Способы возведения чисел в квадрат. Возведение числа в квадрат в Microsoft Excel

23 октября 2016 в 16:37

Красота чисел. Как быстро вычислять в уме

  • Научно-популярное

Старинная запись на квитанции в уплате подати («ясака»). Она означает сумму 1232 руб. 24 коп. Иллюстрация из книги: Яков Перельман «Занимательная арифметика»

Ещё Ричард Фейнман в книге «Вы конечно шутите, мистер Фейнман! » поведал несколько приёмов устного счёта. Хотя это очень простые трюки, они не всегда входят в школьную программу.

Например, чтобы быстро возвести в квадрат число X около 50 (50 2 = 2500), нужно вычитать/прибавлять по сотне на каждую единицы разницы между 50 и X, а потом добавить разницу в квадрате. Описание звучит гораздо сложнее, чем реальное вычисление.

52 2 = 2500 + 200 + 4
47 2 = 2500 – 300 + 9
58 2 = 2500 + 800 + 64

Молодого Фейнмана научил этому трюку коллега-физик Ханс Бете, тоже работавший в то время в Лос-Аламосе над Манхэттенским проектом.

Ханс показал ещё несколько приёмов, которые использовал для быстрых вычислений. Например, для вычисления кубических корней и возведения в степень удобно помнить таблицу логарифмов. Это знание очень упрощает сложные арифметические операции. Например, вычислить в уме примерное значение кубического корня из 2,5. Фактически, при таких вычислениях в голове у вас работает своеобразная логарифмическая линейка, в которой умножение и деление чисел заменяется сложением и вычитанием их логарифмов. Удобнейшая вещь.


Логарифмическая линейка

До появления компьютеров и калькуляторов логарифмическую линейку использовали повсеместно. Это своеобразный аналоговый «компьютер», позволяющий выполнить несколько математических операций, в том числе умножение и деление чисел, возведение в квадрат и куб, вычисление квадратных и кубических корней, вычисление логарифмов, потенцирование, вычисление тригонометрических и гиперболических функций и некоторые другие операции. Если разбить вычисление на три действия, то с помощью логарифмической линейки можно возводить числа в любую действительную степень и извлекать корень любой действительной степени. Точность расчётов - около 3 значащих цифр.

Чтобы быстро проводить в уме сложные расчёты даже без логарифмической линейки, неплохо запомнить квадраты всех чисел, хотя бы до 25, просто потому что они часто используются в расчётах. И таблицу степеней - самых распространённых. Проще запомнить, чем вычислять каждый раз заново, что 5 4 = 625, 3 5 = 243, 2 20 = 1 048 576, а √3 ≈ 1,732.

Ричард Фейнман совершенствовал свои навыки и постепенно замечал всё новые интересные закономерности и связи между числами. Он приводит такой пример: «Если кто-то начинал делить 1 на 1,73, можно было незамедлительно ответить, что это будет 0,577, потому что 1,73 - это число, близкое к квадратному корню из трёх. Таким образом, 1/1,73 - это около одной трети квадратного корня из 3».

Настолько продвинутый устный счёт мог бы удивить коллег в те времена, когда не было компьютеров и калькуляторов. В те времена абсолютно все учёные умели хорошо считать в уме, поэтому для достижения мастерства требовалось достаточно глубоко погрузиться в мир цифр.

В наше время люди достают калькулятор, чтобы просто поделить 76 на 3. Удивить окружающих стало гораздо проще. Во времена Фейнмана вместо калькулятора были деревянные счёты, на которых тоже можно было производить сложные операции, в том числе брать кубические корни. Великий физик уже тогда заметил, что использование таких инструментов, людям вообще не нужно запоминать множество арифметический комбинаций, а достаточно просто научиться правильно катать шарики. То есть люди с «расширителями» мозга не знают чисел. Они хуже справляются с задачами в «автономном» режиме.

