Термоядерная реакция. Что такое термоядерная реакция

Общеизвестно, что при делении тяжелых ядер атомов во время ядерных реакций выделяется большое количество энергии. Однако удалось установить, что при слиянии легких ядер выделяется еще большее количество энергии. Такие реакции назвали термоядерными.

Природа термоядерных реакций

Термоядерные реакции – это реакции слияния легких ядер, протекающие при высоких температурах с выделением большого количества энергии. Синтез гелия из водорода протекает при t = 108 ˚C. При синтезе одного грамма гелия выделяется 4,2*1011 Дж. Эта энергия эквивалентна энергии, выделяющейся при полном делении 4 граммов урана или при сжигании 10 тонн дизтоплива. Термоядерные реакции можно встретить в звездах, где температура и давление вещества создают пригодные условия для осуществления слияний.

В термоядерной реакции синтеза гелия участвуют изотопы водорода: тритий и дейтерий:

(1^2)H+(1^3)H→(2^4)He+(0^1)n

При слиянии дейтерия и трития в ядро гелия выделяется нейтрон и энергия E = 17,6 МэВ.

Условия протекания термоядерных реакций

Для протекания термоядерных реакций нужны определенные условия. Требуется сблизить ядра указанных изотопов. Ядра атомов имеют положительный заряд, и, следовательно, при их сближении действуют кулоновские силы , расталкивающие эти заряды.

Соответственно, для слияния ядер необходимо преодолеть отталкивающие силы. Это возможно лишь в случае, если сами ядра обладают очень большой энергией, в первую очередь, кинетической энергией движения , то есть тогда, когда их скорость достаточно велика.

Ядра изотопов могут обладать такой скоростью только при очень высокой температуре. Необходимо придать частицам скорость достаточную, чтобы они могли приблизиться друг к другу на расстояние ≈ 10^-14 м. На таком расстоянии уже начинают действовать ядерные силы притяжения .

Подобной температуры можно добиться лишь при взрыве атомной бомбы. То есть, чтобы произвести термоядерную реакцию, надо произвести сначала ядерную реакцию, и тогда температуры будет достаточно для сближения ядер изотопов водорода и осуществления термоядерной реакции. Такой процесс был реализован в водородной бомбе – самой мощной из изобретенных человеком.

Управляемые термоядерные реакции

Однако на сегодняшний день неуправляемая термоядерная реакция – это уже не актуально. Необходимо освоить управляемую термоядерную реакцию, дабы преобразовывать получаемую энергию в электрическую. Но есть проблема. При достижении температуры, достаточной для осуществления реакции слияния легких ядер, вещество уже перестает быть не только твердым, жидким или газообразным, оно становится плазмой .

То есть, любой реактор моментально испарится при таких температурах. Здесь требуется совершенно иной подход. На сегодняшний день удается удерживать плазму на ограниченной территории с помощью сверхмощных электрических магнитов . Но полноценно использовать получаемую в результате термоядерной реакции энергию пока не удается.

Происхождение термина

Для того, чтобы произошла ядерная реакция, исходные атомные ядра должны преодолеть так называемый "кулоновский барьер" - силу электростатического отталкивания между ними. Для этого они должны иметь большую кинетическую энергию . Согласно кинетической теории , кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а следовательно, нагревая вещество можно достичь ядерной реакции. Именно эту взаимосвязь нагревания вещества и ядерной реакции и отражает термин термоядерная реакция.

Кулоновский барьер

Атомные ядра имеют положительный электрический заряд . На больших расстояниях их заряды могут быть экранированы электронами. Однако для того, чтобы произошло слияние ядер, они должны сблизиться на расстояние, на котором действует сильное взаимодействие . Это расстояние - порядка размера самих ядер и во много раз меньше размера атома . На таких расстояниях электронные оболочки атомов (даже если бы они сохранились) уже не могут экранировать заряды ядер, поэтому они испытывают сильное электростатическое отталкивание. Сила этого отталкивания, в соответствии с законом Кулона , обратно пропорциональна квадрату расстояния между зарядами. На расстояниях порядка размера ядер величина сильного взаимодействия, которое стремится их связать, начинает быстро возрастать и становится больше величины кулоновского отталкивания.

Таким образом, чтобы вступить в реакцию, ядра должны преодолеть потенциальный барьер . Например, для реакции дейтерий -тритий величина этого барьера составляет примерно 0,1 МэВ . Для сравнения, энергия ионизации водорода - 13 эВ. Поэтому вещество, участвующее в термоядерной реакции, будет представлять собой практически полностью ионизированную плазму .

