Три его открытия были достойны нобелевской премии. Георгий Антонович Гамов(Джордж Гамов): биография

Советский и американский физик-теоретик. Член-корреспондент Академии наук СССР.

Георгий Гамов родился 4 марта 1904 года в городе Одесса, Украина. Рос в семье учителей. Отец Георгия был доволен тем, что его сын увлекался биологией, физикой и астрономией. Именно поэтому Георгий Гамов в 1921 году поступил в Одесский университет, выбрав при этом физико-математический факультет. Успевал не только хорошо учиться, но и подрабатывать вычислителем в астрономической обсерватории.

В 1922 году Гамов Георгий Антонович поступил в Ленинградский университет на физико-математический факультет. Данное учебное заведение было тогда центром зарождавшейся физической науки в Советском Союзе. На жизнь нужны были деньги, поэтому будущему ученому пришлось устроиться работать наблюдателем на метеорологическую станцию.

В сентябре 1923 года Гамов стал заведовать полевой метеорологической обсерваторией первой Артиллерийской школы, где читал лекции по физике. Уже в 1924 году работал в Государственном оптическом институте, разрабатывая методики отбраковки оптического стекла.

Георгий Антонович окончил университет в 1926 году и поступил в аспирантуру. В том же году он был рекомендован в качестве кандидата на поездку в Германию на стажировку. Однако разрешение и все необходимые документы были получены лишь весной 1928 года. В июне физик прибыл в Геттинген, где представлен руководителю тамошней группы теоретиков Максу Борну.

Решив заняться какой-либо нерешенной теоретической проблемой, Гамов выбрал в качестве основного направления теорию атомного ядра, и в частности, проблему альфа-распада - одного из видов радиоактивности. Применив идею о квантово-механическом проникновении волновой функции альфа-частицы через кулоновский барьер, ученому удалось показать, что частицы с не очень большой энергией могут с определенной вероятностью вылетать из ядра. Это стало первым успешным объяснением поведения радиоактивных элементов на основе квантовой теории.

На основе своих умозаключений физик Георгий Гамов смог определить размер ядра и объяснил закон Гейгера-Неттола, который связывал энергию вылетающих частиц с периодом полураспада ядер. В июле 1928 года молодой ученый опубликовал свою статью в известном научном журнале, которая и сделала его знаменитым в мире физики.

Весной 1931 года Гамов вернулся в Ленинград и сразу же включился в работы по ядерной физике, которые начали проводиться в Радиевом институте, Физико-математическом институте и Ленинградском университете. Вскоре академик Абрам Иоффе пригласил его в качестве консультанта новообразованного Отдела физики ядра в Ленинградском Физико-техническом институте. В то же время Гамов являлся одним из инициаторов организации Института теоретической физики на базе Физического отдела ФМИ, однако эта инициатива не нашла поддержки у академического руководства.

В марте 1932 года заслуги Гамова оценили на очередных выборах в Академию наук СССР: Георгий Антонович избран членом-корреспондентом, став в 28 лет самым молодым из избранных физиков на тот момент. В 1933 году по рекомендации Иоффе Абрама Федеровича назначен на должность советского представителя на Седьмом Сольвеевском конгрессе. Главной целью Георгия стала возможность работать за рубежом и при желании возвратиться на родину.

В 1946 году ученый начал изучать сферу космологии и предложил модель «Горячей Вселенной». Основаниями для этой теории послужили оценка возраста всей Вселенной, который был примерно равен возрасту планеты Земля, и соотношение гелия и водорода. В 1948 году физик Георгий Гамов вместе со своими учениками разработали теорию образования химических элементов путем нуклеосинтеза, или последовательного нейтронного захвата. Однако она не получила должного внимания, и очень долго оставалась незамеченной.

В 1954 году, через год после открытия двуспиральной структуры молекул ДНК, Гамов неожиданно внес существенный вклад в становление новой дисциплины - молекулярной биологии, впервые поставив проблему генетического кода. Ученый понял, что структура основных строительных блоков клетки - белков, состоящих из 20 основных аминокислот, - должна быть зашифрована в последовательности из четырех возможных нуклеотидов, входящих в состав молекулы дезоксирибонуклеиновой кислоты.

Исходя из простых арифметических соображений, Гамов показал, что «при сочетании 4 нуклеотидов тройками получаются 64 различные комбинации, чего вполне достаточно для «записи наследственной информации», и выразил надежду, что «кто-нибудь из более молодых ученых доживет до его расшифровки». Таким образом, Георгий Антонович стал первым, кто предположил кодирование аминокислотных остатков триплетами нуклеотидов.

В 1956 году ученый переехал в Боулдер, где занял должность профессора Колорадского университета. В том же году получил от ЮНЕСКО премию Калинга за популяризацию науки.

В последние годы Гамов тяжело страдал от нарушений сердечно-сосудистой системы, перенес несколько операций. Находясь в больнице, заразился и переболел гепатитом. Георгий Антонович умер в Боулдере 19 августа 1968 года. Могила находится на кладбище Green Mountain Cemetery.

Одно из высоких зданий, построенных на территории Колорадского университета, носит название «Башня Гамова». В 1990 году ученый посмертно восстановлен в звании члена-корреспондента Академии наук СССР.

Библиография Георгия Гамова

Книги
Г. А. Гамов. Строение атомного ядра и радиоактивность. - М.; Л., 1932.
Дж. Гамов. Рождение и смерть Солнца (The Birth and Death of the Sun). - Viking Press, 1940.
Дж. Гамов. Биография Земли (Biography of the Earth). - Viking Press, 1941.
Дж. Гамов. Раз, два, три… бесконечность (One, Two, Three… Infinity). - Viking Press, 1947.
Дж. Гамов. Создание Вселенной (The Creation of the Universe). - Viking Press, 1952.
Дж. Гамов. Тридцать лет, которые потрясли физику (Thirty Years that Shook Physics). - Doubleday & Co., 1966.
Дж. Гамов. Моя мировая линия: неформальная автобиография. - М.: Наука, 1994. (My World Line:An Informal Autobiography. Viking Press, 1970). Отрывок опубликован в журнале «Химия и жизнь» (1989, № 5).
Г. Гамов. Приключения мистера Томпкинса. - Ижевск: РХД, Удмуртский университет, 1999.
Г. Гамов, М. Ичас. Мистер Томкинс внутри самого себя: приключения в новой биологии. - Ижевск: РХД, Удмуртский университет, 1999. (Mr. Tompkins Inside Himself. Viking Press, 1967).
Г. Гамов, М. Стерн. Занимательная математика. - Ижевск: РХД, 2001. (Puzzle-Math. Viking Press, 1958).
Г. Гамов. Тяготение. - Ижевск: РХД, 2009. (Gravity. Heinemann Educational Books, 1962).

Статьи
Г. Гамов. Начало принципиальной наблюдаемости в современной физике // УФН. - 1927. - Вып. 5.
Г. Гамов, Д. Иваненко, Л. Ландау. Мировые постоянные и предельный переход // Журнал Русского физико-химического общества. Часть физическая. - 1928. - Т. LX. - С. 13. - Статья была переиздана в журнале «Ядерная физика», т. 65, с. 1404 (2002) с предисловием Л. Б. Окуня.
Г. Гамов. Очерк развития учения о строении атомного ядра (I. Теория радиоактивного распада) // УФН. - 1930. - Вып. 4.
Г. Гамов. Очерк развития учения об атомном ядре (II) // УФН. - 1932. - Вып. 1.
Г. Гамов. Очерк развития учения о строении атомного ядра (III) // УФН. - 1932. - Вып. 8.
Г. Гамов. