Температура расплавления вольфрама. Температура плавления и другие свойства вольфрама

Еще в 16 веке был известен минерал вольфрамит, который в переводе с немецкого (Wolf Rahm ) означает «волчьи сливки». Такое название минерал получил в связи со своими особенностями. Дело в том, что вольфрам, который сопровождал оловянные руды, во время выплавки олова превращал его просто в пену шлаков, поэтому и говорили: «пожирает олово, как волк овцу». Спустя время, именно от вольфрамита и было унаследовано 74 химическим элементом периодической системы название вольфрам.

Характеристики вольфрама

Вольфрам является переходным металлом светло-серого цвета. Имеет внешнее сходство со сталью. В связи с обладанием достаточно уникальными свойствами, данный элемент является очень ценным и редким материалом, чистый вид которого в природе отсутствует. Вольфрам обладает:

  • достаточно высокой плотностью, которая приравнивается к 19,3 г/см 3 ;
  • высокой температурой плавления, составляющей 3422 0 С;
  • достаточным электросопротивлением - 5,5 мкОм*см;
  • нормальным показателем коэффициента параметра линейного расширения, равняющегося 4,32;
  • наивысшей среди всех металлов температурой кипения, равняющейся 5555 0 С;
  • низкой скоростью испарения, даже не смотря на температуры, превышающие 200 0 С;
  • относительно низкой электропроводностью. Однако, это не мешает вольфраму оставаться хорошим проводником.
Таблица 1. Свойства вольфрама
Характеристика Значение
Свойства атома
Название, символ, номер Вольфра́м / Wolframium (W), 74
Атомная масса (молярная масса) 183,84(1) а. е. м. (г/моль)
Электронная конфигурация 4f14 5d4 6s2
Радиус атома 141 пм
Химические свойства
Ковалентный радиус 170 пм
Радиус иона (+6e) 62 (+4e) 70 пм
Электроотрицательность 2,3 (шкала Полинга)
Электродный потенциал W ← W3+ 0,11 ВW ← W6+ 0,68 В
Степени окисления 6, 5, 4, 3, 2, 0
Энергия ионизации (первый электрон) 769,7 (7,98) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 19,25 г/см³
Температура плавления 3695 K (3422 °C, 6192 °F)
Температура кипения 5828 K (5555 °C, 10031 °F)
Уд. теплота плавления

285,3 кДж/кг

52,31 кДж/моль

Уд. теплота испарения 4482 кДж/кг 824 кДж/моль
Молярная теплоёмкость 24,27 Дж/(K·моль)
Молярный объём 9,53 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая объёмноцентрированная
Параметры решётки 3,160 Å
Температура Дебая 310 K
Прочие характеристики
Теплопроводность (300 K) 162,8 Вт/(м·К)
Номер CAS 7440-33-7

Все это делает вольфрам очень прочным металлом, который не поддается механическим повреждениям. Но наличие таких уникальных свойств не исключает присутствие недостатков, которые также есть у вольфрама. К ним относятся:

  • высокая ломкость при воздействии на него очень низких температур;
  • высокая плотность, что затрудняет процесс его обработки;
  • низкая сопротивляемость кислотам при низких температурах.

Получение вольфрама

Вольфрам, наряду с молибденом, рубидием и рядом других веществ, входит в группу редких металлов, которые характеризуются очень малым распространением в природе. В связи с этим, его нельзя добыть традиционным способом, как многие полезные ископаемые. Таким образом, промышленное получение вольфрама состоит из следующих этапов:

  • добычи руды, в составе которой содержится определенная доля вольфрама;
  • организации надлежащих условий, в которых можно выделить металл от перерабатываемой массы;
  • концентрации вещества в виде раствора или осадка;
  • очистки получившегося в результате предыдущего этапа химического соединения;
  • выделении чистого вольфрама.

Таким образом, чистое вещество из добытой руды, содержащей вольфрам, можно выделить несколькими способами.

