Сурьма: история открытия элемента. Сурьма металл

ОПРЕДЕЛЕНИЕ

Сурьма - пятьдесят первый элемент Периодической таблицы. Обозначение - Sb от латинского «stibium». Расположена в пятом периоде, VA группе. Относится к полуметаллам. Заряд ядра равен 51.

Сурьма встречается в природе в соединении с серой - в виде сурьмяного блеска]6 или антимонита, Sb 2 S 3 . Несмотря на то, что содержание сурьмы в земной коре сравнительно невелико , сурьма была известна еще в глубокой древности. Это объясняется распространенностью в природе сурьмяного блеска и легкостью получения из него сурьмы.

В свободном состоянии сурьма образует серебристо-белые кристаллы (рис. 1), обладающие металлическим блеском и имеющие плотность 6,68 г/см 3 . Напоминая по внешнему виду металл, кристаллическая сурьма отличается хрупкостью и значительно хуже проводит теплоту и электрический ток, чем обычные металлы. Кроме кристаллической сурьмы, известны и другие ее аллотропические видоизменения.

Рис. 1. Сурьма. Внешний вид.

Атомная и молекулярная масса сурьмы

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии сурьма существует в виде одноатомных молекул Sb, значения его атомной и молекулярной масс совпадают. Они равны 121,760.

Изотопы сурьмы

Известно, что в природе сурьма может находиться в виде двух стабильных изотопов 121 Sb (57,36%) и 123 Sb (42,64%). Их массовые числа равны 121 и 123 соответственно. Ядро атома изотопа сурьмы 121 Sb содержит пятьдесят один протон и семьдесят нейтронов, а изотопа 123 Sb - такое число протонов и семьдесят два нейтрона.

Существуют искусственные нестабильные изотопы сурьмы с массовыми числами от 103-х до 139-ти, а также более двадцати изомерных состояния ядер, среди которых наиболее долгоживущим является изотоп 125 Sb с периодом полураспада равным 2,76 года.

Ионы сурьмы

На внешнем энергетическом уровне атома сурьмы имеется пять электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 5s 2 5р 3 .

В результате химического взаимодействия сурьма отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион либо принимает электроны от другого атома, т.е. является их акцептором и превращается в отрицательно заряженный ион:

Sb 0 -3e → Sb 3+ ;

Sb 0 -5e → Sb 5+ ;

Sb 0 +3e → Sb 3- .

Молекула и атом сурьмы

В свободном состоянии сурьма существует в виде одноатомных молекул Sb. Приведем некоторые свойства, характеризующие атом и молекулу сурьмы:

Сплавы сурьмы

Сурьму вводят в некоторые сплаву для придания им твердости. Сплав, состоящий из сурьмы, свинца и небольшого количества олова, называется типографским металлом, или гартом и служит для изготовления типографского шрифта. Из сплава сурьмы со свинцом (от 5 до 15% Sb) изготовляют пластины свинцовых аккумуляторов, листы и трубы для химической промышленности.

Примеры решения задач

ПРИМЕР 1

Описание и свойства сурьмы

Впервые человечество начало использовать сурьму еще задолго до нашей эры. Ведь до сих пор археологи находят фрагменты или изделия из металлической сурьмы на местах древнего Вавилона, что соответствует началу ІІІ столетия до нашей эры. Как самостоятельный металл, сурьму редко применяют в производстве, а в основном в соединениях с другими элементами. Самое популярное применение, которое дошло и до наших времен – это использование минерала «сурьмяный блеск» в косметологии в качестве карандаша для век или краски для ресниц и бровей.

В периодической системе Д. И. Менделеева сурьма – химический элемент , который относится к V группе, его символ – Sb. Атомный номер 51, атомная масса 121,75, плотность составляет 6620 кг/м3. Свойства сурьмы – окрас серебристо-белый с синеватым оттенком. По своему строению, металл крупнозернистый и очень хрупкий, его легко можно вручную измельчить до состояния порошка в фарфоровой ступке и не поддается . Температура плавления металла составляет 630,5 ⁰С, температура кипения — 1634 °C.

Кроме стандартной кристаллической формы, в природе существуют еще три аморфных состояния сурьмы:

    Взрывчатая сурьма – образуется при электролизе соединения SbCI3 в соляно кислой среде и при ударе или прикосновении взрывается, тем самым переходит в обычное состояние.

