Сумма проекций сил на ось. Проекция силы на ось

В тех случаях, когда на тело действует более трех сил, а также когда неизвестны направления некоторых сил, удобнее при решении задач пользоваться не геометрическим, а аналитическим условием равновесия, которое основано на методе проекций.

Проекцией силы на ось называется отрезок оси, заключенный между двумя перпендикулярами, опущенными на ось из начала и конца вектора силы.

Пусть даны координатные оси х, у , сила Р, приложенная в точке А и расположенная в плоскости координатных осей.

Проекциями силы Р на оси будут отрезки аЬ и а"Ь". Обозначим эти проекции соответственно Р х и Р у . Тогда

Р Х = Р cos(x); Р у = Рsin(x).

Проекция силы на ось есть величина алгебраическая, которая может быть положительной или отрицательной, что устанавливается по направлению проекции. За направление проекции примем направление от проекции начала к проекции конца вектора силы.

Установим следующее правило знаков: если направление проекции силы на ось совпадает с положительным направлением оси, то эта проекция считается положительной, и наоборот.

Если вектор силы параллелен оси , то он проецируется на эту ось в натуральную величину .

Если вектор силы перпендикулярен оси, то его проекция на эту ось равна нулю Зная две проекции Р х и Р у , из треугольника ЛВС определяем модуль и направление вектора силы Р по следующим формулам:

Р = у /Р* + Р*, направляющий тангенс угла между вектором силы Р и осью х 1 ё а = Р у /Р х.

Отметим, что силу Р можно представить как равнодействующую двух составляющих сил Р х и Р , параллельных осям координат (рис. 2.3). Составляющие Р х и Р у и проекции Р х и Р у принципиально отличны друг от друга, так как составляющая есть величина векторная, а проекция -- величина алгебраическая; но проекции силы на две взаимно перпендикулярные оси х и у и модули составляющих той же силы соответственно численно равны, когда сила разлагается по двум взаимно перпендикулярным направлениям, параллельным осям х и у.

Очевидно, что, согласно третьему закону Ньютона (аксиома взаимодействия), внутренние силы, действующие в сечении оставшейся и отброшенной частей тела, равны по модулю, но противоположны по направлению. Таким образом, рассматривая равновесие любой из двух частей рассеченного тела, мы получим одно и то же значение внутренних сил, однако выгоднее рассматривать ту часть тела, для которой уравнения равновесия проще.

1. растяжение; эту деформацию испытывают, например, канаты, тросы, цепи, шток протяжного станка;

2. сжатие; на сжатие работают, например, колонны, кирпичная кладка, пуансоны штампов;

3. сдвиг; деформацию сдвига испытывают заклепки, болты, шпонки, швы сварных соединений. Деформацию сдвига, до- веденную до разрушения материала, называют срезом. Срез возникает, например, при резке ножницами или штамповке деталей из листового материала;

4. кручение; на кручение работают валы, передающие мощность при вращательном движении. Обычно деформация кручения сопровождается другими деформациями, например изгибом;

5. изгиб; на изгиб работают балки, оси, зубья зубчатых колес и другие элементы конструкций.

Очень часто элементы конструкций подвергаются действию нагрузок, вызывающих одновременно несколько основных деформаций. Так, например, в теоретической механике мы рассмотрели усилия, действующие на колесо червячной передачи. Очевидно, что в этом случае возникают следующие деформации вала червячного колеса:

Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука (1635 -- 1703).

Закон Гука при растяжении и сжатии справедлив лишь в определенных пределах нагружения и формулируется так: нормальное напряжение прямо пропорционально относительному удлинению или укорочению.

Коэффициент пропорциональности Е характеризует жесткость материала, т.е. его способность сопротивляться упругим деформациям растяжения или сжатия, и называется модулем продольной упругости или модулем упругости первого рода.

Модуль упругости и напряжение выражаются в одинаковых единицах:

[Ј] = [а]/ = Па.

Значения Е, МПа, для некоторых материалов:

Чугун (1,5...1,6) 10 5

Сталь (1,96...2,16) 10 5

Медь (1,0...1,3)10 5

Сплавы алюминия (0,69...0,71) 10 5

Дерево (вдоль волокон) (0,1...0,16) 10 5

Текстолит (0,06...0,1)10 5

Капрон (0,01... 0,02) 10 5

Если в формулу закона Гука подставим выражения a = N/A, 8 = А///, то получим

Произведение ЕА, стоящее в знаменателе, называется жесткостью сечения при растяжении и сжатии; оно характеризует одновременно физико-механические свойства материала и геометрические размеры поперечного сечения бруса.