  1. В результате обогащения вольфрамовой руды гравитацией, флотацией, магнитной или электрической сепарацией. В процессе этого образуется вольфрамовый концентрат, на 55-65% состоящий из ангидрида (трехокиси) вольфрама WO 3 . В концентратах данного металла ведется контроль за содержанием примесей, в качестве которых могут выступать фосфор, сера, мышьяк, олово, медь, сурьма и висмут.
  2. Как известно, трехокись вольфрама WO 3 является основным материалом для выделения металлического вольфрама или карбида вольфрама. Получение WO 3-- происходит в результате разложения концентратов, выщелачивания сплава или спека и др. В таком случае, на выходе образуется материал на 99,9% состоящий из WO 3 .
  3. Из ангидрида вольфрама WO 3 . Именно путем восстановления данного вещества водородом или углеродом получают вольфрамовый порошок. Применения второго компонента для восстановительной реакции применяют реже. Это связано с насыщением в процессе реакции WO 3 карбидами, в результате чего металл теряет свою прочность и его становится тяжелее обработать. Вольфрамовый порошок получают особыми способами, благодаря которым становится возможным проводить контроль его химического состава, размеров и формы зерен, а также гранулометрического состава. Так, фракцию частиц порошка можно увеличить путем быстрого нарастания температуры или низкой скоростью подачи водорода.
  4. Производство компактного вольфрама, который имеет вид штабиков или слитков и представляет собой заготовку для дальнейшего изготовления полуфабрикатов - проволоки, прутков, ленты и др.

Последний способ, в свою очередь, включает в себя два возможных варианта. Один из них связан с методами порошковой металлургии, а другой - с плавкой в электрических дуговых печах с расходуемым электродом.

Метод порошковой металлургии

В силу того, что благодаря данному способу можно равномернее распределить присадки, наделяющие вольфрам особыми его свойствами, он более популярен.

Он включает несколько этапов:

  1. Металлический порошок прессуется в штабики;
  2. Заготовки подвергаются спеканию при низких температурах (так называемое, предварительное спекание);
  3. Сваривание заготовок;
  4. Получение полуфабрикатов путем обработки заготовок. Реализация данного этапа осуществляется ковкой или механической обработкой (шлифовка, полировка). Стоит отметить, что механическая обработка вольфрама становится возможной только под воздействием высоких температур, в противном случае, его обработать невозможно.

При этом, порошок должен быть хорошо очищен с максимально допустимым процентным содержанием примесей до 0,05%.

Данный метод позволяет получить вольфрамовые штабики, имеющие квадратное сечение от 8х8 до 40х40 мм и длину в 280-650 мм. Стоит отметить, что в условиях комнатных температур они достаточно прочны, однако имеют повышенную хрупкость.

Плавка

Данный способ применяется, если необходимо получить вольфрамовые заготовки достаточно крупных габаритов - от 200 кг до 3000 кг. Такие заготовки, как правило, необходимы для проката, вытяжки труб, изготовления изделий путем литья. Для плавки необходимо создание специальных условий - вакуум или разреженная атмосфера водорода. На выходе образуются слитки вольфрама, обладающие крупнокристаллической структурой, а также высокой хрупкостью в связи с наличием большого количества примесей. Содержание примесей можно снизить за счет предварительной плавки вольфрама в электронно-лучевой печи. Однако, структура при этом остается неизменной. В связи с чем, для уменьшения размера зерна происходит дальнейшая плавка слитков, но уже в электрической дуговой печи. При этом, в процессе плавки к слиткам добавляются легирующие вещества, наделяющие вольфрам особыми свойствами.

Чтобы получить вольфрамовые слитки, имеющие мелкозернистую структуру, используют дуговую гарниссажную плавку с разливкой металла в изложницу.

Способ получения металла определяет наличие в нем присадок и примесей. Таким образом, сегодня производится несколько марок вольфрама.

Марки вольфрама

  1. ВЧ - чистый вольфрам, в котором отсутствуют какие-либо присадки;
  2. ВА - металл, имеющий в своем составе алюминиевую и кремнещелоную присадку, которые наделяют его дополнительными свойствами;
  3. ВМ - металл, имеющий в своем составе ториевую и кремнещелочную присадку;
  4. ВТ - вольфрам, в составе которого содержится оксид тория в качестве присадки, что существенно повышает эмиссионные свойства металла;
  5. ВИ - металл, содержащий оксид иттрия;
  6. ВЛ - вольфрам с окисью лантана, что также повышает эмиссионные свойства;
  7. ВР - сплав рения и вольфрама;
  8. ВРН - какие-либо присадки в металле отсутствуют, однако могут присутствовать примеси в больших объемах;
  9. МВ - сплав вольфрама с молибденом, что существенно повышает прочность после отжига, сохраняя при этом пластичность.