    Желтая сурьма – получается при воздействии молекул кислорода О2 на соединение водорода с сурьмой SbH 3 .

    Черная сурьма – образовывается при резком охлаждении паров желтой сурьмы.

В обычных условиях сурьма свойства свои не меняет, в воде не растворяется. Хорошо взаимодействует в виде сплава сурьмы с другими металлами, так как основное ее достоинство – это увеличение твердости металлов, например, соединение свинец — сурьма (от 5–15%) известно как гарбтлей. Даже если добавить к свинцу 1% сурьмы его прочность уже значительно увеличится.

Месторождение и добыча сурьмы

Сурьма – элемент , который добывается из руд. Сурьмяными рудами называют минеральные образования с содержанием сурьмы в таких количествах, чтобы при извлечении чистого металла, получить максимальный экономический и промышленный эффект. По своему содержанию главного элемента – сурьмы , руды классифицируются:

— Очень богатые, Sb – в пределах 50%.

— Богатые, Sb – не более 12%.

— Обыкновенные, Sb – от 2 до 6%.

— Бедные, Sb – максимум 2%.

Согласно своего состава вышеприведенные руды делятся на сульфидные (до 70% общей массы составляет антимонит Sb 2 S 3), сульфидно-оксидные (до 50% Sb в оксидных соединениях), и оксидные (более 50% всей массы руды в соединениях оксида сурьмы ). Очень богатые руды нет необходимости обогащать, из них сразу получают концентрат сурьмы и отправляют в плавильную . Добыча сурьмы из рядовых и бедных руд экономически нецелесообразна. Такие руды приходится обогащать до концентрата с содержанием сурьмы до 50%. Следующий шаг – это переработка концентрата пирометаллургическим и гидрометаллургическим способом.

К пирометаллургическим методам относятся осадительный и восстановительный плавильный процесс. В осадительном процессе плавки, главным сырьем служит сульфидные руды. Принцип плавки таков, при температуре 1300–1400 °С из сульфида сурьмы с помощью железа извлекается чистая сурьма, формула этого процесса –Sb2S3+3Fe=>2Sb+3FeS. Восстановительная плавка заключается в восстановлении из оксидов сурьмы до металла с помощью древесного угля или коксовой пылью. Гидрометаллургический метод извлечения сурьмы состоит из двух стадий – обработка руды с переводом ее в состояние раствора и извлечение металла из раствора.

Применение сурьмы

В чистом виде сурьма считается одним из самых хрупких металлов, но при с другими металлами она увеличивает их твердость и не происходит процесс окисления при обычных условиях. Эти достоинства заслуженно оценили в промышленной сфере, и теперь сурьма добавляется во многие сплавы, более 200.

Сплавы для подшипникового производства. В эту группу входят такие соединения, как олово – сурьма, свинец – сурьма, сурьма – медь, так как эти сплавы легко плавятся и очень удобно выливать в формы для вкладышей подшипников. Содержание сурьмы обычно составляет от 4 до 15%, но ни в коем случае, нельзя превышать эту норму, потому что избыток сурьмы придет к разламыванию металла. Свое применение такие сплавы нашли в танкостроении, авто и железнодорожном транспорте.

Одно из самых важных особенностей сурьмы является способность расширяться при затвердении. На основе этой характеристики и был создан сплав – свинец (82%), сурьма (15%), олово (3%), еще его называют «типографский сплав», ведь он прекрасно наполняет формы для разных видов шрифтов и делает четкие оттиски. В этом случае, сурьма добавила металлу ударную стойкость и износостойкость.

Легированный сурьмой, используется в машиностроении, с него делают пластины для аккумуляторов также используется при производстве труб, желобов по которым будет происходить транспортировка агрессивных жидкостей. Сплав цинк – сурьма (антимонид цинка) считается неорганическим соединением. Благодаря своему свойству полупроводника, используется при изготовлении транзисторов, тепловизоров и инфракрасных детекторах.

Помимо промышленного использования сурьма нашла свое широкое применение в косметологии и медицине. С древних времен и по сегодняшний день используется сурьма для глаз , в качестве лечебного средства и краски для бровей и ресниц. Многие знают лечебные свойства сурьмы и при конъюнктивитах и прочих инфекциях глаз сразу применяют сурьму.