Эта формула читается так: абсолютное удлинение или укорочение прямо пропорционально продольной силе, длине и обратно пропорционально жесткости сечения бруса.

Отношение называется жесткостью бруса при растяжении или сжатии.

Приведенные выше формулы закона Гука применимы только для брусьев или их участков постоянного поперечного сечения, изготовленных из одного материала и при постоянной продольной силе.

Для бруса, имеющего несколько участков, отличающихся материалом, размерами поперечного сечения, продольной силой, изменение длины всего бруса равно алгебраической сумме удлинений и укорочений отдельных участков.

Диаграмма растяжения низкоуглеродистой стали представлена на рис. 19.6. Эта диаграмма имеет следующие характерные точки.

Точка А практически соответствует и другому пределу, который называется пределом упругости.

Пределом упругости а уп называется то наибольшее напряжение, до которого деформации практически остаются упругими.

Точка С соответствует пределу текучести.

Пределом текучести а т называется такое напряжение, при котором в образце появляется заметное удлинение без увеличения нагрузки.

При достижении предела текучести поверхность образца становится матовой, так как на ней появляется сетка линий Людерса-Чернова, наклоненных к оси под углом 45°.

Эти линии впервые были описаны в 1859 г. немецким металлургом Людерсом и независимо от него в 1884 г. русским металлургом Д.К. Черновым (1839--1921), предложившим использовать их при экспериментальном изучении напряжений в сложных деталях.

Предел текучести является основной механической характеристикой при оценке прочности пластичных материалов. Точка В соответствует временному сопротивлению или пределу прочности.

Временным сопротивлением а в называется условное напряжение, равное отношению максимальной силы, которую выдерживает образец, к первоначальной площади его поперечного сечения (для стали СтЗ а в 400 МПа).

При достижении временного сопротивления на растягиваемом образце образуется местное сужение -- шейка, т. е. начинается разрушение образца.

В определении временного сопротивления говорится об условном напряжении, так как в сечениях шейки напряжения будут больше.

Пределом прочности а пч называется временное сопротивление образца, разрушающегося без образования шейки. Предел прочности является основной механической характеристикой при оценке прочности хрупких материалов.

Точка И соответствует напряжению, возникающему в образце в момент разрыва во всех поперечных сечениях, кроме сечений шейки.

Точка М соответствует напряжению, возникающему в наименьшем поперечном сечении шейки в момент разрыва. Это напряжение можно назвать напряжением разрыва.

Часто геометрическое сложение векторов сил требует сложных и громоздких построений. В таких случаях прибегают к другому методу, где геометрическое построе­ние заменен о вычислениями скалярных величин. Дости­гается это проектированием заданных сил на оси прямо­угольной системы координат.

Как известнее из математики, осью называют неограни­ченную прямую линию , которой приписано определенное направление . Проекция вектора на ось является скаляр­ной величиной, которая определяется отрезком оси , отсе­каемым перпендикулярами , опущенными из начала и конца вектора на ось.

Проекция вектора считается положительной (+ ), если направление от начала проекции к ее концу совпадает с положительным направлением оси. Проекция вектора считается отрицательной (- ), если направление от на­чала проекции к ее концу противоположно положитель­ному направлению оси.

Рассмотрим ряд случаев проектирования сил на ось .

  1. Дана сила Р (рис.а ), она лежит в одной пло­скости с осью х . Вектор силы составляет с положительным направлением оси острый угол α .

Чтобы найти величину проекции , из начала и конца вектора силы опускаем перпендикуляры на ось х, полу­чаем

Р х = ab = Р cos α .

Проекция вектора в данном случае положительна .

2. Дана сила Q (рис. б ), которая лежит в одной плоскости с осью х , но ее вектор составляет с положи­тельным направлением оси тупой угол α .

Проекция силы Q на ось х

Q х = ab = Q cos α,

cos a = - cos β .

Так как α > 90° , то cos cos α - отрицательная величина. Выразив cos α через cos β (β - острый угол), оконча­тельно получим

Q х = - Q cos β

В этом случае проекция силы отрицательна .

Итак, проекция силы на ось координат равна произве­дению модуля силы на косинус угла между вектором силы и положительным направлением оси .