Температура, эквивалентная 0,1 МэВ, приблизительно равна 10 9 , однако есть два эффекта, которые снижают температуру, необходимую для термоядерной реакции:

  • Во-первых, температура характеризует лишь среднюю кинетическую энергию, есть частицы как с меньшей энергией, так и с большей. На самом деле в термоядерной реакции участвует небольшое количество ядер, имеющих энергию намного больше средней (т. н. «хвост максвелловского распределения »).
  • Во-вторых, благодаря квантовым эффектам, ядра не обязательно должны иметь энергию, превышающую кулоновский барьер. Если их энергия немного меньше барьера, они могут с большой вероятностью туннелировать сквозь него.

Мюонный катализ

Термоядерная реакция может быть существенно облегчена при введении в реакционную плазму отрицательно заряженных мюонов .

Мюоны µ − вступая в взаимодействие с термоядерным топливом образуют мезомолекулы, в которых расстояние между ядрами атомов топлива несколько меньше, что облегчает их сближение и, кроме того, повышает вероятность туннелирования ядер через кулоновский барьер.

Число реакций синтеза X c , инициируемое одним мюоном, ограничено величиной коэффициента прилипания мюона. Экспериментально удалось получить значения X c ~100, т. е. один мюон способен высвободить энергию ~ 100 × Х МэВ, где Х - энергетически выход катализируемой реакции.

Пока величина освобождаемой энергии меньше, чем энергетические затраты на производство самого мюона (5-10 ГэВ). Таким образом, мюонный катализ пока энергетически невыгодный процесс. Коммерчески выгодное производство энергии с использованием мюонного катализа возможно при X c ~ 10 4 .

Термоядерные реакции

(1) D + T 4 He (3.5 MeV) + n (14.1 MeV)
(2) D + D T (1.01 MeV) + p (3.02 MeV) (50 %)
(3) 3 He (0.82 MeV) + n (2.45 MeV) (50 %)
(4) D + 3 He 4 He (3.6 MeV) + p (14.7 MeV)
(5) T + T 4 He + 2 n + 11.3 MeV
(6) 3 He + 3 He 4 He + 2 p
(7) 3 He + T 4 He + p + n + 12.1 MeV (51 %)
(8) 4 He (4.8 MeV) + D (9.5 MeV) (43 %)
(9) 4 He (0.5 MeV) + n (1.9 MeV) + p (11.9 MeV) (6 %)
(10) D + 6 Li 2 4 He + 22.4 MeV -
(11) p + 6 Li 4 He (1.7 MeV) + 3 He (2.3 MeV)-
(12) 3 He + 6 Li 2 4 He + p + 16.9 MeV
(13) p + 11 B 3 4 He + 8.7 MeV

Применение

Применение термоядерной реакции как практически неисчерпаемого источника энергии связано в первую очередь с перспективой освоения технологии управляемого термоядерного синтеза (УТС) . В настоящее время научная и технологическая база не позволяет использовать УТС в промышленных масштабах.

Вместе с тем, неуправляемая термоядерная реакция нашла своё применение в военном деле. Впервые термоядерное взрывное устройство было испытано в ноябре 1952 года в США, а уже в августе 1953 года в Советском Союзе испытали термоядерное взрывное устройство в виде авиабомбы. Мощность термоядерного взрывного устройства (в отличие от атомного) ограничена лишь количеством используемого для его создания материала, что позволяет создавать взрывные устройства практически любой мощности.

См. также

Примечания


Wikimedia Foundation . 2010 .

Атом - это строительный элемент Вселенной. Существует всего около сотни атомов различных типов. Большинство элементов стабильны (например, кислород и азот атмосферы; углерод, кислород и водород - основные составляющие нашего тела и всех других живых организмов). Другие элементы, главным образом очень тяжелые, нестабильны, и это означает, что они спонтанно распадаются, порождая другие элементы. Это преобразование называется ядерной реакцией.

Ядерные реакции - превращения атомных ядер при взаимодействии с элементарными частицами, г-квантами или друг с другом.

Ядерные реакции разделяют на два вида: ядерное деление и термоядерный синтез.

Ядерная реакция деления -- процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном, альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным.

Самопроизвольное (спонтанное) - это деление ядер, в процессе которого некоторые достаточно тяжелые ядра распадаются на два осколка с примерно равными массами.