Где применяется вольфрам?

Благодаря своим уникальным свойствам, 74 химический элемент стал незаменимым во многих промышленных отраслях.

  1. Основное применение вольфрама - в качестве основы для производства тугоплавких материалов в металлургии.
  2. С обязательным участием вольфрама производятся нити накаливания, являющиеся главным элементом приборов освещения, кинескопов, а также иных вакуумных труб.
  3. Также данный металл лежит в основе производства тяжелых сплавов, используемых в качестве противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий.
  4. Вольфрам является электродами при аргонно-дуговой сварке;
  5. Его сплавы отличаются высокой устойчивостью к воздействиям различных температур, кислой среде, а также твердостью и устойчивостью к истиранию, в связи с чем применяются при производстве хирургических инструментов, брони танков, торпедных и снарядных оболочек, деталей самолетов и двигателей, а также контейнеров для хранения ядерных отходов;
  6. Вакуумные печи сопротивления, температура в которых достигает предельно высоких величин, оборудованы нагревательными элементами, произведенными также из вольфрама;
  7. Использование вольфрама популярно для обеспечения защиты от ионизирующего излучения.
  8. Соединения вольфрама используются в качестве легирующих элементов, высокотемпературных смазок, катализаторов, пигментов, а также для преобразования тепловой энергии в электрическую (дителлурид вольфрама).

ОПРЕДЕЛЕНИЕ

Вольфрам - семьдесят четвертый элемент Периодической таблицы. Обозначение - W от латинского «wolframium». Расположен в шестом периоде, VIB группе. Относится к металлам. Заряд ядра равен 74.

По распространенности в земной коре вольфрам уступает хрому, но превосходит молибден. Природные соединения вольфрама в большинстве случаев представляют собой вольфраматы - соли вольфрамовой кислоты H 2 WO 4 . Так, важнейшая вольфрамовая руда - вольфрамит - состоит из вольфраматов железа и марганца. Часто встречается также минерал шеелит CaWO 4 .

Вольфрам - тяжелый белый металл (рис. 1) плотностью 19,3 г/см 3 . Его температура плавления (около 3400 o С), выше, чем температура плавления всех других металлов. Вольфрам можно сваривать и вытягивать в тонкие нити.

Рис. 1. Вольфрам. Внешний вид.

Атомная и молекулярная масса вольфрама

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии вольфрам существует в виде одноатомных молекул W, значения его атомной и молекулярной масс совпадают. Они равны 183,84.

Изотопы вольфрама

Известно, что в природе вольфрам может находиться в виде пяти стабильных изотопов 180 W, 182 W, 183 W, 184 W и 186 W.Их массовые числа равны 180, 182, 183, 184 и 186 соответственно. Ядро атома изотопа вольфрама 180 W содержит семьдесят четыре протона и сто шесть нейтронов, а остальные отличаются от него только числом нейтронов.

Существуют искусственные нестабильные изотопы вольфрама с массовыми числами от 158-ми до 192-х, а также одиннадцать изомерных состояния ядер.

Ионы вольфрама

На внешнем энергетическом уровне атома вольфрама имеется шесть электронов, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 10 4f 14 5s 2 5р 6 5d 4 6s 2 .

В результате химического взаимодействия вольфрам отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

W o -2e → W 2+ ;

W o -3e → W 3+ ;

W o -4e → W 4+ ;

W o -5e → W 5+ ;

W o -6e → W 6+ .

Молекула и атом вольфрама

В свободном состоянии вольфрам существует в виде одноатомных молекул W. Приведем некоторые свойства, характеризующие атом и молекулу вольфрама:

Сплавы вольфрама

Большая часть добываемого вольфрама расходуется в металлургии для приготовления специальных сталей и сплавов. Быстрорежущая инструментальная сталь содержит до 20% вольфрама и обладает способностью самозакаливаться. Такая сталь не теряет своей твердости даже при нагревании докрасна.

Кроме быстрорежущих широко применяются другие вольфрамовые и хромовольфрамовые стали. Например, сталь, содержащая от 1 до 6% вольфрама и до 2% хрома, применяется для изготовления пил, фрез, штампов.