При определении проекции вектора силы на ось поль­зуются обычно косинусом острого угла, независимо от того, с каким направлением оси - положительным или отрицательным - он образо­ван. Знак проекции легче устанавливать непосредствен­но по чертежу.

Силу, расположенную на плоскости хОу , можно спроек­тировать на две координатные оси Ох и Оу . Рассмотрим рисунок.

На нем изображена сила Р и ее проекции Р х и Р у . Ввиду того что проекции образуют между собой прямой угол, из прямоугольного треугольника ABC следует:



Практическое занятие №1. Плоская система сходящихся сил

Знать способы сложения двух сил и разложение силы на со­ставляющие, геометрический и аналитический способы определе­ния равнодействующей силы, условия равновесия плоской сходящей­ся системы сил.

Уметь определять равнодействующую системы сил, решать задачи на равновесие геометрическим и аналитическим способом, рационально выбирая координатные оси.

Расчетные формулы

Равнодействующая системы сил

где F ∑ x , F ∑ y - проекции равнодействующей на оси координат; F kx , F ky - проекции векторов-сил системы на оси координат.

где - угол равнодействующей с осью Ох.

Условие равновесия

Если плоская система сходящихся сил находится в равновесии, мно­гоугольник сил должен быть замкнут.

Пример 1. Определение равнодействующей системы сил.

Определить равнодействующую плоской системы сходящихся сил аналитическим и геометрическим способами (рис. П1.1). Дано:

Решение

1. Определить равнодействующую аналитическим способом (рис. П1.1a).

2. Определить равнодействующую графическим способом.

С помощью транспортира в масштабе 2 мм = 1 кН строим много­угольник сил (рис. П1.1б). Измерением определяем модуль равно­действующей силы и угол наклона ее к оси Ох.

Результаты расчетов не должны отличаться более чем на 5%:

Расчетно-графическая работа №1. Определение равнодействующей плоской системы схо­дящихся сил аналитическим и геометрическим способами


Задание 1. Используя схему рис. П1.1а, определить равнодей­ствующую системы сил геометрическим способом

Пример 2. Решение задачи на равновесие аналитиче­ским способом.

Грузы подвешены на стержнях и канатах и находятся в равно­весии. Определить реакции стержней АВ и СВ (рис. П1.2).

Решение

1. Определяем вероятные направления реакций (рис. П1.2а). Мысленно убираем стержень АВ , при этом стержень СВ опускается, следовательно, точка В отодвигается от стены: назначение стержня АВ - тянуть точку В к стене.

Если убрать стержень СВ , точка В опустится, следовательно, стержень СВ поддерживает точку В снизу - реакция направлена вверх.

2. Освобождаем точку В от связи (рис. П1.26).

3. Выберем направление осей координат, ось Ох совпадает с ре­акцией R 1 .

4. Запишем уравнения равновесия точки В :

5. Из второго уравнения получаем:

Из первого уравнения получаем:

Вывод: стержень АВ растянут силой 28,07 кН, стержень СВ сжат силой 27,87 кН.

Примечание. Если при решении реакция связи окажется отрицательной, значит, вектор силы направлен в противоположную сторону.

В данном случае реакции направлены верно.



Определить величину и направление реакций связей по данным одного из вариантов, показанных на рисунке.

Задача 1


ЛЕКЦИЯ 4

Тема 1.3. Пара сил и момент силы относительно точки

Знать обозначение, модуль и определение моментов пары сил или относительно точки, условия равновесия системы пар сил.

Уметь определять моменты пар сил и момент силы относительно точки, определять момент результирующей пары сил.

Пара сил, момент пары сил

Парой сил называется система двух сил, равных по модулю, параллельных и направ­ленных в разные стороны.

Рассмотрим систему сил (F, F 1), образую­щих пару.

  1. Пара сил вызывает вращение тела, и ее действие на тело оценивается моментом.
  2. Силы, входящие в пару, не уравновешива­ются, т. к. они приложены к двум точкам (рис. 4.1). Их действие на тело не может быть заменено одной силой (равнодействую­щей).
  3. Момент пары сил численно равен произ­ведению модуля силы на расстояние между линиями действия сил (плечо пары).
  4. Момент считают положительным, ес­ли пара вращает тело по часовой стрелке (рис. 4.1 б): M( F; F") = Fa; М > 0.
  5. Плоскость, проходящая через линии действия сил пары, называется плоскостью действия пары.