Вот пять очень простых советов устного счёта, которые рекомендует Яков Перельман в методичке «Быстрый счёт » 1941 года издательства.

1. Если одно из умножаемых чисел разлагается на множители, удобно бывает последовательно умножать на них.

225 × 6 = 225 × 2 × 3 = 450 × 3
147 × 8 = 147 × 2 × 2 × 2, то есть трижды удвоить результат

2. При умножении на 4 достаточно дважды удвоить результат. Аналогично, при делении на 4 и 8, число делится пополам дважды или трижды.

3. При умножении на 5 или 25 число можно разделить на 2 или 4, а затем приписать к результату один или два нуля.

74 × 5 = 37 × 10
72 × 25 = 18 × 100

Здесь лучше сразу оценивать, как проще. Например, 31 × 25 удобнее умножать как 25 × 31 стандартным способом, то есть как 750+25, а не как 31 × 25, то есть 7,75 × 100.

При умножении на число, близкое к круглому (98, 103), удобно сразу умножить на круглое число (100), а затем вычесть/прибавить произведение разницы.

37 × 98 = 3700 – 74
37 × 104 = 3700 + 148

4. Чтобы возвести в квадрат число, оканчивающееся цифрой 5 (например, 85), умножают число десятков (8) на него же плюс единица (9), и приписывают 25.
8 × 9 = 72, приписываем 25, так что 85 2 = 7225

Почему действует это правило, видно из формулы:
(10Х + 5) 2 = 100Х 2 + 100Х + 25 = 100Х (X+1) + 25

Приём применяется и к десятичным дробям, которые оканчиваются на 5:
8,5 2 = 72,25
14,5 2 = 210,25
0,35 2 = 0,1225

5. При возведении в квадрат не забываем об удобной формуле
(a + b) 2 = a 2 + b 2 + 2ab
44 2 = 1600 + 16 + 320

Конечно же, все способы можно сочетать между собой, создавая более удобные и эффективные приёмы для конкретных ситуаций.

Сегодня мы научимся быстро без калькулятора возводить большие выражения в квадрат. Под большими я подразумеваю числа в пределах от десяти до ста. Большие выражения крайне редко встречаются в настоящих задачах, а значения меньше десяти вы и так умеете считать, потому что это обычная таблица умножения. Материал сегодняшнего урока будет полезен достаточно опытным ученикам, потому что начинающие ученики просто не оценят скорость и эффективность этого приема.

Для начала давайте разберемся вообще, о чем идет речь. Предлагаю для примера сделать возведение произвольного числового выражения, как мы обычно это делаем. Скажем, 34. Возводим его, умножив само на себя столбиком:

\[{{34}^{2}}=\times \frac{34}{\frac{34}{+\frac{136}{\frac{102}{1156}}}}\]

1156 — это и есть квадрат 34.

Проблему данного способа можно описать двумя пунктами:

1) он требует письменного оформления;

2) в процессе вычисления очень легко допустить ошибку.

Сегодня мы научимся быстрому умножению без калькулятора, устно и практически без ошибок.

Итак, приступим. Для работы нам потребуется формула квадрата суммы и разности. Давайте запишем их:

\[{{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]

\[{{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]

Что нам это дает? Дело в том, что любое значение в пределах от 10 до 100 представимо в виде числа $a$, которое делится на 10, и числа $b$, которое является остатком от деления на 10.