Самопроизвольное деление впервые было обнаружено для природного урана. Как и любой другой вид радиоактивного распада, спонтанное деление характеризуется периодом полураспада (периодом деления). Период полураспада для спонтанного деления меняется для разных ядер в очень широких пределах (от 1018 лет для 93Np237 до нескольких десятых долей секунды для трансурановых элементов).

Вынужденное деление ядер может быть вызвано любыми частицами: фотонами, нейтронами, протонами, дейтронами, б-частицами и т.д., если энергия, которую они вносят в ядро, достаточна для преодоления барьера деления. Для атомной энергетики большее значение играет деление, вызванное нейтронами. Реакция деления тяжелых ядер осуществлена впервые на уране U235. Чтобы ядро урана распалось на два осколка, ему сообщается энергия активации. Эту энергию ядро урана получает, захватывая нейтрон. Ядро приходит в возбужденное состояние, деформируется, возникает "перемычка" между частями ядра и под действием кулоновских сил отталкивания происходит деление ядра на два осколка неравной массы. Оба осколка радиоактивны и испускают 2 или 3 вторичных нейтрона.

Рис. 4

Вторичные нейтроны поглощаются соседними ядрами урана, что вызывает их деление. При соответствующих условиях может возникнуть саморазвивающийся процесс массового деления ядер, называемый цепной ядерной реакцией. Такая реакция сопровождается выделением колоссальной энергии. Например, при полном сгорании 1 г урана выделяется 8.28·1010 Дж энергии. Ядерная реакция характеризуется тепловым эффектом, который представляет собой разность масс покоя вступающих в ядерную реакцию и образующихся в результате реакции ядер, т.е. энергетический эффект ядерной реакции определяется в основном разницей масс конечных и исходных ядер. На основании эквивалентности энергии и массы можно вычислить энергию, выделяющуюся или затраченную при протекании ядерной реакции, если точно знать массу всех ядер и частиц, участвующих в реакции. Согласно закону Эйнштейна:

  • ?Е=?mс2
  • ?E = (mA + mx - mB - my)c2

где mА и mх - массы соответственно ядра мишени и бомбардирующего ядра(частицы);

mB и my - массы и образующихся в результате реакции ядер.

Чем больше энергии выделяется при образовании ядра, тем оно прочнее. Энергией связи ядра называют количество энергии, требуемой для разложения ядра атома на составные части - нуклоны (протоны и нейтроны).

Примером неуправляемой цепной реакции деления может послужить взрыв атомной бомбы, управляемая ядерная реакция осуществляется в ядерных реакторах.

Термоядерный синтез - это реакция, обратная делению атомов, реакция слияния легких атомных ядер в более тяжелые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии. Осуществление управляемого термоядерного синтеза даст человечеству новый экологически чистый и практически неисчерпаемый источник энергии, который основан на столкновении ядер изотопов водорода, а водород - самое распространенное вещество во Вселенной.

Процесс синтеза идёт с заметной интенсивностью только между лёгкими ядрами, обладающими малым положительным зарядом и только при высоких температурах, когда кинетическая энергия сталкивающихся ядер оказывается достаточной для преодоления кулоновского потенциального барьера. С несравненно большей скоростью идут реакции между тяжёлыми изотопами водорода (дейтерием 2H и тритием 3H) с образованием сильно связанных ядер гелия.

2D + 3T > 4He (3,5 МэВ) + 1n (14,1 МэВ)

Эти реакции представляют наибольший интерес для проблемы управляемого термоядерного синтеза. Дейтерий содержится в морской воде. Его запасы общедоступны и очень велики: на долю дейтерия приходится около 0,016% общего числа атомов водорода, входящих в состав воды, в то время как мировой океан покрывает 71% площади поверхности Земли. Реакция с участием трития является более привлекательной, т. к. сопровождается большим выделением энергии и протекает со значительной скоростью. Тритий радиоактивен (период полураспада 12,5 лет) и не встречается в природе. Следовательно, для обеспечения работы предполагаемого термоядерного реактора, использующего в качестве ядерного горючего тритий, должна быть предусмотрена возможность воспроизводства трития.

Реакция c так называемым лунным изотопом 3Не имеет ряд преимуществ по сравнению с наиболее достижимой в земных условиях дейтериево-тритиевой реакцией.