Проекция силы на ось определяется отрезком оси, отсекаемым

перпендикулярами, опущенными на ось из начала и конца вектора (рис. 3.1).

Величина проекции силы на ось равна произведению модуля си­лы на косинус угла между вектором силы и положительным напра­влением оси. Таким образом, проекция имеет знак: положительный при одинаковом направлении вектора силы и оси и отрицательный при направлении в сторону отрицательной полуоси (рис. 3.2).


Проекция силы на две взаимно перпендикулярные оси (рис. 3.3).


Конец работы -

Эта тема принадлежит разделу:

Теоретическая механика

Теоретическая механика.. лекция.. тема основные понятия и аксиомы статики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Задачи теоретической механики
Теоретическая механика - наука о механическом движении материальных твердых тел и их взаимодействии. Механическое дви­жение понимается как перемещение тела в пространстве и во време­ни по от

Третья аксиома
Не нарушая механического состояния тела, можно добавить или убрать уравновешенную систему сил (принцип отбрасывания систе­мы сил, эквивалентной нулю) (рис. 1.3). Р,=Р2 Р,=Р.

Следствие из второй и третьей аксиом
Силу, действующую на твер­дое тело, можно перемещать вдоль линии ее действия (рис. 1.6).

Связи и реакции связей
Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные. Свободные тела - тела, перемещение которых не ограничено.

Жесткий стержень
На схемах стержни изображают толсто сплошной линией (рис. 1.9). Стержень може

Неподвижный шарнир
Точка крепления пере­мещаться не может. Стер­жень может свободно повора­чиваться вокруг оси шарни­ра. Реакция такой опоры про­ходит через ось шарнира, но

Плоская система сходящихся сил
Система сил, линии действия которых пе­ресекаются в одной точке, называется сходя­щейся (рис. 2.1).

Равнодействующая сходящихся сил
Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (вис. 2.2).

Условие равновесия плоской системы сходящихся сил
При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого. Если

Решение задач на равновесие геометрическим способом
Геометрическим способом удобно пользоваться, если в системе три силы. При решении задач на равновесие тело считать абсолютно твердым (отвердевшим). Порядок решения задач:

Решение
1. Усилия, возникающие в стержнях крепления, по величине равны силам, с которыми стержни поддерживают груз (5-я аксиома статики) (рис. 2.5а). Определяем возможные направления реакций связе

Сил аналитическим способом
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геоме­трическим способом. Выберем систему координат, определим про­екции всех зада

Сходящихся сил в аналитической форме
Исходя из того, что равнодействующая равна нулю, получим: Усл

Пара сил, момент пары сил
Парой сил называется система двух сил, равных по модулю, параллельных и направлен­ных в разные стороны. Рассмотрим систему сил (Р; Б"), образую­щих пару.

Момент силы относительно точки
Сила, не проходящая через точку крепления тела, вызывает вра­щение тела относительно точки, поэтому действие такой силы на тело оценивается моментом. Момент силы отн

Теорема Пуансо о параллельном переносе сил
Силу можно перенести параллельно линии ее действия, при этом нужно добавить пару сил с моментом, равным произведению модуля силы на расстояние, на которое перенесена сила.

Расположенных сил
Линии действия произвольной системы сил не пересекаются в одной точке, поэтому для оценки состояния тела такую систему следует упростить. Для этого все силы системы переносят в одну произ­вольно вы

Влияние точки приведения
Точка приведения выбрана произвольно. При изменении поло­жения точки приведения величина главного вектора не изменится. Величина главного момента при переносе точки приведения из­менится,

Плоской системы сил
1. При равновесии главный вектор системы равен нулю. Аналитическое определение главного вектора приводит к выводу:

Виды нагрузок
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной

Момент силы относительно оси
Момент силы относительно оси равен моменту проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью (рис. 7.1 а). MOO

Вектор в пространстве
В пространстве вектор силы проецируется на три взаимно пер­пендикулярные оси координат. Проекции вектора образуют ребра прямоугольного параллелепипеда, век­тор силы совпадает с диагональю (рис. 7.2

Пространственная сходящаяся система сил
Пространственная сходящаяся система сил - система сил, не лежащих в одной плоскости, линии действия которых пересе­каются в одной точке. Равнодействующую пространственной системы си

Приведение произвольной пространственной системы сил к центру О
Дана пространственная система сил (рис. 7.5а). Приведем ее к центру О. Силы необходимо параллельно перемещать, при этом образует­ся система пар сил. Момент каждой из этих пар равен