Например, 28 можно представить в следующем виде:

\[\begin{align}& {{28}^{2}} \\& 20+8 \\& 30-2 \\\end{align}\]

Аналогично представляем оставшиеся примеры:

\[\begin{align}& {{51}^{2}} \\& 50+1 \\& 60-9 \\\end{align}\]

\[\begin{align}& {{42}^{2}} \\& 40+2 \\& 50-8 \\\end{align}\]

\[\begin{align}& {{77}^{2}} \\& 70+7 \\& 80-3 \\\end{align}\]

\[\begin{align}& {{21}^{2}} \\& 20+1 \\& 30-9 \\\end{align}\]

\[\begin{align}& {{26}^{2}} \\& 20+6 \\& 30-4 \\\end{align}\]

\[\begin{align}& {{39}^{2}} \\& 30+9 \\& 40-1 \\\end{align}\]

\[\begin{align}& {{81}^{2}} \\& 80+1 \\& 90-9 \\\end{align}\]

Что дает нам такое представление? Дело в том, что при сумме или разности, мы можем применить вышеописанные выкладки. Разумеется, чтобы сократить вычисления, для каждого из элементов следует выбрать выражение с наименьшим вторым слагаемым. Например, из вариантов $20+8$ и $30-2$ следует выбрать вариант $30-2$.

Аналогично выбираем варианты и для остальных примеров:

\[\begin{align}& {{28}^{2}} \\& 30-2 \\\end{align}\]

\[\begin{align}& {{51}^{2}} \\& 50+1 \\\end{align}\]

\[\begin{align}& {{42}^{2}} \\& 40+2 \\\end{align}\]

\[\begin{align}& {{77}^{2}} \\& 80-3 \\\end{align}\]

\[\begin{align}& {{21}^{2}} \\& 20+1 \\\end{align}\]

\[\begin{align}& {{26}^{2}} \\& 30-4 \\\end{align}\]

\[\begin{align}& {{39}^{2}} \\& 40-1 \\\end{align}\]

\[\begin{align}& {{81}^{2}} \\& 80+1 \\\end{align}\]

Почему следует стремиться к уменьшению второго слагаемого при быстром умножении? Все дело в исходных выкладках квадрата суммы и разности. Дело в том, что слагаемое $2ab$ с плюсом или с минусом труднее всего считается при решении настоящих задач. И если множитель $a$, кратный 10, всегда перемножается легко, то вот с множителем $b$, который является числом в пределах от одного до десяти, у многих учеников регулярно возникают затруднения.

\[{{28}^{2}}={{(30-2)}^{2}}=200-120+4=784\]

\[{{51}^{2}}={{(50+1)}^{2}}=2500+100+1=2601\]

\[{{42}^{2}}={{(40+2)}^{2}}=1600+160+4=1764\]

\[{{77}^{2}}={{(80-3)}^{2}}=6400-480+9=5929\]

\[{{21}^{2}}={{(20+1)}^{2}}=400+40+1=441\]

\[{{26}^{2}}={{(30-4)}^{2}}=900-240+16=676\]

\[{{39}^{2}}={{(40-1)}^{2}}=1600-80+1=1521\]

\[{{81}^{2}}={{(80+1)}^{2}}=6400+160+1=6561\]

Вот так за три минуты мы сделали умножение восьми примеров. Это меньше 25 секунд на каждое выражение. В реальности после небольшой тренировки вы будете считать еще быстрее. На подсчет любого двухзначного выражения у вас будет уходить не более пяти-шести секунд.

Но и это еще не все. Для тех, кому показанный прием кажется недостаточно быстрым и недостаточно крутым, предлагаю еще более быстрый способ умножения, который однако работает не для всех заданий, а лишь для тех, которые на единицу отличаются от кратных 10. В нашем уроке таких значений четыре: 51, 21, 81 и 39.

Казалось бы, куда уж быстрее, мы и так считаем их буквально в пару строчек. Но, на самом деле, ускориться можно, и делается это следующим образом. Записываем значение, кратное десяти, которое наиболее близкое нужному. Например, возьмем 51. Поэтому для начала возведем пятьдесят:

\[{{50}^{2}}=2500\]

Значения, кратные десяти, поддаются возведению в квадрат намного проще. А теперь к исходному выражению просто добавляем пятьдесят и 51. Ответ получится тот же самый:

\[{{51}^{2}}=2500+50+51=2601\]

И так со всеми числами, отличающимися на единицу.

