Термоядерный реактор. Итэр — международный термоядерный реактор (iter)

Термоядерная электростанция.


В настоящее время ученые работают над созданием а Термоядерной электростанции, преимуществом которых является обеспечение человечества электроэнергией на неограниченное время. Термоядерная электростанция работает на основе термоядерного синтеза — реакции синтеза тяжелых изотопов водорода с образованием гелия и выделением энергии. Реакция термоядерного синтеза не дает газообразных и жидких радиоактивных отходов, не нарабатывает плутоний, который используется для производства ядерного оружия. Если еще учесть, что горючим для термоядерных станций будет тяжелый изотоп водорода дейтерий, который получают из простой воды — в полулитре воды заключена энергия синтеза, эквивалентная той, что получится при сжигании бочки бензина, — то преимущества электростанций, основанных на термоядерной реакции, становятся очевидными.

В ходе термоядерной реакции энергия выделяется при соединении легких атомов и превращении их в более тяжелые. Чтобы этого добиться, необходимо разогреть газ до температуры свыше 100 миллионов градусов - намного выше температуры в центре Солнца.

Газ при такой температуре превращается в плазму. Атомы изотопов водорода при этом сливаются, превращаясь в атомы гелия и нейтроны и выделяя большое количество энергии. Коммерческая электростанция, работающая на этом принципе, использовала бы энергию нейтронов, замедляемых слоем плотного вещества (лития).

По сравнению с атомной электростанцией термоядерный реактор будет оставлять после себя гораздо менее радиоактивные отходы.


Интернациональный термоядерный реактор ИТЭР


Участники международного консорциума по созданию первого в мире термоядерного реактора ИТЕР подписали в Брюсселе соглашение, дающее старт практической реализации проекта.

Представители Европейского союза, США, Японии, Китая, Южной Кореи и России намерены начать строительство экспериментального реактора в 2007 году и закончить его в течение восьми лет. Если все пройдет согласно плану, то к 2040 году может быть построена демонстрационная электростанция, работающая по новому принципу.

Хочется верить, что эра экологически опасных ГЭС и АЭС скоро закончится, и наступит время новой электростанции — термоядерной, проект которой уже осуществляется. Но, несмотря на то, что проект ИТЭР (Интернациональный термоядерный реактор) уже почти готов; несмотря на то, что уже на первых действующих экспериментальных термоядерных реакторах получена мощность, превышающая 10 МВт — уровень первых атомных электростанций, первая термоядерная электростанция заработает не ранее, чем лет через двадцать, потому что ее стоимость очень велика. Стоимость работ оценивается в 10 млрд. евро - это самый дорогой международный проект электростанции. Половину затрат по возведению реактора берет на себя Евросоюз. Другие участники консорциума выделят по 10% сметы.

Теперь план возведения реактора, которое станет самым дорогим совместным научным проектом после, должны ратифицировать парламентарии стран-участниц консорциума.

Реактор будет построен в южной французской провинции Прованс, в окрестностях города Кадараш, где находится французский центр ядерных исследований.

«Lockheed Martin начала разработку компактного термоядерного реактора… На сайте фирмы говорится о постройке первого опытного образца уже через год. Если это окажется правдой, через год мы будем жить в совершенно ином мире», - это начало одной из «Чердака». Со времени ее публикации прошло три года, и мир с тех пор не так уж сильно изменился.

Сегодня в реакторах атомных электростанций энергия вырабатывается за счет распада тяжелых ядер. В термоядерных же реакторах энергия получается в ходе процесса слияния ядер, при котором образуются ядра меньшей массы, чем сумма исходных, а «остаток» уходит в виде энергии. Отходы ядерных реакторов радиоактивны, их безопасное захоронение - это большая головная боль. Термоядерные реакторы такого недостатка лишены, а также используют широко доступное топливо, такое как водород.

У них есть только одна большая проблема - промышленных образцов еще не существует. Задача непростая: для термоядерных реакций нужно сжать топливо и нагреть до сотен миллионов градусов - горячее, чем на поверхности Солнца (где термоядерные реакции происходят естественным путем). Достичь такой высокой температуры сложно, но можно, только вот потребляет такой реактор энергии больше, чем вырабатывает.

Однако потенциальных достоинств у них все равно так много, что разработкой занимается, конечно же, не только Lockheed Martin.

ITER

ITER - cамый крупный проект в этой области. В нем участвуют Евросоюз, Индия, Китай, Корея, Россия, США и Япония, а сам реактор строится на территории Франции с 2007 года, хотя его история уходит намного глубже в прошлое: о его создании договаривались еще Рейган с Горбачевым в 1985-м. Реактор представляет собой тороидальную камеру, «бублик», в которой плазму удерживают магнитные поля, потому и называется токамак - то роидальная ка мера с ма гнитными к атушками. Энергию реактор будет вырабатывать за счет слияния изотопов водорода - дейтерия и трития.

Планируется, что ITER будет получать энергии в 10 раз больше, чем потреблять, однако будет это не скоро. Изначально планировалось, что в экспериментальном режиме реактор начнет работать в 2020 году, однако затем этот срок перенесли на 2025-й. При этом промышленное производство энергии начнется не раньше 2060 года, а уж ждать распространения этой технологии можно только где-то в конце XXI века.

Wendelstein 7-X

Wendelstein 7-X - крупнейший термоядерный реактор типа стелларатор. Стелларатор решает проблему, которая преследует токамаки, - «расползание» плазмы из центра тора к его стенкам. То, с чем токамак пытается справиться за счет мощи магнитного поля, стелларатор решает за счет своей сложной формы: удерживающее плазму магнитное поле изгибается, чтобы пресечь поползновения заряженных частиц.

Wendelstein 7-X, как надеются его создатели, в 21-м году сможет проработать полчаса, что даст «билет в жизнь» идее термоядерных станций подобной конструкции.

National Ignition Facility

Еще один тип реакторов использует для сжатия и разогрева топлива мощные лазеры. Увы, крупнейшая лазерная установка для получения термоядерной энергии, американская NIF, не смогла выдать энергии больше, чем потребляет.

Какие из всех этих проектов действительно «взлетят», а кого постигнет участь NIF, предсказать сложно. Остается ждать, надеяться и следить за новостями: 2020-е обещают стать интересным временем для ядерной энергетики.

«Ядерные технологии » - один из профилей Олимпиады НТИ для школьников.

С чего все это началось. «Энергетический вызов» возник в результате сочетания трех следующих факторов:

1. Человечество сейчас потребляет огромное количество энергии.

В настоящее время потребление энергии в мире составляет около 15,7 тераватт (ТВт). Разделив эту величину на население планеты, мы получим примерно 2400 ватт на человека, что можно легко оценить и представить. Потребляемая каждым жителем Земли (включая детей) энергия соответствует круглосуточной работе 24 стоваттных электрических ламп. Однако потребление этой энергии по планете является очень неравномерным, так как оно очень велико в нескольких странах и ничтожно в других. Потребление (в пересчете на одного человека) равно 10,3 кВт в США (одно из рекордных значений), 6,3 кВт в Российской Федерации, 5,1 кВт в Великобритании и т. д., но, с другой стороны, оно равно лишь 0,21 кВт в Бангладеше (всего 2% от уровня энергопотребления в США!).

2. Мировое потребление энергии драматически возрастает.

По прогнозу Международного агентства по энергетике (2006 год) мировое потребление энергии к 2030 году должно увеличиться на 50%. Развитые страны, конечно, могли бы прекрасно обойтись без дополнительной энергии, однако этот рост необходим для того, чтобы избавить от нищеты население развивающихся стран, где 1,5 миллиарда человек испытывают острую нехватку электрической энергии.


3. В настоящее время 80% потребляемой миром энергии создается за счет сжигания ископаемых природных топлив (нефть, уголь и газ), использование которых:
а) потенциально несет опасность катастрофических экологических изменений;
б) неизбежно должно когда-нибудь закончиться.

Из сказанного ясно, что уже сейчас мы должны готовиться к окончанию эпохи использования ископаемых типов горючего

В настоящее время на атомных электростанциях в широких масштабах получают энергию, выделяющуюся при реакциях деления атомных ядер. Следует всячески поощрять создание и развитие таких станций, однако при этом необходимо учитывать, что запасы одного из важнейших для их работы материала (дешевого урана) также могут быть полностью израсходованы в течение ближайших 50 лет. Возможности основанной на делении ядер энергетики могут (и должны) быть существенно расширены за счет использования более эффективных энергетических циклов, позволяющих почти вдвое увеличить количество получаемой энергии. Для развития энергетики в этом направлении требуется создавать реакторы на тории (так называемые ториевые бридерные реакторы или реакторы-размножители), в которых при реакции возникает больше тория, чем исходного урана, в результате чего общее количество получаемой энергии при заданном количестве вещества возрастает в 40 раз. Перспективным представляется также создание плутониевых бридеров на быстрых нейтронах, которые значительно эффективнее урановых реакторов и позволяют получать в 60 раз больше энергии. Возможно, для развития этих направлений понадобится разработать новые, нестандартные методы получения урана (например, из морской воды, что представляется наиболее доступным).

Термоядерные электростанции

На рисунке представлена принципиальная схема (без соблюдения масштаба) устройства и принципа работы термоядерной электростанции. В центральной части располагается тороидальная (в форме бублика) камера объемом ~2000 м3, заполненная тритий-дейтериевой (T-D) плазмой, нагретой до температуры выше 100 M°C. Образующиеся при реакции синтеза (1) нейтроны покидают «магнитную бутылку» и попадают в показанную на рисунке оболочку с толщиной около 1 м.

Внутри оболочки нейтроны сталкиваются с атомами лития, в результате чего происходит реакция с образованием трития:

нейтрон + литий → гелий + тритий

Кроме этого в системе происходят и конкурирующие реакции (без образования трития), а также много реакций с выделением дополнительных нейтронов, которые затем также приводят к образованию трития (при этом выделение дополнительных нейтронов может быть существенно усилено, например, за счет введения в оболочку атомов бериллия и свинца). Общий вывод состоит в том, что в этой установке может (по крайней мере, теоретически) происходить реакция ядерного синтеза, при которой будет образовываться тритий. При этом количество образующегося трития должно не только обеспечивать потребности самой установки, но и быть даже несколько большим, что позволит обеспечивать тритием и новые установки. Именно эта концепция работы должна быть проверена и реализована на описываемом ниже реакторе ITER.

Кроме этого нейтроны должны разогревать оболочку в так называемых пилотных установках (в которых будут использоваться относительно «обычные» конструкционные материалы) примерно до температуры 400°C. В дальнейшем предполагается создать усовершенствованные установки с температурой нагрева оболочки выше 1000°C, что может быть достигнуто за счет использования новейших высокопрочных материалов (типа композитов из карбида кремния). Выделяющееся в оболочке тепло, как и в обычных станциях, отбирается первичным охлаждающим контуром с теплоносителем (содержащим, например, воду или гелий) и передается на вторичный контур, где и производится водяной пар, подающийся на турбины.

1985 год - Советский Союз предложил установку «Токамак» следующего поколения, используя опыт четырех ведущих стран по созданию термоядерных реакторов. Соединенные Штаты Америки совместно с Японией и Европейским сообществом выдвинули предложение по осуществлению проекта.

В настоящее время во Франции идет строительство описываемого ниже международного экспериментального термоядерного реактора ITER (International Tokamak Experimental Reactor), который будет первым токамаком, способным «зажечь» плазму.

В наиболее передовых существующих установках типа токамак давно достигнуты температуры порядка 150 M°C, близкие к значениям, требуемым для работы термоядерной станции, однако реактор ITER должен стать первой крупномасштабной энергетической установкой, рассчитанной на длительную эксплуатацию. В дальнейшем необходимо будет существенно улучшить параметры ее работы, что потребует, в первую очередь, повышения давления в плазме, так как скорость слияния ядер при заданной температуре пропорциональна квадрату давления. Основная научная проблема при этом связана с тем, что при повышении давления в плазме возникают очень сложные и опасные неустойчивости, то есть нестабильные режимы работы.

Зачем нам это надо?

Основное преимущество ядерного синтеза состоит в том, что в качестве топлива для него требуется лишь очень небольшое количество весьма распространенных в природе веществ. Реакция ядерного синтеза в описываемых установках может приводить к выделению огромного количества энергии, в десять миллионов раз превышающего стандартное тепловыделение при обычных химических реакциях (типа сжигания ископаемого топлива). Для сравнения укажем, что количество угля, необходимого для обеспечения работы тепловой электростанции мощностью 1 гигаВатт (ГВт) составляет 10 000 тонн в день (десять железнодорожных вагонов), а термоядерная установка такой же мощности будет потреблять в день лишь около 1 килограмма смеси D+T.

Дейтерий является устойчивым изотопом водорода; примерно в одной из каждых 3350 молекул обычной воды один из атомов водорода замещен дейтерием (наследие, доставшееся нам от Большого Взрыва). Этот факт позволяет легко организовать достаточно дешевое получение необходимого количества дейтерия из воды. Более сложным является получение трития, который является нестабильным (период полураспада около 12 лет, вследствие чего его содержание в природе ничтожно), однако, как было показано выше, тритий будет возникать прямо внутри термоядерной установки в процессе работы, за счет реакции нейтронов с литием.

Таким образом, исходным топливом для термоядерного реактора являются литий и вода. Литий представляет собой обычный металл, широко используемый в бытовых приборах (в батарейках для мобильных телефонов и т. п.). Описанная выше установка, даже с учетом неидеальной эффективности, сможет производить 200 000 кВт/час электрической энергии, что эквивалентно энергии, содержащейся в 70 тоннах угля. Требуемое для этого количество лития содержится в одной батарейке для компьютера, а количество дейтерия — в 45 литрах воды. Указанная выше величина соответствует современному потреблению электроэнергии (в пересчете на одного человека) в странах ЕС за 30 лет. Сам факт, что столь ничтожное количество лития может обеспечить выработку такого количества электроэнергии (без выбросов CO2 и без малейшего загрязнения атмосферы), является достаточно серьезным аргументом для быстрейшего и энергичного развития термоядерной энергетики (несмотря на все сложности и проблемы) и даже без стопроцентой уверенности в успехе таких исследований.

Дейтерия должно хватить на миллионы лет, а запасы легко добываемого лития вполне достаточны для обеспечения потребностей в течение сотен лет. Даже если запасы лития в горных породах иссякнут, мы можем добывать его из воды, где он содержится в достаточно высокой концентрации (в 100 раз превосходящей концентрацию урана), чтобы его добыча была экономически целесообразной.

Экспериментальный термоядерный реактор (International thermonuclear experimental reactor) сооружается вблизи города Кадараш во Франции. Главная задача проекта ИТЭР — осуществление управляемой термоядерной реакции синтеза в промышленных масштабах.

На единицу веса термоядерного топлива получается примерно в 10 миллионов раз больше энергии, чем при сгорании такого же количества органического топлива, и примерно в сто раз больше, чем при расщеплении ядер урана в реакторах ныне действующих АЭС. Если расчеты ученых и конструкторов оправдаются, это даст человечеству неисчерпаемый источник энергии.

Поэтому ряд стран (Россия, Индия, Китай, Корея, Казахстан, США, Канада, Япония, страны Евросоюза) объединили свои усилия в создании Международного термоядерного исследовательского реактора - прообраза новых энергетических установок.

ИТЭР представляет из себя установку, создающую условия для синтеза атомов водорода и трития (изотопа водорода), в результате чего образуется новый атом - атом гелия. Этот процесс сопровождается громадным выплеском энергии: температура плазмы, в которой идет термоядерная реакция — около 150 млн градусов по Цельсию (для сравнения - температура ядра Солнца 40 млн градусов). При этом изотопы выгорают, практически не оставляя радиоактивных отходов.
Схема участия в международном проекте предусматривает поставки компонентов реактора и финансирование его строительства. В обмен на это каждая из стран-участниц получает полный доступ ко всем технологиям создания термоядерного реактора и к результатам всех экспериментальных работ на этом реакторе, которые послужат основой для проектирования серийных энергетических термоядерных реакторов.

Реактор, основанный на принципе термоядерного синтеза, не имеет радиоактивного излучения и полностью безопасен для окружающей среды. Он может быть расположен практически в любой точке земного шара, а топливом для него служит обычная вода. Строительство ITER должно продлиться около десяти лет, после чего реактор предполагается использовать в течение 20 лет.


Интересы России в Совете Международной организации по строительству термоядерного реактора ИТЭР в ближайшие годы будет представлять член-корреспондент РАН Михаил Ковальчук — директор РНЦ «Курчатовский институт», Института кристаллографии РАН и ученый секретарь президентского Совета по науке, технологиям и образованию. Ковальчук временно заменит на этом посту академика Евгения Велихова, который избран на ближайшие два года председателем международного совета ИТЭР и не имеет права совмещать эту должность с обязанностями официального представителя страны-участника.

Общая стоимость строительства оценивается в 5 миллиардов евро, еще столько же потребуется для опытной эксплуатации реактора. Доли Индии, Китая, Кореи, России, США и Японии составляют приблизительно по 10 процентов от общей стоимости, 45 процентов приходится на страны Европейского союза. Однако пока европейские государства не договорились, как именно расходы будут распределены между ними. Из-за этого начало строительства перенесено на апрель 2010 года. Несмотря на очередную отсрочку, ученые и чиновники, вовлеченные в создание ИТЭР, утверждают, что смогут завершить проект к 2018 году.

Расчетная термоядерная мощность ИТЭР составляет 500 мегаватт. Отдельные детали магнитов достигают веса от 200 до 450 тонн. Для охлаждения ИТЭР потребуется 33 тысячи кубометров воды в день.

В 1998 году США прекратили финансирование своего участия в проекте. После того, как к власти в стране пришли республиканцы, а в Калифорнии начались веерные отключения электроэнергии, администрация Буша объявила об увеличении вложений в энергетику. Участвовать в международном проекте США не намеревались и занимались собственным термоядерным проектом. В начале 2002 года советник президента Буша по технологиям Джон Марбургер III заявил, что США передумали и намерены вернуться в проект.

Проект по числу участников сравним с другим крупнейшим международным научным проектом - Международной космической станции. Стоимость ИТЭР, прежде достигавшая 8 миллиардов долларов, потом составила менее 4 миллиардов. В результате выхода из числа участников Соединенных Штатов было решено уменьшить мощность реактора с 1,5 ГВт до 500 МВт. Соответственно «похудела» и цена проекта.

В июне 2002 года в российской столице прошел симпозиум «Дни ИТЭР в Москве». На нем обсуждались теоретические, практические и организационные проблемы возрождения проекта, удача которого способна изменить судьбу человечества и дать ему новый вид энергии, по эффективности и экономичности сравнимый только с энергией Солнца.

В июле 2010 года представители стран-участниц проекта международного термоядерного реактора ITER утвердили его бюджет и сроки строительства на внеочередной встрече, прошедшей во французском Кадараше. .

На прошедшей внеочередной встрече участники проекта утвердили срок начала первых экспериментов с плазмой — 2019 год. Проведение полноценных опытов запланировано на март 2027 года, хотя руководство проекта попросило технических специалистов попытаться оптимизировать процесс и начать опыты в 2026 году. Участники встречи также определились с затратами на строительство реактора, однако суммы, которые планируется потратить на создание установки, не разглашаются. По информации, полученной редактором портала ScienceNOW из неназванного источника, к моменту начала экспериментов стоимость проекта ITER может составить 16 миллиардов евро.

Прошедшая в Кадараше встреча также стала первым официальным рабочим днем для нового директора проекта, японского физика Осаму Мотодзима (Osamu Motojima). До него проектом с 2005 года руководил японец Канаме Икеда (Kaname Ikeda), который пожелал оставить пост сразу после утверждения бюджета и сроков строительства.

Термоядерный реактор ITER является совместным проектом государств Евросоюза, Швейцарии, Японии, США, России, Южной Кореи, Китая и Индии. Идея создания ITER рассматривается с 80-х годов прошлого века, однако из-за финансовых и технических сложностей стоимость проекта все время растет, а дата начала строительства постоянно откладывается. В 2009 году специалисты рассчитывали, что работы по созданию реактора начнутся в 2010 году. Позже эту дату передвинули, а в качестве времени запуска реактора назывался сначала 2018, а потом 2019 год.

Реакции термоядерного синтеза — это реакции слияния ядер легких изотопов с образованием ядра более тяжелого, которые сопровождаются огромным выбросом энергии. В теории в термоядерных реакторах можно получать много энергии с низкими затратами, но на данный момент ученые тратят намного больше энергии и денег на запуск и поддержание реакции синтеза.

Термоядерный синтез - это дешевый и экологически безопасный способ добычи энергии. На Солнце уже миллиарды лет происходит неуправляемый термоядерный синтез - из тяжелого изотопа водорода дейтерия образуется гелий. При этом выделяется колоссальное количество энергии. Однако на Земле люди пока не научились управлять подобными реакциями.

В качестве топлива в реакторе ИТЭР будут использоваться изотопы водорода. В ходе термоядерной реакции энергия выделяется при соединении легких атомов в более тяжелые. Чтобы добиться этого, необходимо разогреть газ до температуры свыше 100 миллионов градусов - намного выше температуры в центре Солнца. Газ при такой температуре превращается в плазму. Атомы изотопов водорода при этом сливаются, превращаясь в атомы гелия с выделением большого количества нейтронов. Электростанция, работающая на этом принципе, будет использовать энергию нейтронов, замедляемых слоем плотного вещества (лития).

Почему создание термоядерных установок столь затянулось?

Почему же столь важные и ценные установки, преимущества которых обсуждаются почти полстолетия, еще не созданы? Существуют три основные причины (рассматриваемые ниже), первую из которых можно назвать внешней или общественной, а две остальные — внутренними, то есть обусловленными законами и условиями развития самой термоядерной энергетики.

1. Долгое время считалось, что проблема практического использования энергии термоядерного синтеза не требует срочных решений и действий, так как еще в 80-х годах прошлого столетия источники ископаемого топлива казались неистощимыми, а проблемы экологии и изменения климата не волновали общественность. В 1976 году Консультативный комитет по термоядерной энергии в Министерстве энергетики США попытался оценить сроки осуществления НИОКР и создания демонстрационной термоядерной энергетической установки при разных вариантах финансирования исследований. При этом обнаружилось, что объемы годичного финансирования исследований в данном направлении совершенно недостаточны, и при сохранении существующего уровня ассигнований создание термоядерных установок никогда не завершится успехом, поскольку выделяемые средства не соответствуют даже минимальному, критическому уровню.

2. Более серьезное препятствие на пути развития исследований в данной области состоит в том, что термоядерную установку обсуждаемого типа нельзя создать и продемонстрировать в малых размерах. Из представленных далее объяснений станет ясно, что для термоядерного синтеза необходимо не только магнитное удержание плазмы, но и достаточный ее нагрев. Отношение затрачиваемой и получаемой энергии возрастает, по меньшей мере, пропорционально квадрату линейных размеров установки, вследствие чего научно-технические возможности и преимущества термоядерных установок могут быть проверены и продемонстрированы лишь на достаточно крупных станциях, типа упоминавшегося реактора ITER. Общество просто не было готово к финансированию столь крупных проектов, пока не было достаточной уверенности в успехе.

3. Развитие термоядерной энергетики носило очень сложный характер, однако (несмотря на недостаточное финансирование и трудности выбора центров для создания установок JET и ITER) в последние годы наблюдается явный прогресс, хотя действующая станция еще не создана.

Современный мир стоит перед очень серьезным энергетическим вызовом, который более точно можно назвать «неопределенным энергетическим кризисом». Проблема связана с тем, что запасы ископаемых горючих веществ могут иссякнуть уже во второй половине текущего столетия. Более того, сжигание ископаемых топлив может привести к необходимости каким-то образом связывать и «сохранять» выпускаемый в атмосферу углекислый газ (упомянутая выше программа CCS) для предотвращения серьезных изменений в климате планеты.

В настоящее время почти вся потребляемая человечеством энергия создается сжиганием ископаемых топлив, а решение проблемы может быть связано с использованием солнечной энергии или ядерной энергетики (созданием реакторов-размножителей на быстрых нейтронах и т. п.). Глобальная проблема, обусловленная ростом населения развивающихся стран и их потребностью в повышении уровня жизни и увеличении объема производимой энергии, не может быть решена только на основе рассматриваемых подходов, хотя, конечно, следует поощрять любые попытки развития альтернативных методов выработки энергии.

Собственно говоря, у нас небольшой выбор стратегий поведения и развитие термоядерной энергетики является исключительно важным, даже несмотря на отсутствие гарантии успеха. Газета Financial Times (от 25.01.2004) писала по этому поводу:

Будем надеяться на то, что никаких крупных и неожиданных сюрпризов на пути развития термоядерной энергетики не будет. В этом случае примерно через 30 лет мы сумеем впервые подать электрический ток от нее в энергетические сети, а еще через 10 с небольшим лет начнет работать первая коммерческая термоядерная электростанция. Возможно, что во второй половине нашего столетия энергия ядерного синтеза начнет заменять ископаемые топлива и постепенно станет играть всё более важную роль в обеспечении человечества энергией в глобальном масштабе.

Нет абсолютной гарантии, что задача создания термоядерной энергетики (в качестве эффективного и крупномасштабного источника энергии для всего человечества) завершится успешно, но вероятность удачи в этом направлении достаточно высока. Учитывая огромный потенциал термоядерных станций, можно считать оправданными все затраты на проекты их быстрого (и даже ускоренного) развития, тем более, что эти капиталовложения выглядят весьма скромными на фоне чудовищного по объему мирового энергетического рынка (4 триллиона долларов в год8). Обеспечение потребностей человечества в энергии является очень серьезной проблемой. По мере того, как ископаемое топливо становится всё менее доступным (помимо этого, его использование становится нежелательным), ситуация изменяется, и мы просто не можем позволить себе не развивать термоядерную энергетику.