Центр тяжести однородных плоских тел
(плоских фигур) Очень часто приходится определять центр тяжести различных плоских тел и геометрических плоских фигур сложной формы. Для плоских тел можно записать: V =

Определение координат центра тяжести плоских фигур
Примечание. Центр тяжести симметричной фигуры находится на оси симметрии. Центр тяжести стержня находится на середине высоты. Поло­жения центров тяжести простых геометрических фигур могут

Кинематика точки
Иметь представление о пространстве, времени, траектории, пути, скорости и ускорении.Знать способы задания движения точки (естественный и координатный). Знать обозначения, едини

Пройденный путь
Путь измеряется вдоль траектории в направлении движения. Обозначение - S, единицы измерения - метры. Уравнение движения точки: Уравнение, определяющ

Скорость движения
Векторная величина, характеризующая в данный момент бы­строту и направление движения по траектории, называется скоро­стью. Скорость - вектор, в любой момент направленный по к

Ускорение точки
Векторная величина, характеризующая быстроту изменения скорости по величине и направлению, называется ускорением точки. Скорость точки при перемещении из точки М1

Равномерное движение
Равномерное движение - это движение с постоянной скоро­стью: v = const. Для прямолинейного равномерного движения (рис. 10.1 а)

Равнопеременное движение
Равнопеременное движение - это движение с постоянным ка­сательным ускорением: at = const. Для прямолинейного равнопеременного движения

Поступательное движение
Поступательным называют такое движение твердого тела, при котором всякая прямая линия на теле при движении остается парал­лельной своему начальному положению (рис. 11.1, 11.2). При

Вращательное движение
При вращательном движении все точки тела описывают окруж­ности вокруг общей неподвижной оси. Неподвижная ось, вокруг которой вращаются все точки тела, называется осью вращения.

Частные случаи вращательного движения
Равномерное вращение (угловая скорость постоянна): ω =const Уравнение (закон) равномерного вращения в данном случае име­ет вид:

Скорости и ускорения точек вращающегося тела
Тело вращается вокруг точки О. Определим параметры дви­жения точки A , расположенной на расстоянии RA от оси вращения (рис. 11.6, 11.7). Путь

Решение
1. Участок 1 - неравномерное ускоренное движение, ω = φ’ ; ε = ω’ 2. Участок 2 - скорость постоянна - движение равномерное, . ω = const 3.

Основные определения
Сложным движением считают движение, которое можно разло­жить на несколько простых. Простыми движениями считают посту­пательное и вращательное. Для рассмотрения сложного движения точ

Плоскопараллельное движение твердого тела
Плоскопараллельным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются парал­лельно некоторой неподвижной в рассматриваемой системе отсчета

Поступа­тельное и вращательное
Плоскопараллельное движение раскладывают на два движения: поступательное вместе с некоторым полюсом и вращательное от­носительно этого полюса. Разложение используют для опред

Центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение пред­ставляют в виде цепи вращений вокруг разных центров. Задача

Аксиомы динамики
Законы динамики обобщают результаты многочисленных опытов и наблюдений. Законы динамики, которые принято рассматривать как аксиомы, были сформулированы Ньютоном, но первый и четвертый законы были и

Понятие о трении. Виды трения
Трение - сопротивление, возникающее при движении одного шероховатого тела по поверхности другого. При скольжении тел воз­никает трение скольжения, при качении - трение качения. Природа сопро

Трение качения
Сопротивление при качении связано с взаимной деформацией грунта и колеса и значительно меньше трения скольжения. Обычно считают грунт мягче колеса, тогда в основном дефор­мируется грунт, и

Свободная и несвободная точки
Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики. Материальные то

Сила инерции
Инертность - способность сохранять свое состояние неизмен­ным, это внутреннее свойство всех материальных тел. Сила инерции - сила, возникающая при разгоне или торможе­нии тел

Решение
Активные силы: движущая сила, сила трения, сила тяжести. Ре­акция в опоре R. Прикладываем силу инерции в обратную от ускоре­ния сторону. По принципу Даламбера, система сил, действующих на платформу

Работа равнодействующей силы
Под действием системы сил точка массой т перемещается из положения М1 в положение M 2 (рис. 15.7). В случае движения под действием системы сил пользуютс