Если значение, которое мы ищем, больше, чем то, которое мы считаем, то к полученному квадрату мы прибавляем числа. Если же искомое число меньше, как в случае с 39, то при выполнении действия, из квадрата нужно вычесть значение. Давайте потренируемся без использования калькулятора:

\[{{21}^{2}}=400+20+21=441\]

\[{{39}^{2}}=1600-40-39=1521\]

\[{{81}^{2}}=6400+80+81=6561\]

Как видите, во всех случаях ответы получаются одинаковыми. Более того, данный прием применим к любым смежным значениям. Например:

\[\begin{align}& {{26}^{2}}=625+25+26=676 \\& 26=25+1 \\\end{align}\]

При этом нам совсем не нужно вспоминать выкладки квадратов суммы и разности и использовать калькулятор. Скорость работы выше всяких похвал. Поэтому запоминайте, тренируйтесь и используйте на практике.

Ключевые моменты

С помощью этого приема вы сможете легко делать умножение любых натуральных чисел в пределах от 10 до 100. Причем все расчеты выполняются устно, без калькулятора и даже без бумаги!

Для начала запомните квадраты значений, кратных 10:

\[\begin{align}& {{10}^{2}}=100,{{20}^{2}}=400,{{30}^{2}}=900,..., \\& {{80}^{2}}=6400,{{90}^{2}}=8100. \\\end{align}\]

\[\begin{align}& {{34}^{2}}={{(30+4)}^{2}}={{30}^{2}}+2\cdot 30\cdot 4+{{4}^{2}}= \\& =900+240+16=1156; \\\end{align}\]

\[\begin{align}& {{27}^{2}}={{(30-3)}^{2}}={{30}^{2}}-2\cdot 30\cdot 3+{{3}^{2}}= \\& =900-180+9=729. \\\end{align}\]

Как считать еще быстрее

Но это еще не все! С помощью данных выражений моментально можно сделать возведение в квадрат чисел, «смежных» с опорными. Например, мы знаем 152 (опорное значение), а надо найти 142 (смежное число, которое на единицу меньше опорного). Давайте запишем:

\[\begin{align}& {{14}^{2}}={{15}^{2}}-14-15= \\& =225-29=196. \\\end{align}\]

Обратите внимание: никакой мистики! Квадраты чисел, отличающиеся на 1, действительно получаются из умножения самих на себя опорных чисел, если вычесть или добавить два значения:

\[\begin{align}& {{31}^{2}}={{30}^{2}}+30+31= \\& =900+61=961. \\\end{align}\]

Почему так происходит? Давайте запишем формулу квадрата суммы (и разности). Пусть $n$ — наше опорное значение. Тогда они считаются так:

\[\begin{align}& {{(n-1)}^{2}}=(n-1)(n-1)= \\& =(n-1)\cdot n-(n-1)= \\& =={{n}^{2}}-n-(n-1) \\\end{align}\]

— это и есть формула.

\[\begin{align}& {{(n+1)}^{2}}=(n+1)(n+1)= \\& =(n+1)\cdot n+(n+1)= \\& ={{n}^{2}}+n+(n+1) \\\end{align}\]

— аналогичная формула для чисел, больших на 1.

Надеюсь, данный прием сэкономит вам время на всех ответственных контрольных и экзаменах по математике. А у меня на этом все. До встречи!


Возведение в квадрат трехзначных чисел - впечатляющее проявление искусности в ментальном фокусничестве. Так же как при возведении в квадрат двузначного числа выполняется его округление в большую или меньшую сторону для получения кратного 10, для возведения трехзначного числа в квадрат его нужно округлить в большую или меньшую сторону для получения кратного 100. Возведем в квадрат число 193.