На вопрос «Когда появится термоядерная энергетика?» Лев Арцимович (признанный пионер и лидер исследований в этой области) как-то ответил, что «она будет создана, когда станет действительно необходимой человечеству»

ИТЭР станет первым термоядерным реактором, который будет вырабатывать больше энергии, чем потреблять. Ученые измеряют эту характеристику с помощью простого коэффициента, который они называют «Q». Если ИТЭР позволит достичь всех поставленных научных целей, то он будет производить в 10 раз больше энергии, чем потреблять. Последнее из построенных устройств — «Совместный европейский тор» в Англии — является более мелким прототипом термоядерного реактора, который на окончательном этапе научных исследования достиг значения Q, равного почти 1. Это означает, что он вырабатывал ровно столько же энергии, сколько потреблял. ИТЭР позволит превзойти этот результат, продемонстрировав создание энергии в процессе термоядерного синтеза и достигнув значения Q, равного 10. Идея заключается в том, чтобы при объеме потребления энергии на уровне примерно 50 МВт вырабатывать 500 МВт. Таким образом, одной из научных целей ИТЭР является доказать, что может быть достигнуто значение Q, равное 10.

Другая научная цель заключается в том, что ИТЭР будет иметь весьма продолжительное время «горения» — импульс увеличенной длительности до одного часа. ИТЭР — это научно-исследовательский экспериментальный реактор, который не может производить энергию постоянно. Когда ИТЭР начнет работать, он будет включен в течение одного часа, после чего его необходимо будет отключить. Это важно потому, что до сих пор создаваемые нами типовые устройства были способны иметь время горения длиной в несколько секунд или даже десятых долей секунд — это максимум. «Совместный европейский тор» достиг своего значения Q, равного 1, при времени горения примерно две секунды при длине импульса 20 секунд. Но процесс, который длится несколько секунд, не является по-настоящему постоянным. По аналогии с запуском двигателя автомобиля: кратковременное включение двигателя с последующим выключением — это еще не настоящая эксплуатация автомобиля. Только когда вы проедете на вашем автомобиле в течение получаса, он выйдет на постоянный режим работы и продемонстрирует, что на таком автомобиле действительно можно ехать.

То есть, с технической и научной точек зрения, ИТЭР обеспечит значение Q, равное 10, и увеличенное время горения.

Программа термоядерного синтеза носит поистине международный, широкий характер. Люди уже сейчас рассчитывают на успех ИТЭР и думают о следующем шаге — создании прототипа промышленного термоядерного реактора под названием ДЕМО. Чтобы построить его, необходимо, чтобы ИТЭР работал. Мы должны достичь наших научных целей, потому что это будет означать, что выдвигаемые нами идеи вполне осуществимы. Тем не менее, я согласен с тем, что всегда следует думать о том, что будет дальше. Кроме того, в процессе эксплуатации ИТЭР в течение 25-30 лет наши знания постепенно углубятся и расширятся, и мы сможем более точно наметить наш следующий шаг.

Действительно, споров о том, должен ли ИТЕР быть именно токамаком, не возникает. Некоторые ученые ставят вопрос совсем иначе: должен ли ИТЕР быть? Специалисты в разных странах, развивающие собственные, не столь масштабные термоядерные проекты, утверждают, что такой большой реактор вовсе не нужен.

Впрочем, их мнение вряд ли стоит считать авторитетным. В создании ИТЕР были задействованы физики, работающие с тороидальными ловушками уже несколько десятков лет. В основу устройства экспериментального термоядерного реактора в Карадаше легли все знания, полученные в ходе экспериментов на десятках токамаков-предшественников. И эти результаты говорят о том, что реактор обязательно должен токамаком, причем большим.

JET На данный момент самым успешным токамаком можно считать JET, построенный ЕС в британском городке Эбингдоне. Это самый крупный из созданных на сегодня реакторов типа токамак, большой радиус плазменного тора 2,96 метров. Мощность термоядерной реакции достигает уже более 20 мегаватт при времени удержания до 10 секунд. Реактор возвращает около 40% от вложенной в плазму энергии.

Именно физика плазмы определяет энергобаланс, — рассказал Infox.ru Игорь Семенов. Что такое энергобаланс, доцент МФТИ описал на простом примере: «Все мы видели, как горит костер. На самом деле там не дрова горят, а газ. Энергетическая цепочка там вот какая: горит газ, греет дрова, дрова испаряются, опять горит газ. Поэтому, если мы плеснем в огонь воды, то мы резко заберем из системы энергию на фазовый переход жидкой воды в парообразное состояние. Баланс станет отрицательным, костер погаснет. Есть и другой способ - мы просто можем взять и головешки разнести в пространстве. Костер тоже погаснет. Точно также и в термоядерном реакторе, который мы строим. Размеры выбраны так, чтобы создать для данного реактора соответствующий положительный энергобаланс. Достаточный, чтобы в будущем построить настоящую ТЯЭС, решив на данном, экспериментальном этапе все проблемы, которые на данный момент остаются нерешенными».

Размеры реактора однажды менялись. Это произошло на рубеже XX-XXI века, когда США вышли из проекта, а оставшиеся члены поняли, что бюджет ИТЕР (к тому моменту он оценивался в 10 миллиардов долларов США) слишком велик. От физиков и инженеров потребовали уменьшить стоимость установки. А сделать это можно было только за счет размеров. Руководил «перепроектированием» ИТЕР французский физик Роберт Аймар (Robert Aymar), который прежде работал на французском токамаке Tore Supra в Карадаше. Внешний радиус плазменного тора был сокращен с 8,2 до 6,3 метра. Впрочем, риски, связанные с уменьшением размера, отчасти компенсировали несколько дополнительных сверхпроводящих магнитов, которые позволили реализовать открытый и исследованный на тот момент режим удержания плазмы.


Недавно в Московском физико-техническом институте состоялась российская презентация проекта ИТЭР, в рамках которого планируется создать термоядерный реактор, работающий по принципу токамака. Группа ученых из России рассказала о международном проекте и об участии российских физиков в создании этого объекта. «Лента.ру» посетила презентацию ИТЭР и поговорила с одним из участников проекта.

ИТЭР (ITER, International Thermonuclear Experimental Reactor - Международный термоядерный экспериментальный реактор) - проект термоядерного реактора, позволяющий продемонстрировать и исследовать термоядерные технологии для их дальнейшего использования в мирных и коммерческих целях. Создатели проекта считают, что управляемый термоядерный синтез может стать энергетикой будущего и служить альтернативой современным газу, нефти и углю. Исследователи отмечают безопасность, экологичность и доступность технологии ИТЭР по сравнению с обычной энергетикой. По сложности проект сравним с Большим адронным коллайдером; установка реактора включает в себя более десяти миллионов конструктивных элементов.