Мощность
Для характеристики работоспособности и быстроты соверше­ния работы введено понятие мощности. Мощность - работа, выполненная в единицу времени:

Мощность при вращении
Рис. 16.2 Тело движется по дуге радиуса из точки М1 в точку М2 М1М2 = φr Работа силы

Коэффициент полезного действия
Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы совершает еще и дополнитель

Теорема об изменении количества движения
Количеством движения материальной точки называется векторная величина, равная произведению массы точки на ее скорость mv. Вектор количества движения совпадает по

Теорема об изменении кинетической энергии
Энергией называется способность тела совершать механиче­скую работу. Существуют две формы механической энергии: потенциальная энергия, или энергия положения, и кинетическая энергия,

Основы динамики системы материальных точек
Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой. Любое материальное тело в механике рассматривается как механическая

Основное уравнение динамики вращающегося тела
Пусть твердое тело под действием внешних сил вращается во­круг оси Оz с угловой скоростью

Напряжения
Метод сечений позволяет определить величину внутреннего си­лового фактора в сечении, но не дает возможности установить за­кон распределения внутренних сил по сечению. Для оценки прочно­сти н

Внутренние силовые факторы, напряжения. Построение эпюр
Иметь представление о продольных силах, о нормальных на­пряжениях в поперечных сечениях. Знать правила построения эпюр продольных сил и нормальных напряжений, закон распределения

Продольных сил
Рассмотрим брус, нагруженный внешними силами вдоль оси. Брус закреплен в стене (закрепление «заделка») (рис. 20.2а). Делим брус на участки нагружения. Участком нагружения с

Геометрические характеристики плоских сечений
Иметь представление о физическом смысле и порядке опре­деления осевых, центробежных и полярных моментов инерции, о главных центральных осях и главных центральных моментах инерции.

Статический момент площади сечения
Рассмотрим произвольное сечение (рис. 25.1). Если разбить сечение на бесконечно малые площадки dA и умножить каждую площадку на расстояние до оси координат и проинтегрировать получе

Центробежный момент инерции
Центробежным моментом инерции сечения называется взятая ковсей площади сумма произведений элементарных площадок на обе координаты:

Осевые моменты инерции
Осевым моментом инерции сечения относительно некоторой реи, лежащей в этой же плоскости, называется взятая по всей пло­щади сумма произведений элементарных площадок на квадрат их расстояния

Полярный момент инерции сечения
Полярным моментом инерции сечения относительно некоторой точки (полюса) называется взятая по всей площади сумма произве­дений элементарных площадок на квадрат их расстояния до этой точки:

Моменты инерции простейших сечений
Осевые моменты инерции прямоугольника (рис. 25.2) Представим прямо

Полярный момент инерции круга
Для круга вначале вычисляют поляр­ный момент инерции, затем - осевые. Представим круг в виде совокупности бесконечно тонких колец (рис. 25.3).

Деформации при кручении
Кручение круглого бруса происходит при нагружении его па­рами сил с моментами в плоскостях, перпендикулярных продольной оси. При этом образующие бруса искривляются и разворачиваются на угол γ,

Гипотезы при кручении
1. Выполняется гипотеза плоских сечений: поперечное сечение бруса, плоское и перпен- дикулярное продольной оси, после деформацииостается плоским и перпендикулярным продольной оси.

Внутренние силовые факторы при кручении
Кручением называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор - крутящий момент. Внешними нагрузками также являются две про

Эпюры крутящих моментов
Крутящие моменты могут меняться вдоль оси бруса. После определения величин моментов по сечениям строим график-эпюру крутящих моментов вдоль оси бруса.

Напряжения при кручении
Проводим на поверхности бру­са сетку из продольных и попе­речных линий и рассмотрим рису­нок, образовавшийся на поверхно­сти после Рис. 27.1а деформации (рис. 27.1а). Поп

Максимальные напряжения при кручении
Из формулы для определения напряжений и эпюры распределе­ния касательных напряжений при кручении видно, что максималь­ные напряжения возникают на поверхности. Определим максимальное напряж

Виды расчетов на прочность
Существует два вида расчета на прочность 1. Проектировочный расчет - определяется диаметр бруса (вала) в опасном сечении:

Расчет на жесткость
При расчете на жесткость определяется деформация и сравни­вается с допускаемой. Рассмотрим деформацию круглого бруса над действием внешней пары сил с моментом т (рис. 27.4).