Путем ок ругления 193 до 200 (второй сомножитель стал равным 186) задача типа «3 на 3» преобразовалась в более простую типа «3 на 1», так как 200 х 186 - это всего лишь 2 х 186 = 372 с двумя нулями в конце. Почти готово! Теперь все, что нужно сделать, это прибавить 7 2 = 49 и получить ответ - 37 249.

Попробуем возвести в квадрат 706.




При округлении числа 706 до 700 необходимо еще и изменить это же число на 6 в большую сторону для получения 712.

Так как 712 х 7 = 4984 (простая задача типа «3 на 1»), 712 х 700 = = 498 400. Прибавив 6 2 = 36, получаем 498 436.

Последние примеры не так уж страшны, потому что не включают в себя сложения как такового. Кроме того, вы наизусть знаете, чему равняются 6 2 и 7 2 . Возводить в квадрат число, которое отстоит от кратного 100 больше чем на 10 единиц, значительно труднее. Попробуйте свои силы с 314 2 .


В этом примере число 314 уменьшилось на 14 ради округления до 300 и увеличилось на 14 до 328. Умножаем 328 х 3 = 984 и добавляем два нуля в конце, чтобы получить 98 400. Затем прибавляем квадрат 14. Если вам мгновенно приходит на ум (благодаря памяти или быстрым вычислениям), что 14 2 = 196, то вы в хорошей форме. Далее просто сложите 98 400 + 196 для получения окончательного ответа 98 596.

Если вам нужно время для подсчета 14 2 , повторите «98 400» несколько раз, прежде чем продолжить. Иначе можно вычислить 14 2 = 196 и забыть, к какому числу нужно прибавить произведение.




Если у вас есть аудитория, которую вы хотели бы впечатлить, можете произнести вслух «279 000», прежде чем найдете 292. Но такое не пройдет в случае каждой решаемой задачи.

Например, попытайтесь возвести в квадрат 636.




Теперь ваш мозг по-настоящему заработал, не правда ли?

Не забывайте повторять «403 200» самому себе несколько раз, пока будете возводить в квадрат привычным способом 36, чтобы получить 1296. Самое сложное - суммировать 1296 + 403 200. Делайте это по одной цифре за раз, слева направо, и получите ответ 404 496. Даю слово, что, как только вы лучше ознакомитесь с возведением в квадрат двузначных чисел, задачки с трехзначными значительно упростятся.

Вот еще более сложный пример: 863 2 .



Первая проблема - надо решить, какие числа перемножать. Несомненно, одно из них будет 900, а другое - больше 800. Но какое именно? Это можно рассчитать двумя способами.

1. Сложный способ: разность между 863 и 900 составляет 37 (дополнение для 63), вычитаем 37 из 863 и получаем 826.

2. Легкий способ: удваиваем число 63, получаем 126, теперь последние две цифры этого числа прибавляем к числу 800, что в итоге даст 826.

Вот как работает легкий способ. Поскольку оба числа имеют одинаковую разность с числом 863, их сумма должна равняться удвоенному числу 863, то есть 1726. Одно из чисел 900, значит, другое будет равно 826.

Затем проводим следующие вычисления.




Если вам трудно вспомнить число 743 400 после возведения в квадрат числа 37, не расстраивайтесь. В следующих главах вы узнаете систему мнемотехники и научитесь запоминать такие числа.

Попробуйте свои силы на самой трудной пока задаче - на возведении в квадрат числа 359.




Для получения 318 либо отнимите 41 (дополнение для 59) от 359, либо умножьте 2 х 59 = 118 и используйте последние две цифры. Далее умножьте 400 х 318 = 127 200. Прибавление к этому числу 412 = 1681 даст в сумме 128 881. Вот и все! Если вы сделали все правильно с первого раза, вы молодец!

Завершим этот раздел большой, но легкой задачей: вычислим 987 2 .




