Строение синапса. Структура и функция синапса


Рассмотрим строение синапса на примере аксо- соматического. Синапс состоит из трех частей: преси- наптического окончания, синаптической щели и пост- синаптической мембраны (рис. 9).
Пресинаптическое окончание (синаптическая бляшка) представляет собой расширенную часть тер- минали аксона. Синаптическая щель - это пространство между двумя контактирующими нейронами. Диаметр синаптической щели составляет 10 - 20 нм. Мембрана пресинаптического окончания, обращенная к синаптической щели, называется пресинаптической мембраной. Третья часть синапса - постсинаптичес- кая мембрана, которая расположена напротив пресинаптической мембраны.
Пресинаптическое окончание заполнено пузырьками (везикулами) и митохондриями. В везикулах находятся биологически активные вещества - медиаторы. Медиаторы синтезируются в соме и по микротрубочкам транспортируются в пресинаптическое окончание. Наиболее часто в качестве медиатора выступают адреналин, норадреналин, ацетилхолин, серотонин, гамма-аминомасляная кислота (ГАМК), глицин и другие. Обычно синапс содержит один из медиаторов в большем количестве по сравнению с другими медиаторами. По типу медиатора принято обозначать синапсы: адреноэргические, холинэргические, серото- нинэргические и др.
В состав постсинаптической мембраны входят особые белковые молекулы - рецепторы, которые могут присоединять молекулы медиаторов.
Синаптическая щель заполнена межклеточной жидкостью, в которой находятся ферменты, способствующие разрушению медиаторов.
На одном постсинаптическом нейроне может находиться до 20000 синапсов, часть которых являются возбудительными, а часть - тормозными.
Помимо химических синапсов, в которых при взаимодействии нейронов участвуют медиаторы, в нервной системе встречаются электрические синапсы. В электрических синапсах взаимодействие двух нейронов осуществляется посредством биотоков. В цент-

ПД нервного волокна (ПД - потенциал действия)

кая мембрана рецепторы

ральной нервной системе преобладают химические синапсы.
В некоторых межнейронных синапсах электрическая и химическая передача осуществляется одновременно - это смешанный тип синапсов.
Влияние возбудительных и тормозных синапсов на возбудимость постсинаптического нейрона суммируется, и эффект зависит от места расположения синапса. Чем ближе синапсы расположены к аксональному холмику, тем они эффективнее. Напротив, чем дальше расположены синапсы от аксонального холмика (например, на окончании дендритов), тем они менее эффективны. Таким образом, синапсы, расположенные на соме и аксональном холмике, оказывают влияние на возбудимость нейрона быстро и эффективно, а влияние удаленных синапсов медленно и плавно.

Ампмщ iipinl системы
Нейронные сети
Благодаря синаптическим связям нейроны объединены в функциональные единицы - нейронные сети. Нейронные сети могут быть образованы нейронами, расположенными на небольшом расстоянии. Такую нейронную сеть называют локальной. Кроме того, в сеть могут быть объединены нейроны, удаленные друг от друга, из разных областей мозга. Самый высокий уровень организации связей нейронов отражает соединение нескольких областей центральной нервной системы. Такую нервную сеть называют путем, или системой. Различают нисходящие и восходящие пути. По восходящим путям информация передается от нижележащих областей мозга к вышележащим (например, от спинного мозга к коре полушарий большого мозга). Нисходящие пути связывают кору больших полушарий мозга со спинным мозгом.
Самые сложные сети называются распределительными системами. Они образуются нейронами разных отделов мозга, управляющих поведением, в которых участвует организм как единое целое.
Некоторые нервные сети обеспечивают конвергенцию (схождение) импульсов на ограниченном количестве нейронов. Нервные сети могут быть построены также по типу дивергенции (расхождение). Такие сети обусловливают передачу информации на значительные расстояния. Кроме того, нервные сети обеспечивают интеграцию (суммирование или обобщение) различного рода информации (рис. 10).