Основные определения
Изгибом называется такой вид нагружения, при котором в по­перечном сечении бруса возникает внутренний силовой фактор -изгибающий момент. Брус, работающий на

Внутренние силовые факторы при изгибе
Пример 1.Рассмотрим балку, на которую действует пара сил с моментом т и внешняя сила F (рис. 29.3а). Для определения вну­тренних силовых факторов пользуемся методом с

Изгибающих моментов
Поперечная сила в сече­нии считается положитель­ной, если она стремится раз­вернуть се

Дифференциальные зависимости при прямом поперечном изгибе
Построение эпюр поперечных сил и изгибающих моментов су­щественно упрощается при использовании дифференциальных зави­симостей между изгибающим моментом, поперечной силой и интен­сивностью равномерн

Методом сечения Полученное выражение можно обобщить
Поперечная сила в рассматриваемом сечении равна алгебраической сумме всех сил, действующих на балку до рассматриваемого сечения: Q = ΣFi Поскольку речь идет

Напряжения
Рассмотрим изгиб балки, защемленной справа и нагруженной сосредоточенной силой F (рис. 33.1).

Напряженное состояние в точке
Напряженное состояние в точке характеризуется нормальны­ми и касательными напряжениями, возникающими на всех площад­ках (сечениях), проходящих через данную точку. Обычно достаточ­но определить напр

Понятие о сложном деформированном состоянии
Совокупность деформаций, возникающих по различным напра­влениям и в различных плоскостях, проходящих через точку, опре­деляют деформированное состояние в этой точке. Сложное деформи

Расчет круглого бруса на изгиб с кручением
В случае расчета круглого бруса при действии изгиба и кру­чения (рис. 34.3) необходимо учитывать нормальные и касательные напряжения, т. к. максимальные значения напряжений в обоих слу­чаях возника

Понятие об устойчивом и неустойчивом равновесии
Относительно короткие и массивные стержни рассчитывают на сжатие, т.к. они выходят из строя в результате разрушения или остаточных деформаций. Длинные стержни небольшого поперечного сечения под дей

Расчет на устойчивость
Расчет на устойчивость заключается в определении допускае­мой сжимающей силы и в сравнении с ней силы действующей:

Расчет по формуле Эйлера
Задачу определения критической силы математиче­ски решил Л. Эйлер в 1744 г. Для шарнирно закрепленного с обеих сторон стержня (рис. 36.2) формула Эйлера имеет вид

Критические напряжения
Критическое напряжение - напряжение сжатия, соответству­ющее критической силе. Напряжение от сжимающей силы определяется по формуле

Пределы применимости формулы Эйлера
Формула Эйлера выполняется только в пределах упругих де­формаций. Таким образом, критическое напряжение должно быть меньше предела упругости материала. Пред

С1

Для заданной схемы балки требуется найти опорные реакции, если l=14 м, а=3,8 м, b=5 м, М=11 кН м, F=10 кН.

Решение. Так как горизонтальная нагрузка отсутствует, то опора А имеет только вертикальную реакцию RA. Составляем уравнения равновесия в виде моментов всех сил относительно точек А и В.

откуда находим

Для проверки составим уравнение равновесия на вертикальную ось:

Контрольные вопросы

балка шарнир сила точка

Как находится проекция силы на ось?

Проекция силы на ось - это алгебраическая величина, равная произведению модуля силы на косинус угла между положительным направлением оси и вектором силы (т.е. это отрезок, откладываемый силой на соответствующие оси).

Px= P cos?= P cos90o=0;

Rx= R cos? = -R cos(180o-?).

Проекция силы на ось положительна, рис. 2 а), если 0 ? ? < ?/2.

В каком случае проекция силы на ось равна нулю?

Проекция силы на ось может быть равной нулю, рис. 2 б), если? = ?/2.)

В каком случае проекция силы на ось равна модулю силы?

Проекция силы на ось равна модулю силы, если? =0?.

В каком случае проекция силы на ось отрицательна?

Проекция силы на ось может быть отрицательной, рис. 2 в), если?/2 < ? ? ?.

Сколько уравнений равновесия составляется для плоской сходящейся системы сил?

Силы называют сходящимися, если их линии действия пересекаются в одной точке. Различают плоскую систему сходящихся сил, когда линии действия всех данных сил лежат в одной плоскости.

Равновесие системы сходящихся сил.