По своему виду и способу нанесения различают разные виды сурьмы – порошок , с помощью деревянной палочки он легко наносится на область века, но прежде необходимо смокнуть в любом масле; карандаш – идеально четко рисует стрелки на веке, карандаш эта тот же порошок сурьмы , только спрессованный в форму.

Если в древние времена краска из сурьмы была экологической чистой и приносила действительно лечебный эффект, то в наше время нужно быть предельно осторожным и внимательно читать состав перед покупкой. Все связано с тем, что сейчас недобросовестные производители некачественно извлекают чистую сурьму из руды и остаются примеси тяжелых металлов, таких как мышьяк. Трудно представить принесенный вред, организму человека от соединения мышьяк-сурьма .

Цена сурьмы

В связи, с нестабильной ситуацией на мировом рынке, нет однозначной стоимости на металл сурьма. Цена его колеблется в пределах от 6300$ до 8300$/тонну, за последние два месяца наблюдается отрицательная динамика роста цены, это напрямую связано с основным производителем – Китаем и его внешнеэкономическими отношениями.

А вот политические и экономические перипетии никак не повлияли на сурьму для глаз. Сейчас в моде восточная культура и прочие принадлежности, в том числе и сурьма. Купить ее труда не составит, так как есть огромный выбор в восточных лавках или же можно оформить заказ в интернет-магазине.

Сурьма (лат. Stibium), Sb, химический элемент V группы периодической системы Менделеева; атомный номер 51, атомная масса 121,75; металл серебристо-белого цвета с синеватым оттенком. В природе известны два стабильных изотопа 121 Sb (57,25%) и 123 Sb (42,75%). Из искусственно полученных радиоактивных изотопов важнейшие 122 Sb (Т ½ = 2,8 сут), 124 Sb (Т ½ = 60,2 сут) и 123 Sb (Т ½ = 2 года).

Историческая справка. Сурьма известна с глубокой древности. В странах Востока она употреблялась примерно за 3000 лет до н. э. для изготовления сосудов. В Древнем Египте уже в 19 века до н. э. порошок сурьмяного блеска (природный Sb 2 S 3) под названиями mesten или stem применялся для чернения бровей. В Древней Греции он был известен как stimi и stibi, отсюда лат. stibium. Около 12-14 веков н. э. появилось название antimonium. В 1789 году А. Лавуазье включил Сурьму в список химических элементов под названием antimoine (современное англ. antimony, исп. и итал. antimonio, нем. Antimon). Русское "сурьма" произошло от турецкого surme; им обозначался порошок свинцового блеска PbS, также служивший для чернения бровей (по других данным, "сурьма" - от персидского сурме - металл). Подробное описание свойств и способов получения Сурьмы и ее соединений впервые дано алхимиком Василием Валентином (Германия) в 1604 году.

Распространение Сурьмы в природе. Среднее содержание Сурьмы в земной коре (кларк) 5·10 -3 % по массе. В магме и биосфере Сурьма рассеяна. Из горячих подземных вод она концентрируется в гидротермальных месторождениях. Известны собственно сурьмяные месторождения, а также сурьмянортутные, сурьмяносвинцовые, золотосурьмяные, сурьмяновольфрамовые. Из 27 минералов Сурьмы главное промышленное значение имеет антимонит (Sb 2 S 3). Благодаря сродству с серой Сурьма в виде примеси часто встречается в сульфидах мышьяка, висмута, никеля, свинца, ртути, серебра и других элементов.