Об ИТЭР

Для тороидальных магнитов токамака необходимо 80 тысяч километров сверхпроводящих нитей; общий их вес достигает 400 тонн. Сам реактор будет весить около 23 тысяч тонн. Для сравнения - вес Эйфелевой башни в Париже равен всего 7,3 тысячи тонн. Объем плазмы в токамаке будет достигать 840 кубических метров, тогда как, например, в крупнейшем действующем в Великобритании реакторе такого типа - JET - объем равен ста кубическим метрам.

Высота токамака составит 73 метра, из которых 60 метров будут находиться над землей и 13 метров - под ней. Для сравнения, высота Спасской башни Московского Кремля равна 71 метру. Основная платформа реактора будет занимать площадь, равную 42 гектарам, что сопоставимо с площадью 60 футбольных полей. Температура в плазме токамака будет достигать 150 миллионов градусов Цельсия, что в десять раз выше температуры в центре Солнца.

В строительстве ИТЭР во второй половине 2010 годов планируется задействовать одновременно до пяти тысяч человек - в их число войдут как рабочие и инженеры, так и административный персонал. Многие компоненты ИТЭР будут доставляться от порта у Средиземного моря по специально сооруженной дороге длиной около 104 километров. В частности, по ней будет перевезен самый тяжелый фрагмент установки, масса которого составит более 900 тонн, а длина - около десяти метров. Более 2,5 миллионов кубометров земли вывезут с места строительства установки ИТЭР.

Общие затраты на проектные и строительные работы оцениваются в 13 миллиардов евро. Эти средства выделяются семью основными участниками проекта, представляющими интересы 35 стран. Для сравнения, совокупные расходы на строительство и обслуживание Большого адронного коллайдера почти в два раза меньше, а строительство и поддержание работоспособности Международной космической станции обходится почти в полтора раза дороже.

Токамак

Сегодня в мире существуют два перспективных проекта термоядерных реакторов: токамак (то роидальная ка мера с ма гнитными к атушками) и стелларатор. В обеих установках плазма удерживается магнитным полем, однако в токамаке она имеет форму тороидального шнура, по которому пропускается электрический ток, тогда как в стеллараторе магнитное поле наводится внешними катушками. В термоядерных реакторах происходят реакции синтеза тяжелых элементов из легких (гелия из изотопов водорода - дейтерия и трития), в отличие от обычных реакторов, где инициируются процессы распада тяжелых ядер на более легкие.

Фото: НИЦ «Курчатовский институт»/ nrcki.ru

Электрический ток в токамаке используется также и для начального разогрева плазмы до температуры около 30 миллионов градусов Цельсия; дальнейший разогрев производится специальными устройствами.

Теоретическая схема токамака была предложена в 1951 советскими физиками Андреем Сахаровым и Игорем Таммом , и в 1954 году в СССР была построена первая установка. Однако, ученым не удавалось продолжительное время поддерживать плазму в стационарном режиме, и к середине 1960 годов в мире сложилось убеждение, что управляемый термоядерный синтез на основе токамака невозможен.

Но уже через три года на установке Т-3 в Институте атомной энергии имени Курчатова под руководством Льва Арцимовича удалось нагреть плазму до температуры более пяти миллионов градусов Цельсия и ненадолго удержать ее; ученые из Великобритании, присутствовавшие на эксперименте, на своем оборудовании зафиксировали температуру около десяти миллионов градусов. После этого в мире начался настоящий бум токамаков, так что в мире было построено около 300 установок, самые крупные из которых находятся в Европе, Японии, США и России.

Изображение: Rfassbind/ wikipedia.org

Управление ИТЭР

На чем основана уверенность в том, что ИТЭР заработает через 5-10 лет? На каких практических и теоретических разработках?

С российской стороны заявленный график работ мы выполняем и не собираемся нарушать. К сожалению, мы видим некоторое запаздывание работ, выполняемых другими, в основном Европой; частично есть запаздывание у Америки и наблюдается тенденция к тому, что проект будет несколько задержан. Задержан, но не остановлен. Есть уверенность в том, что он заработает. Концепт самого проекта полностью теоретически и практически просчитан и надежен, поэтому я думаю, что он заработает. Даст ли он в полной мере заявленные результаты... поживем - увидим.

Проект скорее носит исследовательский характер?

Конечно. Заявленный результат не есть полученный результат. Если он будет получен в полной мере, я буду предельно счастлив.

Какие новые технологии появились, появляются или будут появляться в проекте ИТЭР?

Проект ИТЭР является не просто сверхсложным, но еще и сверхнапряженным проектом. Напряженным в плане энергонагрузки, условий эксплуатации определенных элементов, в том числе наших систем. Поэтому новые технологии просто обязаны рождаться в этом проекте.

А есть пример?

Космос. Например, наши алмазные детекторы. Мы обсуждали возможность применения наших алмазных детекторов на космических грузовиках, которые представляют собой ядерные машины, перевозящие некоторые объекты типа спутников или станций с орбиты на орбиту. Есть такой проект космического грузовика. Так как это аппарат с ядерным реактором на борту, то сложные условия эксплуатации требуют анализа и контроля, так что наши детекторы вполне могли бы это сделать. На данный момент тема создания такой диагностики пока не финансируется. Если она будет создана, то может быть применена, и тогда в нее не нужно будет вкладывать деньги на стадии разработки, а только на стадии освоения и внедрения.

Какова доля современных российских разработок нулевых и девяностых годов в сравнении с советскими и западными разработками?

Доля российского научного вклада в ИТЭР на фоне общемирового очень велика. Я не знаю ее точно, но она очень весома. Она явно не меньше российского процента финансового участия в проекте, потому что во многих других командах есть большое количество русских, которые уехали за границу работать в другие институты. В Японии и Америке, везде, мы с ними очень хорошо контактируем и работаем, кто-то из них представляет Европу, кто-то - Америку. Кроме того, там есть и свои научные школы. Поэтому, насчет того, сильнее мы или больше развиваем то, что делали раньше... Один из великих сказал, что «мы стоим на плечах титанов», поэтому та база, которая была наработана в советские времена, неоспоримо велика и без нее мы ничего бы не смогли. Но и в данный момент мы не стоим на месте, мы движемся.

А чем занимается именно ваша группа в ИТЭР?