2D + 3He > 4He (3,7 МэВ) + 1p (14,7 МэВ)

Преимущества:

  • 1. 3He не радиоактивен.
  • 2. В десятки раз более низкий поток нейтронов из зоны реакции, что резко уменьшает наведённую радиоактивность и деградацию конструкционных материалов реактора;
  • 3. Получаемые протоны, в отличие от нейтронов, легко улавливаются и могут быть использованы для дополнительной генерации электроэнергии.

Природная изотопная распространённость в атмосфере 3He составляет 0,000137 %. Большая часть 3He на Земле сохранилась со времён её образования. Он растворён в мантии и постепенно поступает в атмосферу. На Земле его добывают в очень небольших количествах, исчисляемых несколькими десятками граммов за год.

Гелий-3 является побочным продуктом реакций, протекающих на Солнце. В результате, на Луне, у которой нет атмосферы, этого ценного вещества находится до 10 миллионов тонн (по минимальным оценкам -- 500 тысяч тонн). При термоядерном синтезе, когда в реакцию вступает 1 тонна гелия-3 с 0,67 тоннами дейтерия, высвобождается энергия, эквивалентная сгоранию 15 миллионов тонн нефти (однако на настоящий момент не изучена техническая возможность осуществления данной реакции). Следовательно, населению нашей планеты лунного ресурса гелия-3 должно хватить как минимум на ближайшее тысячелетие. Основной проблемой остаётся реальность добычи гелия из лунного грунта. Содержание гелия-3 в реголите составляет ~1 г на 100 т. Поэтому для добычи тонны этого изотопа следует переработать не менее 100 миллионов тонн грунта. Температура, при которой возможно осуществление реакции термоядерного синтеза достигает величины порядка 108 - 109 К. При этой температуре вещество находится в полностью ионизированном состоянии, которое называется плазмой. Таким образом, сооружение реактора предполагает: получение плазмы, нагретой до температур в сотни миллионов градусов; сохранение плазменной конфигурации в течение времени, для протекания ядерных реакций.

Термоядерная энергетика имеет важные преимущества перед атомными станциями: в ней используется абсолютно нерадиоактивные дейтерий и изотоп гелия-3 и радиоактивный тритий, но в объемах в тысячи раз меньших, чем в атомной энергетике. А в возможных аварийных ситуациях радиоактивный фон вблизи термоядерной электростанции не превысит природных показателей. При этом на единицу веса термоядерного топлива получается примерно в 10 млн. раз больше энергии, чем при сгорании органического топлива, и примерно в 100 раз больше, чем при расщеплении ядер урана. В природных условиях термоядерные реакции протекают в недрах звёзд, в частности во внутренних областях Солнца, и служат тем постоянным источником энергии, который определяет их излучение. Сгорание водорода в звёздах идёт с малой скоростью, но гигантские размеры и плотности звёзд обеспечивают непрерывное испускание огромных потоков энергии в течение миллиардов лет.

Все химические элементы нашей планеты и Вселенной в целом образовались в результате термоядерных реакций, которые происходят в ядрах звезд. Термоядерные реакции в звездах приводят к постепенному изменению химического состава звездного вещества, что вызывает перестройку звезды и ее продвижение по эволюционному пути. Первый этап эволюции заканчивается истощением водорода в центральных областях звезды. Затем после повышения температуры, вызванного сжатием центральных слоев звезды, лишенных источников энергии, становятся эффективными термоядерные реакции горения гелия, которые сменяются горением C, O, Si и последующих элементов - вплоть до Fe и Ni. Каждому этапу звездной эволюции соответствуют определенные термоядерные реакции. Первыми в цепи таких ядерных реакций стоят водородные термоядерные реакции. Они протекают двумя путями в зависимости от начальной температуры в центре звезды. Первый путь - водородный цикл, второй путь - CNO-цикл.