Физические свойства Сурьмы. Сурьма известна в кристаллической и трех аморфных формах (взрывчатая, черная и желтая). Взрывчатая Сурьма (плотность 5,64-5,97 г/см 3) взрывается при любом соприкосновении; образуется при электролизе раствора SbCl 3 ; черная (плотность 5,3 г/см 3) - при быстром охлаждении паров Сурьмы; желтая - при пропускании кислорода в сжиженный SbH 3 . Желтая и черная Сурьма неустойчивы, при пониженных температурах переходят в обыкновенную Сурьму. Наиболее устойчивая кристаллическая Сурьма, кристаллизуется в тригональной системе, а = 4,5064 Å; плотность 6,61-6,73 г/см 3 (жидкой - 6,55 г/см 3); t пл 630,5 °С; t кип 1635-1645 °С: удельная теплоемкость при 20-100 °С 0,210 кдж/(кг·К); теплопроводность при 20 °С 17,6 вт/(м·К) . Температурный коэффициент линейного расширения для поликристаллической Сурьмы 11,5·10 -6 при 0-100 °С; для монокристалла а 1 = 8,1·10 -6 , а 2 = 19,5·10 -6 при 0-400 °С, удельное электросопротивление (20 °С) (43,045·10 -6 см·см). Сурьма диамагнитна, удельная магнитная восприимчивость -0,66·10 -6 . В отличие от большинства металлов, Сурьма хрупка, легко раскалывается по плоскостям спайности, истирается в порошок и не поддается ковке (иногда ее относят к полуметаллам). Механические свойства зависят от чистоты металла. Твердость по Бринеллю для литого металла 325-340 Мн/м 2 (32,5-34,0 кгс/мм 2); модуль упругости 285-300; предел прочности 86,0 Мн/м 2 (8,6 кгс/мм 2).

Химические свойства Сурьмы. Конфигурация внешних электронов атома Sb 5s 2 5p 3 . В соединениях проявляет степени окисления главным образом +5, +3 и -3. В химическом отношении Сурьма малоактивна. На воздухе не окисляется вплоть до температуры плавления. С азотом и водородом не реагирует. Углерод незначительно растворяется в расплавленной Сурьме. Металл активно взаимодействует с хлором и других галогенами, образуя галогениды сурьмы. С кислородом взаимодействует при температуре выше 630 °С с образованием Sb 2 О 3 . При сплавлении с серой получаются сульфиды сурьмы, так же взаимодействует с фосфором и мышьяком. Сурьма устойчива по отношению к воде и разбавленным кислотам. Концентрированные соляная и серная кислоты медленно растворяют Сурьму с образованием хлорида SbCl 3 и сульфата Sb 2 (SO 4) 3 ; концентрированная азотная кислота окисляет Сурьму до высшего оксида, образующегося в виде гидратированного соединения xSb 2 O 5 ·уН 2 О. Практический интерес представляют труднорастворимые соли сурьмяной кислоты - антимонаты (MeSbO 3 ·3H 2 O, где Me - Na, К) и соли не выделенной метасурьмянистой кислоты - метаантимониты (MeSbO 2 ·3H 2 O), обладающие восстановительными свойствами. Сурьма соединяется с металлами, образуя антимониды.

Получение Сурьмы. Сурьма получают пирометаллургической и гидрометаллургической переработкой концентратов или руды, содержащей 20-60% Sb. К пирометаллургическим методам относятся осадительная и восстановительная плавки. Сырьем для осадительной плавки служат сульфидные концентраты; процесс основан на вытеснении Сурьмы из ее сульфида железом: Sb 2 S 3 + 3Fe=> 2Sb + 3FeS. Железо вводится в шихту в виде скрапа. Плавку ведут в отражательных или в коротких вращающихся барабанных печах при 1300-1400 °C. Извлечение Сурьмы в черновой металл составляет более 90%. Восстановительная плавка Сурьмы основана на восстановлении ее оксидов до металла древесным углем или каменноугольной пылью и ошлаковании пустой породы. Восстановительной плавке предшествует окислительный обжиг при 550 °С с избытком воздуха. Огарок содержит нелетучий оксид Сурьмы. Как для осадительной, так и для восстановительной плавок возможно применение электропечей. Гидрометаллургический способ получения Сурьмы состоит из двух стадий: обработки сырья щелочным сульфидным раствором с переводом Сурьмы в раствор в виде солей сурьмяных кислот и сульфосолей и выделения Сурьмы электролизом. Черновая Сурьма в зависимости от состава сырья и способа ее получения содержит от 1,5 до 15% примесей: Fe, As, S и других. Для получения чистой Сурьмы применяют пирометаллургическое или электролитическое рафинирование. При пирометаллургическом рафинировании примеси железа и меди удаляют в виде сернистых соединений, вводя в расплав Сурьмы антимонит (крудум) - Sb 2 S 3 , после чего удаляют мышьяк (в виде арсената натрия) и серу при продувке воздуха под содовым шлаком. При электролитическом рафинировании с растворимым анодом черновую Сурьму очищают от железа, меди и других металлов, остающихся в электролите (Cu, Ag, Au остаются в шламе). Электролитом служит раствор, состоящий из SbF 3 , H 2 SO 4 и HF. Содержание примесей в рафинированной Сурьмt не превышает 0,5-0,8%. Для получения Сурьмs высокой чистоты применяют зонную плавку в атмосфере инертного газа или получают Сурьмe из предварительно очищенных соединений - оксида (III) или трихлорида.