Синапс- специализированные структуры, которые обеспечивают передачу возбуждения с одной возбудимой клетки на другую. Понятие СИНАПС введено в физиологию Ч.Шеррингтоном (соединение, контакт). Синапс обеспечивает функциональную связь между отдельными клетками. Подразделяются на нервно-нервные, нервно-мышечные и синапсы нервных клеток с секреторными клетками (нервно-железистые). В нейроне выделяется три функциональных отдела: сома, дендрит, аксон. Поэтому между нейронами существуют все возможные комбинации контактов. Например, аксо-аксональный, аксо-соматический и аксо-дендритный.

Классификация.

1)по местоположению и принадлежности соответствующим структурам:

- периферические (нервно-мышечные, нейросекреторные, рецепторнонейрональные);

- центральные (аксо-соматические, аксо-дендритные, аксо-аксональные, сомато-дендритные. сомато-соматические);

2)механизму действия- возбуждающие и тормозящие;

3)способу передачи сигналов- химические, электрические, смешанные.

4)химические классифицируют по медиатору, с помощью которого осуществляется передача- холинергические, адренергические, серотонинергические, глицинергически. и т.д.

Строение синапса.

Синапс состоит из следующих основных элементов:

Пресинаптической мембраны (в нервно-мышечном синапсе - это концевая пластинка):

Постсинаптической мембраны;

Синаптической щели. Синаптическая щель заполнена олигосахаридсодержащей соединительной тканью, которая играет роль поддерживающей структуры для обеих контактирующих клеток.

Систему синтеза и освобождения медиатора.

Систему его инактивации.

В нервно-мышечном синапсе пресиниптическая мембрана-часть мембраны нервного окончания в области контакта его с мышечным волокном, постсинаптическая мембрана- часть мембраны мышечного волокна.

Строение нервно-мышечного синапса.

1 -миелинизированное нервное волокно;

2 -нервное окончание с пузырьками медиатора;

3 -субсинаптическая мембрана мышечного волокна;

4 -синаптическая щель;

5-постсинаптическая мембрана мышечного волокна;

6 -миофибриллы;

7 -саркоплазма;

8 -потенциал действия нервного волокна;

9 -потенциал концевой пластинки (ВПСП):

10 -потенциал действия мышечного волокна.

Часть постсинаптической мембраны, которая расположена напротив пресинаптической, называется субсинаптической мембраной. Особенностью субсинаптической мембраны является наличие в ней специальных рецепторов, чувствительных к определенному медиатору и наличие хемозависимых каналов. В постсинаптической мембране, за пределами субсинаптической, имеются потенциалозависимые каналы.

Механизм передачи возбуждения в химических возбуждающих синапсах . В 1936 году Дейл доказал, что при раздражении двигательного нерва в его окончаниях в скелетной мышце выделяется ацетилхолин. В синапсах с химической передачей возбуждение передается с помощью медиаторов (посредников) .Медиаторы – химическкие вещества, которые обеспечивают передачу возбуждения в синапсах. Медиатором в нервно-мышечном синапсе является ацетилхолин, в возбуждающих и тормозных нервно-нервных синапсах - ацетилхолин, катехоламины - адреналин, норадреналин, дофамин; серотонин; нейтральные аминокислоты - глутаминовая, аспарагиновая; кислые аминокислоты - глицин, гамма-аминомасляная кислота; полипептиды: вещество Р, энкефалин, соматостатин; другие вещества: АТФ, гистамин, простагландины.

Медиаторы в зависимости от их природы делятся на несколько групп:

Моноамины (ацетилхолин, дофамин, норадреналин,серотонин.);

Аминокислоты (гамма-аминомасляная кислота - ГАМК, глутаминовая кислота, глицин и др.);

Нейропептиды (вещество Р, эндорфины, нейротензин, АКТГ,ангиотензин, вазопрессин, соматостатин и др.) .

Накопление медиатора в пресинаптическом образовании происходит за счет его транспорта из околоядерной области нейрона с помощью быстрого акстока; синтеза медиатора, протекающего в синаптических терминалях из продуктов его расщепления; обратного захвата медиатора из синаптическои щели.