У меня сектор в отделе. Отдел занимается разработкой нескольких диагностик, наш сектор занимается конкретно разработкой вертикальной нейтронной камеры, нейтронной диагностики ИТЭР и решает большой круг задач от проектирования до изготовления, а также проводит сопутствующие научно-исследовательские работы, связанные с разработкой, в частности, алмазных детекторов. Алмазный детектор - уникальный прибор, первоначально созданный именно в нашей лаборатории. Ранее использовавшийся на многих термоядерных установках, сейчас он применяется достаточно широко многими лабораториями от Америки до Японии; они, скажем так, пошли за нами следом, но мы продолжаем оставаться на высоте. Сейчас мы делаем алмазные детекторы и собираемся выйти на уровень их промышленного производства (мелкосерийного производства).

В каких отраслях промышленности могут использоваться эти детекторы?

В данном случае это термоядерные исследования, в дальнейшем мы предполагаем, что они будут востребованы в ядерной энергетике.

Что именно делают детекторы, что они измеряют?

Нейтроны. Более ценного продукта, чем нейтрон, не существует. Мы с вами также состоим из нейтронов.

Какие характеристики нейтронов они измеряют?

Спектральные. Во-первых, непосредственная задача, которая решается в ИТЭРе, это измерение энергетических спектров нейтронов. Кроме того, они мониторят количество и энергию нейтронов. Вторая, дополнительная задача, касается ядерной энергетики: у нас есть параллельные разработки, которые могут измерять и тепловые нейтроны, являющиеся основой ядерных реакторов. У нас эта задача второстепенная, но она также отрабатывается, то есть мы можем работать здесь и в тоже время делать наработки, которые могут быть вполне успешно применены в ядерной энергетике.

Какими методами вы пользуетесь в своих исследованиях: теоретическими, практическими, компьютерным моделированием?

Всеми: от сложной математики (методов математической физики) и математического моделирования до экспериментов. Все самые разные типы расчетов, которые мы проводим, подтверждаются и проверяются экспериментами, потому что у нас непосредственно экспериментальная лаборатория с несколькими работающими нейтронными генераторами, на которых мы проводим тестирование тех систем, которые сами же и разрабатываем.

У вас в лаборатории есть действующий реактор?

Не реактор, а нейтронный генератор. Нейтронный генератор, по сути, это минимодель тех термоядерных реакций, о которых идет речь. В нем идет все то же самое, только там процесс несколько иной. Он работает по принципу ускорителя - это пучок определенных ионов, ударяющий по мишени. То есть в случае плазмы мы имеем горячий объект, в котором каждый атом имеет большую энергию, а в нашем случае специально ускоренный ион ударяется по мишени, насыщенной подобными же ионами. Соответственно, происходит реакция. Скажем так, это один из способов, которым вы можете делать ту же самую термоядерную реакцию; единственное только, что доказано, что данный способ не обладает высоким КПД, то есть вы не получите положительный энерговыход, но саму реакцию вы получаете - мы непосредственно наблюдаем данную реакцию и частицы и все, что в ней идет.

Сегодня многие страны принимают участие в термоядерных исследованиях. Лидерами являются Европейский союз, США, Россия и Япония, а программы Китая, Бразилии, Канады и Кореи стремительно наращиваются. Первоначально термоядерные реакторы в США и СССР были связаны с разработкой ядерного оружия и оставались засекреченными до конференции «Атомы для мира», которая состоялась в Женеве в 1958 году. После создания советского токамака исследования ядерного синтеза в 1970 годы стали «большой наукой». Но стоимость и сложность устройств увеличивалась до точки, когда международное сотрудничество стало единственной возможностью продвигаться вперед.

Термоядерные реакторы в мире

Начиная с 1970 годов, начало коммерческого использования энергии синтеза постоянно отодвигалось на 40 лет. Однако в последние годы произошло многое, благодаря чему этот срок может быть сокращен.

Построено несколько токамаков, в том числе европейский JET, британский MAST и экспериментальный термоядерный реактор TFTR в Принстоне, США. Международный проект ITER в настоящее время находится в стадии строительства в Кадараше, Франция. Он станет самым крупным токамаком, когда заработает в 2020 годах. В 2030 г. в Китае будет построен CFETR, который превзойдет ITER. Тем временем КНР проводит исследования на экспериментальном сверхпроводящем токамаке EAST.

Термоядерные реакторы другого типа - стеллаторы - также популярны у исследователей. Один из крупнейших, LHD, начал работу в японском Национальном институте в 1998 году. Он используется для поиска наилучшей магнитной конфигурации удержания плазмы. Немецкий Институт Макса Планка в период с 1988 по 2002 год проводил исследования на реакторе Wendelstein 7-AS в Гархинге, а в настоящее время - на Wendelstein 7-X, строительство которого длилось более 19 лет. Другой стелларатор TJII эксплуатируется в Мадриде, Испания. В США Принстонская лаборатория (PPPL), где был построен первый термоядерный реактор данного типа в 1951 году, в 2008 году остановила строительство NCSX из-за перерасхода средств и отсутствия финансирования.

Кроме того, достигнуты значительные успехи в исследованиях инерциального термоядерного синтеза. Строительство National Ignition Facility (NIF) стоимостью 7 млрд $ в Ливерморской национальной лаборатории (LLNL), финансируемое Национальной администрацией по ядерной безопасности, было завершено в марте 2009 г. Французский Laser Mégajoule (LMJ) начал работу в октябре 2014 года. Термоядерные реакторы используют доставленные лазерами в течение нескольких миллиардных долей секунды около 2 млн джоулей световой энергии в цель размером в несколько миллиметров для запуска реакции ядерного синтеза. Основной задачей NIF и LMJ являются исследования по поддержке национальных военных ядерных программ.

ITER

В 1985 г. Советский Союз предложил построить токамак следующего поколения совместно с Европой, Японией и США. Работа велась под эгидой МАГАТЭ. В период с 1988 по 1990 год были созданы первые проекты Международного термоядерного экспериментального реактора ITER, что также означает «путь» или «путешествие» на латыни, с целью доказать, что синтез может вырабатывать больше энергии, чем поглощать. Канада и Казахстан также приняли участие при посредничестве Евратома и России соответственно.

Через 6 лет совет ITER одобрил первый комплексный проект реактора на основе устоявшейся физики и технологии стоимостью 6 млрд $. Тогда США вышли из консорциума, что вынудило вдвое сократить затраты и изменить проект. Результатом стал ITER-FEAT стоимостью 3 млрд долл., но позволяющий достичь самоподдерживающей реакции и положительного баланса мощности.