УПРАЖНЕНИЕ: ВОЗВЕДЕНИЕ В КВАДРАТ ТРЕХЗНАЧНЫХ ЧИСЕЛ

1. 409 2 2. 805 2 3. 217 2 4. 896 2

5. 345 2 6. 346 2 6. 276 2 8. 682 2

9. 413 2 10. 781 2 11. 975 2

Что за дверью номер 1?

Математической банальностью 1991 года, которая поставила всех в тупик, оказалась статья Мэрилин Савант - женщины с самым высоким в мире IQ (что зарегистрировано в Книге рекордов Гиннесса) - в журнале Parade. Этот парадокс стал известен как «проблема Монти Холла», и заключается он в следующем.

Вы участник шоу Монти Холла «Давайте совершать сделки» (Let’s Make a Deal). Ведущий дает вам возможность выбрать одну из трех дверей, за одной из которых находится большой приз, за двумя другими - козы. Допустим, вы выбираете дверь № 2. Но прежде чем показать, что скрывается за этой дверью, Монти открывает дверь № 3. Там коза. Теперь в своей дразнящей манере Монти спрашивает вас: вы хотите открыть дверь № 2 или рискнете посмотреть, что находится за дверью № 1? Что вам следует сделать? Если предположить, что Монти собирается подсказать вам, где нет главного приза, то он всегда будет открывать одну из «утешительных» дверей. Это оставляет вас перед выбором: одна дверь с большим призом, а вторая - с утешительным. Сейчас ваши шансы составляют 50 на 50, не так ли?

А вот и нет! Шанс, что вы правильно выбрали в первый раз, по-прежнему 1 к 3. Вероятность того, что большой приз окажется за другой дверью, увеличивается до 2/3, потому что вероятности в сумме должны давать 1.

Таким образом, изменив свой выбор, вы удвоите шансы на выигрыш! (В задаче предполагается, что Монти всегда будет давать игроку возможность сделать новый выбор, показывая «невыигрышную» дверь, и, когда ваш первый выбор окажется правильным, откроет «невыигрышную» дверь наугад.) Поразмышляйте об игре с десятью дверями. Пусть после вашего первого выбора ведущий откроет восемь «невыигрышных» дверей. Здесь ваши инстинкты, скорее всего, потребуют поменять дверь. Люди обычно ошибаются, думая, что если Монти Холл не знает, где главный приз, и открывает дверь № 3, за которой оказывается коза (хотя мог бы быть и приз), то дверь № 1 с вероятностью в 50 процентов будет нужной. Такое рассуждение противоречит здравому смыслу, тем не менее Мэрилин Савант получила груды писем (многие от ученых, и даже математиков), в которых говорилось, что ей не следовало писать о математике. Конечно, все эти люди были неправы.

*квадраты до сотни

Для того, чтобы бездумно не возводить в квадрат по формуле все числа, нужно максимально упростить себе задачу следующими правилами.

Правило 1 (отсекает 10 чисел)

Для чисел, оканчивающихся на 0.
Если число заканчивается на 0, умножить его не сложнее, чем однозначное число. Стоит лишь дописать пару нулей.
70 * 70 = 4900.
В таблице отмечены красным.

Правило 2 (отсекает 10 чисел)

Для чисел, оканчивающихся на 5.
Чтобы возвести в квадрат двузначное число, оканчивающееся на 5, нужно умножить первую цифру (x) на (x+1) и дописать к результату “25”.
75 * 75 = 7 * 8 = 56 … 25 = 5625.
В таблице отмечены зеленым.

Правило 3 (отсекает 8 чисел)

Для чисел от 40 до 50.
XX * XX = 1500 + 100 * вторую цифру + (10 - вторая цифра)^2
Достаточно трудно, верно? Давайте разберем пример:
43 * 43 = 1500 + 100 * 3 + (10 - 3)^2 = 1500 + 300 + 49 = 1849.
В таблице отмечены светло-оранжевым.