Водородный цикл:

  • 1H + 1H = 2D + e+ + v +1,44 МэВ
  • 2D + 1H = 3He + г +5,49 МэВ

I: 3He + 3He = 4He + 21H + 12,86 МэВ

или 3He + 4He = 7Be + г + 1,59 МэВ

7Be + e- = 7Li + v + 0,862 МэВ или 7Be + 1H = 8B + г +0,137 МэВ

II: 7Li + 1H = 2 4He + 17,348 МэВ 8B = 8Be* + e+ + v + 15,08МэВ

III. 8Be* = 2 4He + 2,99 МэВ

Водородный цикл начинается реакцией столкновения двух протонов (1H, или р) с образованием ядра дейтерия (2D). Дейтерий реагирует с протоном, образуя лёгкий (лунный) изотоп гелия 3Не с испусканием гамма-фотона (г). Лунный изотоп 3Не может реагировать двумя различными путями: два ядра 3Не при столкновении образуют 4Не с отщеплением двух протонов либо 3Не соединяется с 4Не и даёт 7Ве. Последний в свою очередь захватывает либо электрон (е-), либо протон и возникает ещё одно разветвление протон - протонной цепочки реакций. В результате водородный цикл может заканчиваться тремя различными путями I, II и III. Для реализации ветви I первые две реакции В. ц. должны осуществиться дважды, поскольку в этом случае исчезают сразу два ядра 3Не. В ветви III испускаются особенно энергичные нейтрино при распаде ядра бора 8В с образованием неустойчивого ядра бериллия в возбуждённом состоянии (8Ве*), который почти мгновенно распадается на два ядра 4Не. CNO-цикл -- это совокупность трёх сцепленных друг с другом или, точнее, частично перекрывающихся циклов: CN, NO I, NO II. Синтез гелия из водорода в реакциях этого цикла протекает при участии катализаторов, роль которых играют малые примеси изотопов C, N и O в звездном веществе.

Основной путь реакции CN-цикла:

  • 12C + p = 13N + г +1,95 МэВ
  • 13N = 13C + e+ + н +1,37 МэВ
  • 13C + p = 14N + г +7,54 МэВ (2,7·106 лет)
  • 14N + p = 15O + г +7,29 МэВ (3,2·108 лет)
  • 15O = 15N + e+ + н +2,76 МэВ (82 секунды)
  • 15N + p = 12C + 4He +4,96 МэВ (1,12·105 лет)

Суть этого цикла состоит в непрямом синтезе б-частицы из четырёх протонов при их последовательных захватах ядрами, начиная с 12C.

В реакции с захватом протона ядром 15N возможен ещё один исход -- образование ядра 16О и рождается новый цикл NO I-цикл.

Он имеет в точности ту же структуру, что и CN-цикл:

  • 14N + 1H = 15O + г +7,29 МэВ
  • 15O = 15N + e+ + н +2,76 МэВ
  • 15N + 1H = 16O + г +12.13 МэВ
  • 16O + 1H = 17F + г +0,60 МэВ
  • 17F = 17O + e+ + н +2,76 МэВ
  • 17O + 1H = 14N + 4He +1,19 МэВ

NO I-цикл повышает темп энерговыделения в CN-цикле, увеличивая число ядер-катализаторов CN-цикла.

Последняя реакция этого цикла также может иметь другой исход, порождая ещё один NO II-цикл:

  • 15N + 1H = 16O + г +12.13 МэВ
  • 16O + 1H = 17F + г +0,60 МэВ
  • 17F = 17O + e+ + н +2,76 МэВ
  • 17O + 1H = 18F + г +5,61 МэВ
  • 18O + 1H = 15N + 4He +3, 98 МэВ

Таким образом, циклы CN, NO I и NO II образуют тройной CNO-цикл.

Имеется ещё один очень медленный четвёртый цикл, OF-цикл, но его роль в выработке энергии ничтожно мала. Однако этот цикл является весьма важным, при объяснении происхождения 19F.

  • 17O + 1H = 18F + г + 5.61 МэВ
  • 18F = 18O + e+ + н + 1.656 МэВ
  • 18O + 1H = 19F + г + 7.994 МэВ
  • 19F + 1H = 16O + 4He + 8.114 МэВ
  • 16O + 1H = 17F + г + 0.60 МэВ
  • 17F = 17O + e+ + н + 2.76 МэВ

При взрывном горении водорода в поверхностных слоях звёзд, например, при вспышках сверхновых, могут развиваться очень высокие температуры, и характер CNO-цикла резко меняется. Он превращается в так называемый горячий CNO-цикл, в котором реакции идут очень быстро и запутанно.