Пресинаптическое нервное окончание содержит структуры для синтеза нейромедиатора. После синтеза нейромедиатор упаковывается в везикулы. При возбуждении эти синаптические везикулы сливаются с пресинаптической мембраной и нейромедиатор высвобождается в синаптическую щель. Он диффундирует к постсинаптической мембране и связывается там со специфическим рецептором. В результате образования нейромедиатор-рецепторного комплекса постсинаптическая мембрана становится проницаемой для катионов и деполяризуется. Это приводит к возникновению возбуждающего постсинаптического потенциала и затем потенциала действия. Медиатор синтезируется в пресинаптической терминали из материала, поступающего сюда аксональным транспортом. Медиатор "инактивируется", т.е. либо расщепляется, либо удаляется из синаптической щели посредством механизма обратного транспорта в пресинаптическую терминаль.

Значение ионов кальция в секреции медиатора .

Секреция медиатора невозможна без участия в этом процессе ионов кальция. При деполяризации пресинаптической мембраны кальций входит в пресинаптическую терминаль через специфические потенциалозависимые кальциевые каналы в этой мембране. Концентрация кальция в аксоплазме 110 -7 М, при вхождении кальция и повышения его концентрации до 110 - 4 М происходит секреция медиатора. Концентрация кальция в аксоплазме после окончания возбуждения снижается работой систем: активного транспорта из терминали, поглощением митохондриями, связыванием внутриклеточными буферными системами. В состоянии покоя происходит нерегулярное опорожнение везикул, при этом происходит выход не только единичных молекул медиатора, но и выброс порций, квантов медиатора. Квант ацетилхолина включает примерно 10000 молекул.

Синапс- место контакта одного нейрона с другим, на который воздействуют иннервируемым органом.

Виды синапсов:

· По месту контактов (нейрональные, аксодендричекий, дендродендрический,аксомальный, аксосамальный, дендросомальный, нервно-мышечный, нейросекреторный)

· Возбуждаюшие и тормозные

· Химические(проводят импульс в одном напралении) и электрические(проводят нервный импуьс в любом направлении, более узкая синаптическая щель, быстрая скорость проведения, имеются у беспозвоночный и нисших позвоночных животных).

Строение.

1. Педсинаптический отдел

2. Синаптическая щель

3. Постсинаптический отдел

4. Визикулы- пузырьки с медиатором

5. Медиаор – химическое вещество, которое либо проводит возбуждение, либо блокирует его

В постсинаптической мембране находятся рецепторы, чувствительные к данному типу медиатора.У большинства синапсов постсинаптическая мембрана складчатая, для увеличения площади поверхности.

Роль в проведении.

Возбуждение через синапсы передается химическим путем с помощью особого вещества – посредника, или медиатора, находящегося в синаптических пузырьках, расположенных в пресинаптической терминали. В разных синапсах вырабатываются разные медиаторы. Чаще всего это ацетилхолин, адреналин или норадреналин.

Выделяют также электрические синапсы. Они отличаются узкой синаптической щелью и наличием поперечных каналов, пересекающих обе мембраны, т. е. между цитоплазмами обоих клеток есть прямая связь. Каналы образованы белковыми молекулами каждой из мембран, соединенных комплементарно. Схема передачи возбуждения в таком синапсе подобна схеме передачи потенциала действия в гомогенном нервном проводнике.

В химических синапсах механизм передачи импульса следующий. Приход нервного импульса в пресинаптическое окончание сопровождается синхронным выбросом в синаптическую щель медиатора из синаптических пузырьков, расположенных в непосредственной близости от нее. Обычно в пресинаптическое окончание приходит серия импульсов, частота их возрастает при увеличении силы раздражителя, приводя к увеличению выделения медиатора в синаптическую щель. Размеры синаптической щели очень малы, и медиатор, быстро достигая постсинаптической мембраны, взаимодействует с ее веществом. В результате этого взаимодействия структура постсинаптической мембраны временно изменяется, проницаемость ее для ионов натрия повышается, что приводит к перемещению ионов и, как следствие, возникновению возбуждающего постсинаптического потенциала. Когда этот потенциал достигает определенной величины, возникает распространяющееся возбуждение – потенциал действия. Через несколько миллисекунд медиатор разрушается специальными ферментами.