Правило 4 (отсекает 8 чисел)

Для чисел от 50 до 60.
XX * XX = 2500 + 100 * вторую цифру + (вторая цифра)^2
Тоже достаточно трудно для восприятия. Давайте разберем пример:
53 * 53 = 2500 + 100 * 3 + 3^2 = 2500 + 300 + 9 = 2809.
В таблице отмечены темно-оранжевым.

Правило 5 (отсекает 8 чисел)

Для чисел от 90 до 100.
XX * XX = 8000+ 200 * вторую цифру + (10 - вторая цифра)^2
Похоже на правило 3, но с другими коэффициентами. Давайте разберем пример:
93 * 93 = 8000 + 200 * 3 + (10 - 3)^2 = 8000 + 600 + 49 = 8649.
В таблице отмечены темно-темно-оранжевым.

Правило №6 (отсекает 32 числа)

Необходимо запомнить квадраты чисел до 40. Звучит дико и трудно, но на самом деле до 20 большинство людей знают квадраты. 25, 30, 35 и 40 поддаются формулам. И остается лишь 16 пар чисел. Их уже можно запомнить при помощи мнемоники (о которой я также хочу рассказать позднее) или любыми другими способами. Как таблицу умножения:)
В таблице отмечены синим.

Вы можете запомнить все правила, а можете запомнить выборочно, в любом случае все числа от 1 до 100 подчиняются двум формулам. Правила же помогут, не используя эти формулы, быстрее посчитать больше 70% вариантов. Вот эти две формулы:

Формулы (осталось 24 цифры)

Для цифр от 25 до 50
XX * XX = 100(XX - 25) + (50 - XX)^2
Например:
37 * 37 = 100(37 - 25) + (50 - 37)^2 = 1200 + 169 = 1369

Для цифр от 50 до 100

XX * XX = 200(XX - 25) + (100 - XX)^2

Например:
67 * 67 = 200(67 - 50) + (100 - 67)^2 = 3400 + 1089 = 4489

Конечно не стоит забывать про обычную формулу разложения квадрата суммы (частный случай бинома Ньютона):
(a+b)^2 = a^2 + 2ab + b^2.
56^2 = 50^2 + 2*50*6 + 6*2 = 2500 + 600 + 36 = 3136.

Возведение в квадрат, возможно, не самая полезная в хозяйстве вещь. Не сразу вспомнишь случай, когда может понадобиться квадрат числа. Но умение быстро оперировать числами, применять подходящие правила под каждое из чисел отлично развивает память и «вычислительные способности» вашего мозга .

Кстати, думаю, все читатели хабры знают, что 64^2 = 4096, а 32^2 = 1024.
Многие квадраты чисел запоминаются на ассоциативном уровне. Например, я легко запомнил 88^2 = 7744, из-за одинаковых чисел. У каждого наверняка найдутся свои особенности.

Две уникальные формулы я впервые нашел в книге «13 steps to mentalism», которая мало связана с математикой. Дело в том, что раньше (возможно, и сейчас) уникальные вычислительные способности были одним из номеров в сценической магии: фокусник рассказывал байку о том, как он получил сверхспособности и в доказательство этого моментально возводит числа до сотни в квадрат. В книге так же указаны способы возведения в куб, способы вычитания корней и кубических корней.

Если тема быстрого счета интересна - буду писать еще.
Замечания об ошибках и правки прошу писать в лс, заранее спасибо.

Умение считать в уме квадраты чисел может пригодиться в разных жизненных ситуациях, например, для быстрой оценки инвестиционных сделок, для подсчета площадей и объемов, а также во многих других случаях. Кроме того, умение считать квадраты в уме может служить демонстрацией ваших интеллектуальных способностей. В данной статье разобраны методики и алгоритмы, позволяющие научиться этому навыку.