Из законов механики следует, что твердое тело, на которое действуют взаимно уравновешенные внешние силы, может не только находиться в покое, но и совершать движение, которое мы назовем движением «по инерции». Таким движением будет, например, поступательное равномерное и прямолинейное движение тела.

Отсюда получаем два важных вывода:

1) Условиям равновесия статики удовлетворяют силы, действующие как на покоящееся тело, так и на тело, движущееся «по инерции».

2) Уравновешенность сил, приложенных к свободному твердому телу, является необходимым, но не достаточным условием равновесия (покоя) самого тела; в покое тело будет при этом находиться лишь в том случае, если оно было в покое и до момента приложения к нему уравновешенных сил.

Для равновесия приложенной к твердому телу системы сходящихся сил необходимо и достаточно, чтобы равнодействующая этих сил была равна нулю. Условия, которым при этом должны удовлетворять сами силы, можно выразить в геометрической или аналитической форме.

1. Геометрическое условие равновесия. Так как равнодействующая сходящихся сил определяется как замыкающая сторона силового многоугольника, построенного из этих сил, то может обратиться в нуль тогда и только тогда, когда конец последней силы в многоугольнике совпадает с началом первой, т. е. когда многоугольник замкнется.

Следовательно, для равновесия системы, сходящихся сил необходимо и достаточно, чтобы силовой многоугольник, построенный из этих сил, был замкнут.

2. Аналитические условия равновесия. Аналитически равнодействующая системы сходящихся сил определяется формулой

Так как под корнем стоит сумма положительных слагаемых, то R обратится в нуль только тогда, когда одновременно

т. е. когда действующие на тело силы будут удовлетворять равенствам:

Равенства выражают условия равновесия в аналитической форме: для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы суммы проекций этих сил на каждую из трех координатных осей были равны нулю.

Если все действующие на тело сходящиеся силы лежат в одной плоскости, то они образуют плоскую систему сходящихся сил. В случае плоской системы сходящихся сил получим, очевидно, только два условия равновесия

Равенства выражают также необходимые условия (или уравнения) равновесия свободного твердого тела, находящегося под действием сходящихся сил.

В какую сторону направлена реакция стержня с шарнирным крепление концов?

Пусть в какой-нибудь конструкции связью является стержень АВ, закрепленный на концах шарнирами (рис.3). Примем, что весом стержня по сравнению с воспринимаемой им нагрузкой можно пренебречь. Тогда на стержень будут действовать только две силы приложенные в шарнирах А и В. Но если стержень АВ находится в равновесии, то приложенные в точках А и В силы должны быть направлены вдоль одной прямой, т. е. вдоль оси стержня. Следовательно, нагруженный на концах стержень, весом которого по сравнению с этими нагрузками можно пренебречь, работает только на растяжение или на сжатие. Если такой стержень является связью, то реакция стержня будет направлена вдоль оси стержня.

Как находится момент силы относительно точки?

Момент силы относительно точки определяется произведением модуля силы на длину перпендикуляра, опущенного из точки на линию действия силы (рис. 4, а). При закреплении тела в точке О сила стремится вращать его вокруг этой точки. Точка О, относительно которой берется момент, называется центром момента, а длина перпендикуляра а называется плечом силы относительно центра момента.


Измеряются моменты сил в ньютонометрах (Н м) или килограммометрах (кгс м) или в соответствующих кратных и дольных единицах, как и моменты пар.

В каком случае момент силы относительно точки равен нулю?

Когда линия действия силы проходит через данную точку, ее момент относительно этой точки равен нулю, так как в рассматриваемом случае плечо равно нулю: а = 0 (рис. 4, в).

Сколько уравнений равновесия составляется для плоской произвольной системы сил?

Для плоской произвольной системы сил можно составить три уравнения равновесия:

Как направлены реакции в неподвижном шарнире?

Неподвижная шарнирная опора (рис.5, опора В). Реакция такой опоры проходит через ось шарнира и может иметь любое направление в плоскости чертежа. При решении задач будем реакцию изображать ее составляющими и по направлениям осей координат. Если мы, решив задачу, найдем и, то тем самым будет определена и реакция; по модулю

Как направлена реакция в подвижном шарнире?

Подвижная шарнирная опора (рис.6, опора А) препятствует движению тела только в направлении перпендикулярном плоскости скольжения опоры. Реакция такой опоры направлена по нормали к поверхности, на которую опираются катки подвижной опоры.



Последние материалы раздела:

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...