Выделяют также особые синапсы тормозного действия. Полагают, что в специализированных тормозящих нейронах, в нервных окончаниях аксонов вырабатывается особый медиатор, оказывающий тормозящее воздействие на последующий нейрон. В коре больших полушарий головного мозга таким медиатором считают гамма-аминомасляную кислоту. Структура и механизм работы синапсов тормозного действия аналогичны таковым у синапсов возбуждающего действия, только результатом их действия является гиперполяризация. Это ведет к возникновению тормозного постсинаптического потенциала, в результате чего наступает торможение

Медиаторы синапса

Медиатор (от латинского Media - передатчик, посредник или середина). Такие медиаторы синапса очень важны в процессе передачи нервного импульса.

Морфологическое различие тормозного и возбуждающего синапса заключается в том, что они не имеют механизм освобождения медиатора. Медиатор в тормозном синапсе, мотонейроне и другом тормозном синапсе считается аминокислотой глицином. Но тормозной или возбуждающий характер синапса определяется не их медиаторами, а свойством постсинаптической мембраны. К примеру, ацетилхолин дает возбуждающее действие в нервно-мышечном синапсе терминалей (блуждающих нервов в миокарде).

Ацетилхолин служит возбуждающим медиатором в холинэргических синапсах (пресинаптическую мембрану в нем играет окончание спинного мозга мотонейрона), в синапсе на клетках Рэншоу, в пресинаптическом терминале потовых желез, мозгового вещества надпочеников, в синапсе кишечника и в ганглиях симпатической нервной системы. Ацетилхоли-нестеразу и ацетилхолин нашли также во фракции разных отделов мозга, иногда в большом количестве, но кроме холинэргического синапса на клетках Рэншоу пока не смогли идентифицировать остальные холинэргические синапсы. По словам ученых, медиаторная возбуждающая функция ацетилхолина в ЦНС весьма вероятна.



Кателхомины (дофамин, норадреналин и адреналин) считаются адренэргическими медиаторами. Адреналин и норадреналин синтезируются в окончании симпатического нерва, в клетке головного вещества надпочечника, спинного и головного мозга. Аминокислоты (тирозин и L-фенилаланин) считаются исходным веществом, а адреналин заключительным продуктом синтеза. Промежуточное вещество, в которое входят норадреналин и дофамин, тоже выполняют функцию медиаторов в синапсе, созданных в окончаниях симпатических нервов. Эта функция может быть либо тормозной (секреторные железы кишечника, несколько сфинктеров и гладкая мышца бронхов и кишечника), либо возбуждающей (гладкие мышцы определенных сфинктеров и кровеносных сосудов, в синапсе миокарда - норадреналин, в подкровных ядрах головного мозга - дофамин).

Когда завершают свою функцию медиаторы синапса, катехоламин поглощается пресинаптическим нервным окончанием, при этом включается трансмембранный транспорт. Во время поглощения медиаторов синапсы находятся под защитой от преждевременного истощения запаса на протяжении долгой и ритмичной работы.

Тоже результат активности маленьких нервных клеток. Но это необыкновенно нужная и сложная работа была бы невозможна без синапсов, которые обеспечивают взаимодействие нейронов и связывают их в единые нейронные сети.

Если перевести слово «синапс» с греческого, то получится «связь». Это и есть место связи, соединения двух нейронов. Казалось бы, что тут такого особенного в обычном соединении? Но именно синапсы делают возможным прохождение импульса по цепи нервных клеток и играют важную роль во всех .

Место синапсов в нервной системе

Одна из главных задач нейронов – сохранение и обработка, поступающей из внешнего мира информации. От органов чувств, мышц, связок и т. д. слабые электрические сигналы по нервным волокнам попадают в головной мозг, там они распространяются по нейронным цепям, создавая очаги возбуждения и связи между отдельными нейронами, центрами и отделами головного мозга. Так вкратце происходят все процессы в нашей психике: от простейших безусловных рефлексов, до сложнейшей мыслительной деятельности.