Квадрат суммы и квадрат разности

Одним из самых простых способов возведения двузначных чисел в квадрат является методика, основанная на использовании формул квадрата суммы и квадрата разности:

Для использования этого метода необходимо разложить двузначное число на сумму числа кратного 10 и числа меньше 10. Например:

  • 37 2 = (30+7) 2 = 30 2 + 2*30*7 + 7 2 = 900+420+49 = 1 369
  • 94 2 = (90+4) 2 = 90 2 + 2*90*4 + 4 2 = 8100+720+16 = 8 836

Практически все методики возведения в квадрат (которые описаны ниже) основываются на формулах квадрата суммы и квадрата разности. Эти формулы позволили выделить ряд алгоритмов упрощающих возведение в квадрат в некоторых частных случаях.

Квадрат близкий к известному квадрату

Если число, возводимое в квадрат, находится близко к числу, квадрат которого мы знаем, можно использовать одну из четырех методик для упрощенного счета в уме:

На 1 больше:

Методика: к квадрату числа на единицу меньше прибавляем само число и число на единицу меньше.

  • 31 2 = 30 2 + 31 + 30 = 961
  • 16 2 = 15 2 + 15 + 16 = 225 + 31 = 256

На 1 меньше:

Методика: из квадрата числа на единицу больше вычитаем само число и число на единицу больше.

  • 19 2 = 20 2 - 19 - 20 = 400 - 39 = 361
  • 24 2 = 25 2 - 24 - 25 = 625 - 25 - 24 = 576

На 2 больше

Методика: к квадрату числа на 2 меньше прибавляем удвоенную сумму самого числа и числа на 2 меньше.

  • 22 2 = 20 2 + 2*(20+22) = 400 + 84 = 484
  • 27 2 = 25 2 + 2*(25+27) = 625 + 104 = 729

На 2 меньше

Методика: из квадрата числа на 2 больше вычитаем удвоенную сумму самого числа и числа на 2 больше.

  • 48 2 = 50 2 - 2*(50+48) = 2500 - 196 = 2 304
  • 98 2 = 100 2 - 2*(100+98) = 10 000 - 396 = 9 604

Все эти методики можно легко доказать, выведя алгоритмы из формул квадрата суммы и квадрата разности (о которых сказано выше).

Квадрат чисел, заканчивающихся на 5

Чтобы возвести в квадрат числа, заканчивающиеся на 5. Алгоритм прост. Число до последней пятерки, умножаем на это же число плюс единица. К оставшемуся числу приписываем 25.

  • 15 2 = (1*(1+1)) 25 = 225
  • 25 2 = (2*(2+1)) 25 = 625
  • 85 2 = (8*(8+1)) 25 = 7 225

Это верно и для более сложных примеров:

  • 155 2 = (15*(15+1)) 25 = (15*16)25 = 24 025

Квадрат чисел близких к 50

Считать квадрат чисел, которые находятся в диапазоне от 40 до 60 , можно очень простым способом. Алгоритм таков: к 25 прибавляем (или вычитаем) столько, насколько число больше (или меньше) 50. Умножаем эту сумму (или разность) на 100. К этому произведению добавляем квадрат разности числа, возводимого в квадрат, и пятидесяти. Посмотрите работу алгоритма на примерах:

  • 44 2 = (25-6)*100 + 6 2 = 1900 + 36 = 1936
  • 53 2 = (25+3)*100 + 3 2 = 2800 + 9 = 2809

Квадрат трехзначных чисел

Возведение в квадрат трехзначных чисел может быть осуществлено при помощи одной из формул сокращенного умножения:

Нельзя сказать, что этот способ является удобным для устного счета, но в особо сложных случаях его можно взять на вооружение:

436 2 = (400+30+6) 2 = 400 2 + 30 2 + 6 2 + 2*400*30 + 2*400*6 + 2*30*6 = 160 000 + 900 + 36 + 24 000 + 4 800 + 360 = 190 096

Тренировка

Если вы хотите прокачать свои умения по теме данного урока, можете использовать следующую игру. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что числа каждый раз разные.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...