Химические элементы тяжелее 4He начинают синтезироваться лишь после полного выгорания водорода в центральной области звезды:

4He + 4He + 4He > 12C + г + 7,367 МэВ

Реакции горения углерода:

  • 12C + 12C = 20Ne + 4He +4,617 МэВ
  • 12C + 12C = 23Na + 1H -2,241 МэВ
  • 12C + 12C = 23Mg + 1n +2,599 МэВ
  • 23Mg = 23Na + e+ + н + 8, 51 МэВ
  • 12C + 12C = 24Mg + г +13,933 МэВ
  • 12C + 12C = 16O + 24He -0,113 МэВ
  • 24Mg + 1H = 25Al + г

При достижении температуры 5·109 K в звездах в условиях термодинамического равновесия протекает большое количество разнообразных реакций, в результате чего образуются атомные ядра вплоть до Fe и Ni.

Термоядерные реакции
Thermonuclear reactions

Термоядерные реакции − реакции слияния (синтеза) лёгких ядер, протекающие при высоких температурах. Эти реакции обычно идут с выделением энергии, поскольку в образовавшемся в результате слияния более тяжёлом ядре нуклоны связаны сильнее, т.е. имеют, в среднем, бoльшую энергию связи, чем в исходных сливающихся ядрах. Избыточная суммарная энергия связи нуклонов при этом освобождается в виде кинетической энергии продуктов реакции. Название “термоядерные реакции” отражает тот факт, что эти реакции идут при высоких температурах (> 10 7 –10 8 К), поскольку для слияния лёгкие ядра должны сблизиться до расстояний, равных радиусу действия ядерных сил притяжения, т.е. до расстояний ≈10 -13 см. А вне зоны действия этих сил положительно заряженные ядра испытывают кулоновское отталкивание. Преодолеть это отталкивание могут лишь ядра, летящие навстречу друг другу с большими скоростями, т.е. входящие в состав сильно нагретых сред, либо специально ускоренные.
Ниже приведены несколько основных реакций слияния ядер и указаны для них значения энерговыделения Q. d означает дейтрон − ядро 2 Н, t означает тритон − ядро 3 Н.

d + d → 3 He + n + 4.0 МэВ,
d + d → t + p + 3.25 МэВ,
t + d → 4 He + n + 17.6 МэВ,
3 He + d → 4 He + p + 18.3 МэВ.

Реакция слияния ядер начинается тогда, когда сталкивающиеся ядра находятся в области их взаимного ядерного притяжения. Чтобы так сблизиться, сталкивающиеся ядра должны преодолеть их взаимное дальнодействующее электростатическое отталкивание, т.е. кулоновский барьер. Скорость реакции слияния крайне мала при энергиях ниже нескольких кэВ, но она быстро растет с ростом кинетичской энергии ядер, вступающих в реакцию. Соответствующие эффективные сечения реакций в зависимости от энергии дейтрона приведены на рис. 1.

Рис. 1. Зависимость эффективных сечений реакции слияния
от энергии дейтрона.

Самоподдерживающиеся термоядерные реакции являются эффективным источником ядерной энергии. Однако осуществить их на Земле сложно, так как для этого нужно удерживать высокие концентрации ядер при огромных температурах. Необходимые условия для протекания самоподдерживающихся термоядерных реакций имеются в звёздах, где они являются главным источником энергии. Так внутри Солнца, где находятся ядра водорода при плотности ≈100 г/см 3 и температуре 10 7 К, идёт цепочка термоядерных реакций превращения четырёх протонов (ядер водорода) в ядро гелия-4 (4 Не). При каждом таком превращении выделяется энергия 26.7 МэВ. Эта цепочка реакций (называемая протон-протонной) начинается с реакции (1) и приведена на рисунке.

Протон-протонная цепочка.

На Земле самоподдерживающиеся термоядерные реакции с выделением огромной энергии осуществлялись в течение очень короткого времени (10 -7 –10 -6 сек) при взрывах водородных бомб. Одной из основных термоядерных реакций, обеспечивающих энерговыделение при таких взрывах, является реакция слияния двух тяжёлых изотопов водорода (дейтерия и трития) в ядро гелия с испусканием нейтрона.

Отталкивания между ними. Для этого они должны иметь большую кинетическую энергию . Согласно кинетической теории , кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а следовательно, нагревая вещество, можно достичь термоядерной реакции. Именно эту взаимосвязь нагревания вещества и ядерной реакции и отражает термин «термоядерная реакция».