Как самый тугоплавкий металл вольфрам входит в состав ряда жаропрочных сплавов. В частности, его сплавы с кобальтом и хромом - стеллиты - обладают высокими твердостью, износоустойчивостью, жаростойкостью. Сплавы вольфрама с медью сочетают в себе высокие электрическую проводимость, теплопроводность и износоустойчивость. Они применяются для изготовления рабочих частей рубильников, выключателей, электродов для точечной сварки.

Примеры решения задач

ПРИМЕР 1

Вольфрам (от латинского Wolframium) - химический элемент с относительной атомной массой 183,84. В периодической таблице Менделеева он обозначен символом W, принадлежит к шестой группе и имеет атомный номер 74. В обычных условиях существует в виде твёрдого блестящего серебристо-серого металла, тяжёлого и тугоплавкого.

Химически стоек к большинству кислот и царской водке, растворим в перекиси водорода и смеси плавиковой и азотной кислот. Он практически неразрушим и применяется везде, где надо работать с высокими температурами, выполнять сварку и вытягивать металлические нити.

Происхождение названия

Имя Wolframium произошло от известного с XVI века минерала вольфрамит, что в переводе с немецкого звучало как «волчий крем». При выплавке олова из его руд, содержавших вольфрам, между ними происходила реакция с усиленным пенообразованием, поэтично описанная так: «Олово пожирал, как волк пожирает овцу». В XVIII веке шведский химик Шеелер при обработке минерала тунгстена азотной кислотой обнаружил в продуктах реакции неизвестное серое вещество с серебристым отливом. Исходный минерал позже переименовали в шеелит, а новый элемент стал называться вольфрамом. До сих пор у американцев, англичан и французов существует его старинное шведское обозначение «тяжёлый камень».

Месторождения и способы получения

Этот элемент относится к группе очень редких металлов и в природе встречается в виде сложных кислородных соединений с железом, марганцем, кальцием, свинцом, медью и редкоземельными элементами. Эти минералы входят в состав гранитных пород, а концентрация чистого вещества не превышает 2%. Самые большие месторождения обнаружены в Казахстане, Китае, Канаде и США. Добычей занимаются также Боливия, Португалия, Россия, Узбекистан и Южная Корея.

При получении вольфрама сначала обогащают его руду и отделяют ценные компоненты от пустой породы. Метод обогащения - измельчение и флотация с последующей магнитной сепарацией и окислительным обжигом. Готовый концентрат спекают с содой, при этом получается растворимый вольфрамит натрия, или выщелачивают содовым раствором в автоклавах при высоких температурах под давлением, нейтрализуют и осаждают в виде вольфрамата кальция.

Из них уже выделяют очищенные от большинства примесей окиси вольфрама, которые потом при температурах около 700 °C восстанавливают водородом. Так получается наиболее чистый порошкообразный вольфрам. Для придания порошку сплошной волокнистой структуры его прессуют в токе водорода, постепенно увеличивая температуру почти до границ плавления, чтобы металл стал пластичным и ковким.

Физические и химические свойства

Металл имеет объёмно-центрированную кубическую кристаллическую решётку, обладает парамагнитными свойствами и устойчивостью к вакууму. Температура плавления вольфрама составляет 3422 °C, кипения 5555 °C, его плотность равна 19,25 г/см³, твёрдость 488 кг/мм² по Бринеллю. В чистом виде он напоминает платину, а при температурах около 1600 °C вытягивается в тонкую нить. Проявляет высокую коррозионную стойкость, при нормальных условиях не изменяется в воде и на воздухе, а при нагревании до температуры красного каления (около 500 °C) образует шестивалентный оксид.

Вольфрам не взаимодействует с концентрированной соляной и разбавленной серной кислотой. Его поверхность слегка окисляется царской водкой и азотной кислотой.

Он растворяется в перекиси водорода, в смеси фтористоводородной и азотной кислот, в присутствии окислителей вступает в реакцию со щелочами, выделяя большое количество тепла. Легко соединяется с углеродом, образуя высокопрочный карбид, однако, при низких температурах металл быстро окисляется и становится ломким. Наиболее часто используются:

  • триоксиды, называемые вольфрамовыми ангидридами;
  • соли, образующие полимерные анионы;
  • перекисные соединения;
  • соединения с серой, галогенами и углеродом.

