Спектральная плотность прямоугольного импульса

    Спектральная плотность треугольного импульса



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...