Кулоновский барьер

Атомные ядра имеют положительный электрический заряд . На больших расстояниях их заряды могут быть экранированы электронами. Однако для того, чтобы произошло слияние ядер, они должны сблизиться на расстояние, на котором действует сильное взаимодействие . Это расстояние - порядка размера самих ядер и во много раз меньше размера атома . На таких расстояниях электронные оболочки атомов (даже если бы они сохранились) уже не могут экранировать заряды ядер, поэтому они испытывают сильное электростатическое отталкивание. Сила этого отталкивания, в соответствии с законом Кулона , обратно пропорциональна квадрату расстояния между зарядами. На расстояниях порядка размера ядер величина сильного взаимодействия, которое стремится их связать, начинает быстро возрастать и становится больше величины кулоновского отталкивания.

Таким образом, чтобы вступить в реакцию, ядра должны преодолеть потенциальный барьер . Например, для реакции дейтерий -тритий величина этого барьера составляет примерно 0,1 МэВ . Для сравнения, энергия ионизации водорода - 13 эВ. Поэтому вещество, участвующее в термоядерной реакции, будет представлять собой практически полностью ионизированную плазму .

Температура, эквивалентная 0,1 МэВ, приблизительно равна 10 9 , однако есть два эффекта, которые снижают температуру, необходимую для термоядерной реакции:

  • Во-первых, температура характеризует лишь среднюю кинетическую энергию, есть частицы как с меньшей энергией, так и с большей. На самом деле в термоядерной реакции участвует небольшое количество ядер, имеющих энергию намного больше средней (т. н. «хвост максвелловского распределения »).
  • Во-вторых, благодаря квантовым эффектам, ядра не обязательно должны иметь энергию, превышающую кулоновский барьер. Если их энергия немного меньше барьера, они могут с большой вероятностью туннелировать сквозь него. [ ]

Термоядерные реакции

Некоторые важнейшие экзотермические термоядерные реакции с большими сечениями:

(1) + 4 (3,5 MeV) + (14,1 MeV)
(2) D + D T (1,01 MeV) + (3,02 MeV) (50 %)
(3) 3 He (0,82 MeV) + n (2,45 MeV) (50 %)
(4) D + 3 He 4 He (3,6 MeV) + p (14,7 MeV)
(5) T + T 4 He + 2 n + 11,3 MeV
(6) 3 He + 3 He 4 He + 2 p + (+12,85 MeV)
(7) 3 He + T 4 He + p + n + 12,1 MeV (51 %)
(8) 4 He (4,8 MeV) + D (9,5 MeV) (43 %)
(9) 4 He (0,5 MeV) + n (1,9 MeV) + p (11,9 MeV) (6 %)
(10) D + 6 2 4 He + 22,4 MeV -
(11) p + 6 Li 4 He (1,7 MeV) + 3 He (2,3 MeV)
(12) 3 He + 6 Li 2 4 He + p + 16,9 MeV
(13) p + 11 3 4 He + 8,7 MeV
(14) n + 6 Li 4 He + T + 4,8 MeV

Мюонный катализ

Термоядерная реакция может быть существенно облегчена при введении в реакционную плазму отрицательно заряженных мюонов .

Мюоны µ − , вступая во взаимодействие с термоядерным топливом, образуют мезомолекулы, в которых расстояние между ядрами атомов топлива многократно (≈200 раз) меньше, что облегчает их сближение и, кроме того, повышает вероятность туннелирования ядер через кулоновский барьер.

Число реакций синтеза X c , инициируемое одним мюоном, ограничено величиной коэффициента прилипания мюона. Экспериментально удалось получить значения X c ~100, т. е. один мюон способен высвободить энергию ~ 100 × Х МэВ, где Х - энергетический выход катализируемой реакции.

Пока величина освобождаемой энергии меньше, чем энергетические затраты на производство самого мюона (5-10 ГэВ). Таким образом, мюонный катализ пока энергетически невыгодный процесс. Коммерчески выгодное производство энергии с использованием мюонного катализа возможно при X c ~ 10 4 .

Применение

Применение термоядерной реакции как практически неисчерпаемого источника энергии связано в первую очередь с перспективой освоения технологии управляемого термоядерного синтеза (УТС). В настоящее время научная и технологическая база не позволяет использовать УТС в промышленных масштабах.

Вместе с тем неуправляемая термоядерная реакция нашла своё применение в военном деле. Впервые термоядерное взрывное устройство было испытано в ноябре 1952 года в США, а уже в августе 1953 года в Советском Союзе испытали термоядерное взрывное устройство в виде авиабомбы. Мощность термоядерного взрывного устройства (в отличие от атомного) ограничена лишь количеством используемого для его создания материала, что позволяет создавать взрывные устройства практически любой мощности.



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...