Области применения

Для металлургии вольфрам - основа тугоплавких материалов. На Всемирной Парижской выставке в 1900 году публике впервые была показана сталь с его добавками. Высокая температура плавления и пластичность сделали металл незаменимым в изготовлении нитей для ламп накаливания и других вакуумных трубок, покрытия транзисторов, используемых в жидкокристаллических дисплеях, а также электродов для аргонной сварки. Большая плотность вольфрама позволила ему стать основой деталей баллистических ракет, бронебойных пуль и снарядов в артиллерии.

Сплавы вольфрама, произведённые методом порошковой металлургии, отличаются твёрдостью и жаропрочностью, кислотостойкостью и устойчивостью к истиранию. Они обязательные компоненты лучших марок высоколегированных сталей, где буквы в названии обозначают состав:

Уникальные свойства позволяют изготавливать лучшие инструменты для хирургии, танковую броню и оболочки снарядов, пластины для бронежилетов, ответственные части авиационной и авиакосмической промышленности, контейнеры для радиоактивных отходов, ёмкости для выращивания кристаллов сапфиров. Карбид вольфрама - основа композитных материалов с гордым названием «победит», его используют для обработки металлов в машиностроении, горнодобывающей промышленности, для бурения скважин. В вакуумных печах нагревательные элементы термопары изготовлены из вольфрамовых сплавов.

Его соединения получили распространение как катализаторы и пигменты в различных производствах химической и лакокрасочной промышленности. Применение вольфрамовых солей дисульфидов в качестве высокотемпературной смазки связано с образованием аморфной плёнки серы, которая покрывает трущиеся металлические поверхности. Монокристаллы других вольфраматов используют для нужд ядерной физики, они детекторы радиоактивных излучений. Среди традиционных ювелирных украшений уверенно расширяют свою нишу изделия из карбида вольфрама. Их полированная поверхность прекрасно отражает свет и называется «серым зеркалом», которое невозможно поцарапать, изогнуть и сломать.

Биологическая роль

Вольфрам не имеет большого биологического значения. У некоторых бактерий обнаружены ферменты, его содержащие. Поэтому появились гипотезы, что вольфрам участвовал в возникновении жизни на ранних этапах. Ювелирные украшения из него не вызывают аллергических реакций, а металлическая пыль вольфрама при вдыхании раздражает слизистые органов носоглотки и гортани человека.

Вольфрам - самый тугоплавкий из металлов. Более высокую температуру плавления имеет только неметаллический элемент - углерод. При стандартных условиях химически стоек. Название Wolframium перешло на элемент с минерала вольфрамит, известного ещё в XVI в. под названием лат. Spuma lupi («волчья пена») или нем. Wolf Rahm («волчьи сливки», «волчий крем»). Название было связано с тем, что вольфрам, сопровождая оловянные руды, мешал выплавке олова, переводя его в пену шлаков («пожирает олово как волк овцу»).

Смотрите так же:

СТРУКТУРА

Кристалл вольфрама имеет объемноцентрированную кубическую решетку. Кристаллы вольфрама на холоду отличаются малой пластичностью, поэтому в процессе прессования порошка они практически почти не изменяют своей основной формы и размеров и уплотнение порошка происходит главным образом путем относительного перемещения частиц.

В объемно-центрированной кубической ячейке вольфрама атомы располагаются по вершинам и в центре ячейки, т.е. на одну ячейку приходится два атома. ОЦК-структура не является плотнейшей упаковкой атомов. Коэффициент компактности равен 0,68. Пространственная группа вольфрама Im3m.

СВОЙСТВА

Вольфрам - блестящий светло-серый металл, имеющий самые высокие доказанные температуры плавления и кипения (предполагается, что сиборгий ещё более тугоплавок, но пока что об этом твёрдо утверждать нельзя - время существования сиборгия очень мало). Температура плавления - 3695 K (3422 °C), кипит при 5828 K (5555 °C). Плотность чистого вольфрама составляет 19,25 г/см³. Обладает парамагнитными свойствами (магнитная восприимчивость 0,32·10−9). Твердость по Бринеллю 488 кг/мм², удельное электрическое сопротивление при 20 °C - 55·10−9 Ом·м, при 2700 °C - 904·10−9 Ом·м. Скорость звука в отожжённом вольфраме 4290 м/с. Является парамагнетиком.