Распространение нервных импульсов происходит благодаря имеющимся у нейронов отросткам. Короткие и сильно разветвленные дендриты специализируются на приеме сигналов от других нейронов. У одной нервной клетки может быть до 1500 дендритов. А вот передающее нервное волокно – аксон – одно, но оно длинное и может достигать 1,5 метров. Соединяясь с отростками дендритов, аксон передает сигнал от одного нейрона к другому.

Но проблема в том, что напрямую импульс чаще всего пройти не может, так как между «ветвями» дендрита одной нервной клетки и аксоном другой есть щель – пространство, заполненное межклеточным веществом.

Происходит следующее: в процессе движения импульса в месте соединения нервных волокон возникает биохимическая реакция, образуется белковая молекула – нейротрансмиттер или медиатор (посредник) – и закупоривает щель, создавая своеобразный мостик для прохождения сигнала.

Так возникает то, что еще в 1897 году английский физиолог Ч. Шеррингтон назвал синапсом.

Структура синапса

Если учесть, что размер нервной клетки редко превышает 100 мкм, то место соединения передающего и принимающего волокон двух нейронов вообще микроскопическое. И тем не менее, синапс имеет сложное строение, включающее в себя три основных отдела:

  • Нервное окончание «ветвей» дендрита, которое представляет собой микроскопическое утолщение, называемое пресинаптической мембраной. Это очень важная часть синапса, отвечающая за синтез белковых молекул.
  • Аналогичное утолщение на отростках аксона. Оно имеет специальные рецепторы, позволяющие принимать сигналы от медиаторов. Это постсинаптическая мембрана.
  • Синаптическая щель, в которой образуется медиатор – проводящая импульс белковая молекула. Эта часть синапса одновременно и препятствует прохождению сигнала, и является причиной возникновения молекул белков, которые не только играют роль «мостиков», но и участвуют в работе нервной системы и организма в целом.

Функции этих белковых соединений разнообразны, так как нейроны вырабатывают разные виды медиаторов, и их химический состав оказывает различное влияние на процессы в нервной системе. Причем влияние это настолько сильное, что оно во многом управляет психическими реакциями, а недостаток даже одного из белков может привести к серьезным заболеваниям, таким как болезнь Паркинсона или Альцгеймера.

Сейчас обнаружено и изучено более 60 видов нейротрансмиттеров с разными свойствами. Вот примеры некоторых из них:

  • Норадреналин – гормон . Он обладает возбуждающим действием, повышает активность всех систем организма и добавляет чувство ярости в наше эмоциональное состояние.
  • Серотонин. Его функции многообразны: от обеспечения процесса пищеварения до влияния на уровень сексуального влечения.
  • Глутамат необходим для запоминания и сохранения информации, но его переизбыток токсичен и может вызвать гибель нервных клеток.
  • Дофамин – гормон счастья, источник позитивных , дарующий состояние блаженства. И одновременно этот белок, как и многие другие, обеспечивает эффективность познавательных процессов. А его недостаток может вызвать состояние и привести к слабоумию.

Это далеко не все белки, которые вырабатывают нейроны, но даже такой пример позволяет оценить значение нейротрансмиттеров и роль синапсов в организации нормальной деятельности головного . Разрушение нервных связей в результате болезни или травмы может привести и к серьезным нарушениям психических функций.

Виды синапсов

Синапсы обеспечивают связи не только между нейронами головного мозга, но и с нервными клетками органов чувств, рецепторами, расположенными во внутренних органах, мышцах и связках. Поэтому существует большое разнообразие синапсов в зависимости от специализации нейронов, от характера их воздействия, от того белкового соединения, которое вырабатывается при прохождении импульса.

В нашей нервной системе существует два основных процесса, определяющих ее деятельность. Это возбуждение и торможение. В соответствии с ними и синапсы делятся на два вида:

  • возбуждающие проводят сигналы, которые распространяют реакцию возбуждения нервных клеток;
  • тормозящие обеспечивают прохождение нервного импульса, который передает нейронам «команду» торможения.

По месту расположения синапсы различаются:

  • на центральные, расположенные в головном мозге;
  • периферические, обеспечивающие связи нейронов за пределами мозга – в периферической нервной системе.