В 2003 г. США вновь присоединились к консорциуму, а Китай объявил о своем желании в нем участвовать. В результате в середине 2005 года партнеры договорились о строительстве ITER в Кадараше на юге Франции. ЕС и Франция вносили половину от 12,8 млрд евро, а Япония, Китай, Южная Корея, США и Россия - по 10% каждый. Япония предоставляла высокотехнологичные компоненты, содержала установку IFMIF стоимостью 1 млрд евро, предназначенную для испытания материалов, и имела право на возведение следующего тестового реактора. Общая стоимость ITER включает половину затрат на 10-летнее строительство и половину - на 20 лет эксплуатации. Индия стала седьмым членом ИТЭР в конце 2005 г.

Эксперименты должны начаться в 2018 г. с использованием водорода, чтобы избежать активации магнитов. Использование D-T плазмы не ожидается ранее 2026 г.

Цель ITER - выработать 500 МВт (хотя бы в течение 400 с), используя менее 50 МВт входной мощности без генерации электроэнергии.

Двухгигаваттная демонстрационная электростанция Demo будет производить крупномасштабное на постоянной основе. Концептуальный дизайн Demo будет завершен к 2017 году, а его строительство начнется в 2024 году. Пуск состоится в 2033 году.

JET

В 1978 г. ЕС (Евратом, Швеция и Швейцария) начали совместный европейский проект JET в Великобритании. JET сегодня является крупнейшим работающим токамаком в мире. Подобный реактор JT-60 работает в японском Национальном институте термоядерного синтеза, но только JET может использовать дейтерий-тритиевое топливо.

Реактор был запущен в 1983 году, и стал первым экспериментом, в результате которого в ноябре 1991 года был проведен управляемый термоядерный синтез мощностью до 16 МВт в течение одной секунды и 5 МВт стабильной мощности на дейтерий-тритиевой плазме. Было проведено множество экспериментов с целью изучения различных схем нагрева и других техник.

Дальнейшие усовершенствования JET касаются повышения его мощности. Компактный реактор MAST разрабатывается вместе с JET и является частью проекта ITER.

K-STAR

K-STAR - корейский сверхпроводящий токамак Национального института термоядерных исследований (NFRI) в Тэджоне, который произвел свою первую плазму в середине 2008 года. ITER, являющийся результатом международного сотрудничества. Токамак радиусом 1,8 м - первый реактор, использующий сверхпроводящие магниты Nb3Sn, такие же, которые планируется использовать в ITER. В ходе первого этапа, завершившегося к 2012 году, K-STAR должен был доказать жизнеспособность базовых технологий и достигнуть плазменных импульсов длительностью до 20 с. На втором этапе (2013-2017) проводится его модернизация для изучения длинных импульсов до 300 с в режиме H и перехода к высокопроизводительному AT-режиму. Целью третьей фазы (2018-2023) является достижение высокой производительности и эффективности в режиме длительных импульсов. На 4 этапе (2023-2025) будут испытываться технологии DEMO. Устройство не способно работать с тритием и D-T топливо не использует.

K-DEMO

Разработанный в сотрудничестве с Принстонской лабораторией физики плазмы (PPPL) Министерства энергетики США и южно-корейским институтом NFRI, K-DEMO должен стать следующим шагом на пути создания коммерческих реакторов после ITER, и будет первой электростанцией, способной генерировать мощность в электрическую сеть, а именно 1 млн кВт в течение нескольких недель. Его диаметр составит 6,65 м, и он будет иметь модуль зоны воспроизводства, создаваемый в рамках проекта DEMO. Министерство образования, науки и технологий Кореи планирует инвестировать в него около триллиона корейских вон (941 млн $).

EAST

Китайский экспериментальный усовершенствованный сверхпроводящий токамак (EAST) в Институте физики Китая в Хефее создал водородную плазму температурой 50 млн °C и удерживал ее в течение 102 с.

TFTR

В американской лаборатории PPPL экспериментальный термоядерный реактор TFTR работал с 1982 по 1997 годы. В декабре 1993 г. TFTR стал первым магнитным токамаком, на котором производились обширные эксперименты с плазмой из дейтерий-трития. В следующем году реактор произвел рекордные в то время 10,7 МВт управляемой мощности, а в 1995 году был достигнут рекорд температуры в 510 млн °C. Однако установка не достигла цели безубыточности энергии термоядерного синтеза, но с успехом выполнила цели проектирования аппаратных средств, сделав значительный вклад в развитие ITER.

LHD

LHD в японском Национальном институте термоядерного синтеза в Токи, префектура Гифу, был самым большим стелларатором в мире. Запуск термоядерного реактора состоялся в 1998 г., и он продемонстрировал качества удержания плазмы, сравнимые с другими крупными установками. Была достигнута температура ионов 13,5 кэВ (около 160 млн °C) и энергия 1,44 МДж.

Wendelstein 7-X

После года испытаний, начавшихся в конце 2015 года, температура гелия на короткое время достигла 1 млн °C. В 2016 г. термоядерный реактор с водородной плазмой, используя 2 МВт мощности, достиг температуры 80 млн °C в течение четверти секунды. W7-X является крупнейшим стелларатором в мире и планируется его непрерывная работа в течение 30 минут. Стоимость реактора составила 1 млрд €.

NIF

National Ignition Facility (NIF) в Ливерморской национальной лаборатории (LLNL) был завершен в марте 2009 года. Используя свои 192 лазерных лучей, NIF способен сконцентрировать в 60 раз больше энергии, чем любая предыдущая лазерная система.

Холодный ядерный синтез

В марте 1989 года два исследователя, американец Стенли Понс и британец Мартин Флейшман, заявили, что они запустили простой настольный холодный термоядерный реактор, работающий при комнатной температуре. Процесс заключался в электролизе тяжелой воды с использованием палладиевых электродов, на которых ядра дейтерия концентрировались с высокой плотностью. Исследователи утверждают, что производилось тепло, которое можно было объяснить только с точки зрения ядерных процессов, а также имелись побочные продукты синтеза, включая гелий, тритий и нейтроны. Однако другим экспериментаторам не удалось повторить этот опыт. Большая часть научного сообщества не считает, что холодные термоядерные реакторы реальны.

Низкоэнергетические ядерные реакции

Инициированные претензиями на «холодный термоядерный синтез», исследования продолжились в области низкоэнергетических имеющих некоторую эмпирическую поддержку, но не общепринятое научное объяснение. По-видимому, для создания и захвата нейтронов используются слабые ядерные взаимодействия (а не мощная сила, как при или их синтезе). Эксперименты включают проникновение водорода или дейтерия через каталитический слой и реакцию с металлом. Исследователи сообщают о наблюдаемом высвобождении энергии. Основным практическим примером является взаимодействие водорода с порошком никеля с выделением тепла, количество которого больше, чем может дать любая химическая реакция.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...