Вольфрам является одним из наиболее тяжелых, твердых и самых тугоплавких металлов. В чистом виде представляет собой металл серебристо-белого цвета, похожий на платину, при температуре около 1600 °C хорошо поддается ковке и может быть вытянут в тонкую нить.

ЗАПАСЫ И ДОБЫЧА

Кларк вольфрама земной коры составляет (по Виноградову) 1,3 г/т (0,00013 % по содержанию в земной коре). Его среднее содержание в горных породах, г/т: ультраосновных - 0,1, основных - 0,7, средних - 1,2, кислых - 1,9.

Процесс получения вольфрама проходит через подстадию выделения триоксида WO 3 из рудных концентратов и последующем восстановлении до металлического порошка водородом при температуре около 700 °C. Из-за высокой температуры плавления вольфрама для получения компактной формы используются методы порошковой металлургии: полученный порошок прессуют, спекают в атмосфере водорода при температуре 1200-1300 °C, затем пропускают через него электрический ток. Металл нагревается до 3000 °C, при этом происходит спекание в монолитный материал. Для последующей очистки и получения монокристаллической формы используется зонная плавка.

ПРОИСХОЖДЕНИЕ

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисью вольфрама WO 3 с оксидами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Промышленное значение имеют вольфрамит (вольфрамат железа и марганца nFeWO 4 * mMnWO 4 - соответственно, ферберит и гюбнерит) и шеелит (вольфрамат кальция CaWO 4). Вольфрамовые минералы обычно вкраплены в гранитные породы, так что средняя концентрация вольфрама составляет 1-2 %.

Наиболее крупными запасами обладают Казахстан, Китай, Канада и США; известны также месторождения в Боливии, Португалии, России, Узбекистане и Южной Корее. Мировое производство вольфрама составляет 49-50 тысяч тонн в год, в том числе в Китае 41, России 3,5; Казахстане 0,7, Австрии 0,5. Основные экспортёры вольфрама: Китай, Южная Корея, Австрия. Главные импортёры: США, Япония, Германия, Великобритания.
Также есть месторождения вольфрама в Армении и других странах.

ПРИМЕНЕНИЕ

Тугоплавкость и пластичность вольфрама делают его незаменимым для нитей накаливания в осветительных приборах, а также в кинескопах и других вакуумных трубках.
Благодаря высокой плотности вольфрам является основой тяжёлых сплавов, которые используются для противовесов, бронебойных сердечников подкалиберных и стреловидных оперенных снарядов артиллерийских орудий, сердечников бронебойных пуль и сверхскоростных роторов гироскопов для стабилизации полёта баллистических ракет (до 180 тыс. об/мин).

Вольфрам используют в качестве электродов для аргоно-дуговой сварки. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Из них изготовляют хирургические инструменты (сплав «амалой»), танковую броню, оболочки торпед и снарядов, наиболее важные детали самолетов и двигателей, контейнеры для хранения радиоактивных веществ. Вольфрам - важный компонент лучших марок инструментальных сталей. Вольфрам применяется в высокотемпературных вакуумных печах сопротивления в качестве нагревательных элементов. Сплав вольфрама и рения применяется в таких печах в качестве термопары.

Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в России марки - ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу «быстрорежущая», с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам. (Р18, Р6М5. от rapid — быстрый, скорость).

Сульфид вольфрама WS 2 применяется как высокотемпературная (до 500 °C) смазка. Некоторые соединения вольфрама применяются как катализаторы и пигменты. Монокристаллы вольфраматов (вольфраматы свинца, кадмия, кальция) используются как сцинтилляционные детекторы рентгеновского излучения и других ионизирующих излучений в ядерной физике и ядерной медицине.

Дителлурид вольфрама WTe 2 применяется для преобразования тепловой энергии в электрическую (термо-ЭДС около 57 мкВ/К). Искусственный радионуклид 185 W используется в качестве радиоактивной метки при исследованиях вещества. Стабильный 184 W используется как компонент сплавов с ураном-235, применяемых в твердофазных ядерных ракетных двигателях, поскольку это единственный из распространённых изотопов вольфрама, имеющий низкое сечение захвата тепловых нейтронов (около 2 барн).