Применение Сурьмы. Сурьма применяется в основном в виде сплавов на основе свинца и олова для аккумуляторных пластин, кабельных оболочек, подшипников (баббит), сплавов, применяемых в полиграфии (гарт), и т. д. Такие сплавы обладают повышенной твердостью, износоустойчивостью, коррозионной стойкостью. В люминесцентных лампах галофосфатом кальция активируют Sb. Сурьма входит в состав полупроводниковых материалов как легирующая добавка к германию и кремнию, а также в состав антимонидов (например, InSb). Радиоактивный изотоп 122 Sb применяется в источниках γ-излучения и нейтронов.

Сурьма в организме. Содержание Сурьмы (на 100 г сухого вещества) составляет в растениях 0,006 мг, в морских животных 0,02 мг, в наземных животных 0,0006 мг. В организме животных и человека Сурьма поступает через органы дыхания или желудочно-кишечный тракт. Выделяется главным образом с фекалиями, в незначительном количестве - с мочой. Сурьма избирательно концентрируется в щитовидной железе, печени, селезенке. В эритроцитах накапливается преимуществено Сурьма в степени окисления +3, в плазме крови - в степени окисления. +5. Предельно допустимая концентрация Сурьмы 10 -5 - 10 -7 г на 100 г сухой ткани. При более высокой концентрации этот элемент инактивирует ряд ферментов липидного, углеводного и белкового обмена (возможно в результате блокирования сулъфгидрилъных групп).

Сурьма и ее соединения ядовиты. Отравления возможны при выплавке концентрата сурьмяных руд и в производстве сплавов Сурьмы. При острых отравлениях - раздражение слизистых оболочек верхних дыхательных путей, глаз, а также кожи. Могут развиться дерматит, конъюнктивит и т. д.

Sb- сурьма. Строение атома сурьмы:
В периодическое системе элементов Д. И. Менделеева сурьма находится в пятой группе, в главной подгруппе и в пятом периоде под №51. Ее строение атома ₊₅₁Sb 1s²2s²2p⁶3s²3p⁶3d¹⁰4s²4p⁶4d¹⁰5s²5p³. Свойства сурьмы схожи с атомами пятой группы главной подгруппы, но в связи с тем, что у сурьмы 5 энергетических уровней, радиус у сурьмы значительно больше чем у азота, фосфора и астата и электроны последнего уровня слабее притягиваются к ядру у ее атомов будут проявляться сильнее металлические и восстановительные свойства. Сурьма в виде простого вещества полуметалл - диалектрик, серебристо-белого цвета с синеватым оттенком, грубозернистого строения. Сурьма, с одной стороны, в природных соединениях имеет свойства металла, с другой стороны она обладает свойствами металлоида, С такими металлами, как медь, мышьяк и палладий сурьма может давать интерметаллические соединения.
В России крупнейшее месторождение сурьмы находится в Якутии.
Основной способ получения сурьмы -это обжиг сульфидных руд с последующим восстановлением углем:
2Sb₂S₃
+ 9O₂= 2Sb₂O₃ + 6SO₂
2Sb₂O₃ + 3C = 3CO + 4Sb
Химические свойства сурьмы:
Внешний, электронный слой атома сурьмы состоит из пяти валентных электронов s²p³. Три из них (p-электроны) – неспаренные и два (s-электроны) – спаренные. Первые легче отрываются от атома и определяют характерную для сурьмы валентность 3⁺. При проявлении этой валентности пара неподеленных валентных электронов s² находится. как бы в запасе. Когда же этот запас расходуется, сурьма становится пятивалентной. Короче говоря, она проявляет те же валентности, что и ее аналог по группе – неметалл фосфор.
В соединениях сурьма может проявлять в степени окисления: +5;+3 -3 ;
На воздухе устойчива, при сильном нагревании загорается:
4Sb + 3O₂ + 650⁰= 2Sb₂O₃ Этому оксиду соответствует гидроксид Sb(OH)₃
Высший оксид сурьмы существует Sb₂O₅ и ему соответствует гидроксид H₃SbO₄
С азотом и водородом не взаимодействует.
Взаимодействует с кислотами:
Sb + H₂SO₄ = Sb₂(SO₄)₃ + SO₂ + H₂O
Азотная кислота при взаимодействии с сурьмой переводит ее в сурсьную кислоту:
Sb + 5HNO₃= H₃SbO₄ + 5NO₂ +H₂O
Легко взаимодействует с галогенами:
2Sb + 3I₂=2SbI₃
В зависимости от температуры с хлором может проявлять степень окисления +3,+5:
2Sb + 3CI₂+ 20⁰C= 2SbCI₃
2Sb + 5CI₂ + 80⁰C=2SbCI₅
Применение сурьмы: Сурьма всё больше применяется в полупроводниковой промышленности при производстве диодов, инфракрасных детекторов.
Является компонентом свинцовых сплавов, увеличивающим их твёрдость и механическую прочность. Область применения включает: батареи,антифрикционные сплавы,типографские сплавы,стрелковое оружие и трассирующие пули,оболочки кабелей,спички,лекарства, противопротозойные средства,пайка - некоторые бессвинцовые припои содержат 5 % Sb,использование в линотипных печатных машинах. Вместе с оловом и медью сурьма образует металлический сплав - баббит, обладающий антифрикционными свойствами и использующийся в подшипниках скольжения. Также Sb добавляется к металлам, предназначенным для тонких отливок.