Передача импульсов через синаптическую щель тоже может проводиться разными способами, в соответствии с этим выделяют три вида синапсов:

  • Химические синапсы расположены в коре головного мозга. Они проводят сигнал с помощью нейротрасмиттеров, которые образуются в результате биохимической реакции.
  • Электрические – та часть синапсов, которые способны передавать электрический сигнал без посредников-медиаторов. Например, это касается нейронов, расположенных в зрительном рецепторе. В этом случае химическая реакция не происходит, и обмен сигналами осуществляется быстрее.
  • Электрохимические синапсы сочетают в себе особенности обеих этих групп.

Также существует классификация синапсов по видам трансмиттеров. Например, если производится норадреналин, но синапсы эти называются адренергические, а если ацетилхолин, то – холинергические. Учитывая, что белков, вырабатываемых нейронами, несколько десятков видов, мы имеем очень объемную классификацию, которая здесь вряд ли уместна.

Синапсы и нейронные сети

Синапсы, устанавливая связи между проводящими нервными волокнами, обеспечивают возникновение и поддержание в рабочем состоянии нейронных цепей. Соединяясь и переплетаясь, они образуют сложные нейронные сети, по которым с огромной скоростью проносятся электрические импульсы.

По последним научным данным, только в коре головного мозга функционирует около 100 млрд нейронов. Каждый из них способен иметь до 10 000 синапсов, то есть связей с другими нервными клетками. И они могут обмениваться сигналами со скоростью 100 м/сек. Представляете, какой объем информации циркулирует в нашей нервной системе?

Результаты недавних исследований американских нейрофизиологов позволяют утверждать, что потенциальный объем памяти головного мозга человека измеряется петабайтами. 1 петабайт – 10 15 байт или 1 миллион гигабайт. И это сопоставимо с объемом информации, циркулирующей во всемирном интернет-пространстве. Поэтому когда не слишком радивый студент говорит, что у него распухла голова от полученных знаний и ничего больше туда впихнуть он не может, то стоит в этом усомниться.

Последнее обновление: 29/09/2013

Синапс – определение, структура, роль синапса в строении нервной системы

Синапс в структуре нервной системы – это небольшой участок в окончании нейона, отвечающий за передачу информации между нервными клетками. В его формировании участвуют две клетки – передающая и воспринимающая.

Определение понятия

Синапс является небольшим отделом в окончании нейрона. С его помощью ведется передача информации от одного нейрона к другому. Синапсы располагаются в тех участках нервных клеток, где они контактируют друг с другом. Кроме того, синапсы имеются в местах, где нервные клетки вступают в соединение с различными мышцами или железами организма.

Строение синапса

Структура синапса состоит из трех частей, каждая из которых несет свои функции в процессе передачи информации. В его строении задействованы обе клетки, и передающая, и воспринимающая.

На конце аксона передающей клетки располагается начальная часть синапса – пресинаптическое окончание. Оно способно вызывать в клетке запуск (термин имеет несколько названий – «нейромедиаторы», «посредники», «медиаторы») – специальных химических веществ, благодаря которым реализовывается передача электрического сигнала между двумя нейронами.

Средняя часть синапса является синаптической щелью – пространством между двумя вступающими во взаимодействие нервными клетками. Именно через эту щель и идет электрический импульс от передающей клетки.

Заключительная часть синапса является частью клетки воспринимающей и называется постсинаптическим окончанием – контактирующем фрагментом клетки со множеством чувствительных рецепторов в своей структуре.

Механизм работы синапса

Из пресинаптического окончания вниз по аксону нейрона проходит электрический заряд от передающей клетки к воспринимающей. Он запускает выброс в синаптическую щель нейротрансмиттеров. Данные медиаторы двигаются через синаптическую щель до постсинаптического окончания следующей клетки, где вступают во взаимодействие с многочисленными ее рецепторами. Данный процесс вызывает цепь биохимических реакций и, как следствие, провоцирует запуск электрического импульса с кратким изменением своего потенциала на участке клетки. Данное явление известно как потенциал действия (или волна возбуждения при прохождении нервного сигнала).



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...