Вольфрам (англ. Tungsten) — W

КЛАССИФИКАЦИЯ

Nickel-Strunz (10-ое издание) 1.AE.05
Dana (7-ое издание) 1.1.38.1

Вольфрам. Химический элемент, символ W (лат. Wolframium, англ. Tungsten, франц. Tungstene, нем. Wolfram , от нем. Wolf Rahm - волчья слюна, пена ). Имеет порядковый номер 74, атомный вес 183, 85, плотность 19, 30 г/см 3 , температуру плавления 3380 ° С, температуру кипения 5680 ° С.

Вольфрам - металл светло-серого цвета, при комнатной температуре обладает высокой коррозионной стойкостью в воде и на воздухе, а также в кислотах и щелочах. Он начинает немного окисляться на воздухе при 400-500 ° С (при температуре красного каления) и интенсивно окисляется при более высоких температурах. Вольфрам образует два устойчивых окисла: WO 3 и WO 2 . С водородом вольфрам не взаимодействует практически до самого плавления, а с азотом начинает вступать в реакцию только при температурах более 2000 ° С. С хлором вольфрам образует хлориды WCl 2 , WCl 4 , WCl 5 , WCl 6 . Твёрдый углерод и некоторые содержащие его газы при 1100-1200 ° С реагируют с вольфрамом, образуя карбиды WC и W 2 C.

Вольфрам растворяется в смесях плавиковой и азотной кислот , также растворяется в расплавленных щелочах при доступе воздуха и особенно окислителей. Отдельные кислоты на вольфрам не действуют.

Вольфрам очень высокой чистоты пластичен при комнатной температуре. По прочности при высоких температурах вольфрам превосходит все остальные металлы. На механические свойства вольфрама сильное влияние оказывают примеси. Содержание в металле небольших количеств примесей делает его очень хрупким (хладноломким). Наиболее отрицательное влияние на свойства вольфрама оказывают кислород, азот, углерод, железо, фосфор, кремний.

Вольфрам широко используют в радиоламповой, радиотехнической и электронно-вакуумной промышленности для изготовления нитей накаливания, нагревателей и экранов высокотемпературных вакуумных печей, электрических контактов, катодов рентгеновских трубок.

В металлургии вольфрамом легируют стали и используют при изготовлении твёрдых сплавов (например, металлокерамический сплав на основе карбида вольфрама - победит), в химической промышленности из него изготовляют краски и катализаторы, в ракетной технике - изделия, работающие при очень высоких температурах, в атомной промышленности - тигли для хранения радиоактивных материалов, т.к. защитное действие у сплава вольфрама, никеля и меди выше, чем у свинца . Сплавы с металлами получают спеканием, а не давлением потому, что при температуре плавления вольфрама многие металлы превращаются в пар.

Вольфрам применяют также для нанесения покрытий: на детали, работающие при очень высоких температурах в восстановительной и нейтральной средах; на литейные формы из молибдена , используемые для получения прутков сильно радиоактивных металлов; на детали, работающие на трение.

Также распространены сплавы на основе вольфрама с рением. Добавка рения (до 20-25%) снижает температуру перехода вольфрама в хрупкое состояние, резко повышает его пластичность при нормальной температуре и улучшает технологические свойства. Сплавы получают методом порошковой металлургии и плавлением в электродуговых вакуумных печах. Из этих сплавов изготовляют термопары, электрические контакты.

Сплавы вольфрама с молибденом пригодны для работы при температурах более 3000 ° С, применяют их для сопел реактивных двигателей.

При нагревании вольфрама выше 400 ° С на его поверхности образуется порошкообразный окисел жёлтого цвета, который заметно испаряется при температурах более 800 ° С. Поэтому вольфрам может быть использован как высокопрочный материал при высоких температурах только при надёжной защите поверхности изделия от воздействия окисляющей среды или при работе в нейтральной среде или в вакууме. Для кратковременной защиты вольфрама от окисления при 2000-3000 ° С применяют керамические эмалевидные покрытия, содержащие тугоплавкие соединения в качестве основного заполнителя им тугоплавкое связующее стекло.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...