минерал Сурьма

Английское название: Antimony

Этот полуметалл является химическим элементом и находится в 15 группе пятого периода таблицы Менделеева. Узнать его можно по грубозернистому строению и серебристо-белому цвету.

Как и многие другие породы, сурьма имеет семь модификаций: четыре аллотропных и три аморфных. Первые образуются в результате воздействия разного давления. Аморфная же сурьма бывает черной, взрывчатой и желтой.

Свободное состояние данного полуметалла - это серебристо-белые кристаллы, которые обладают еще и металлическим блеском. Внешне данная порода очень похожа на металл, но более хрупкая, а показатели тепло- и электропроводимости у нее гораздо ниже. Одна из особенностей сурьмы - это расширение при застывании.

Когда и где нашли?

За 3000 лет до нашей эры сурьму активно использовали в странах Востока. Древние египтяне еще в IX веке до н.э. чернили брови специальным порошком сурмяного блеска. Работали с этиv полуметаллом и в Древней Греции.

Но только в начале XVII века алхимик Василий Валентин в Германии описал все свойства данной породы и способы того, как можно добыть ее.

В русском языке слово «сурьма» появилось благодаря туркам и крымским татарам, которые называли так порошок со свинцовым блеском. Но существует еще и версия о персидском происхождении слова: «сурме» в переводе означает «металл».

Больше всего залежей данного полуметалла есть в Китайской народной республике, России, Таджикистане. Находят сурьму и в Южноафриканской республике, Боливии, Алжире, Финляндии, Болгарии, Киргизии. Чаще ее можно обнаружить в осадочных сланцах, нежели в изверженных. В основном, речь идет о бокситах, фосфоритах и глинистых сланцах.

Тип месторождения сурьмы - это гидротермальные жилы, в которых есть руды кобальта и серебра, никеля. Этот полуметалл есть и в сульфидных рудах со сложным составом.

Где используют сурьму?

Используют данный материал чаще всего в полупроводниковой промышленности. Он необходим во время производства инфракрасных детекторов и диодов. Устройства с эффектом Холла не изготавливают без сурьмы.

Сурьма активно применяется в производстве стрелкового оружия и оболочки для кабелей, спичек и типографских сплавов, батарей, в линотипных печатных машинах. Еще она применяется при изготовлении лекарств.

Если соединить сурьму с медью и оловом, то получится сплав баббит, который широко применяется в производстве подшипников скольжения.

Хим . Иногда содержит Ag, Fe или As
Характер, выдел.
Сплошные зернистые выделения, реже натечные агрегаты (почковидные, гроздевидные), иногда лучистого строения; кристаллы редки.
Структ. и морф, крист. Триг. с. D 5 3d -R3m; a rh = 4,507 А; a= 57°06"; Z = 2; a h = 4,310; c h = 11,318 A; a h: c h = 1: 2,627; Z = 6. Структура типа мышьяка. Расстояния Sb-Sb 2,87 и 3,37А. Дитригон.-скаленоэдр. кл.; а : с = 1: 1,3236 Кристаллы ромбоэдрические, толстотаблитчатые по (0001) или пластинчатые. Дв. по (1012); образуют сложные группы - четверники (фиг. 75), шестерники, часто полисинтетические.

Физ. Сп. по (0001) совершенная, по (2021) иногда ясная, по (1120) и по (1012) несовершенная. Диамагнитна.

Микр. В полир, шл. в отраж. св. белая. Отраж. спос. (в %): для зеленых лучей 67,5, для оранжевых - 58, для красных - 55; по Фолинсби, измеренная с помощью фотоэлемента,- 74,6. Двуотражение слабое. Анизотропна.
Цвет оловянно-белый с желтой побежалостью. Блеск металлический. Прозрачность непрозрачна. Черта Твердость 3-3,5. Плотность 6,61-6,72 Излом неровный. Очень хрупка. Сингония Триг. Форма кристаллов. Кристаллы ромбоэдрические, толстотаблитчатые по (0001) или пластинчатые. Дв. по (1012); образуют сложные группы - четверники (фиг. 75), шестерники, часто полисинтетические. Спайность по (0001) совершенная, по (2021) иногда ясная, по (1120) и по (1012) несовершенная. Агрегаты Сплошные зернистые выделения, реже натечные агрегаты (почковидные, гроздевидные), иногда лучистого строения; кристаллы редки П. тр. на угле в восст. пл. легко плавится (плавк. 1), в окисл. пл, сгорает, давая белый налет и дым Sb2О3. В откр. тр. полностью улетучивается, образуя кристаллический возгон Sb2О3. На гипсовой пластинке со смесью KJ -+- S дает оранжево-красный налет SbJ3. Поведение в кислотах В конц. HNO3 окисляется в НSbО3, растворяется в царской водке; в НСl не растворима. В полир, шл. от HNO3 чернеет, иризирует, от паров НСl тускнеет, от KCN слабо буреет, от FeCl3 буреет и чернеет, от HgCl слабо буреет и иризирует. Реактивы для структурного травления: FeCl3 (20%-ный раствор) в течение нескольких секунд; K2S (конц. раствор); H2Sb2O7 (конц. раствор). Том 1, 85.

Свойства минерала

  • Удельный вес: 6,61 - 6,72 (вычисл. 6,73)
  • Форма выделения: Кристаллы ромбоэдрические, толстотаблитчатые по (0001) или пластинчатые. Дв. по (1012); образуют сложные группы - четверники (фиг. 75), шестерники, часто полисинтетические
  • Классы по систематике СССР: Оксиды
  • Химическая формула: Sb
  • Сингония: тригональная
  • Цвет: оловянно-белый с желтой побежалостью
  • Цвет черты: буровато-серая
  • Блеск: металлический
  • Прозрачность: непрозрачный
  • Излом: неровный
  • Твердость: 3 3,5
  • Хрупкость: Да
  • Дополнительно: на угле в восст. пл. легко плавится (плавк. 1), в окисл. пл, сгорает, давая белый налет и дым Sb 2 Оз. В откр. тр. полностью улетучивается, образуя кристаллический возгон Sb 2 О 3 . На гипсовой пластинке со смесью KJ -+- S дает оранжево-красный налет SbJ 3 .

    В конц. HNCb окисляется в НЭЬОз, растворяется в царской водке; в НС1 не растворима. В полир, шл. от HNO 3 чернеет, иризирует, от паров НС1 тускнеет, от KCN слабо буреет, от FeCl буреет и чернеет, от HgCl слабо буреет и иризирует. Реактивы для структурного травления: FeCl (20%-ный раствор) в течение нескольких секунд; K 2 S (конц. раствор); H 2 Sb 2 0 7 (конц. раствор).



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...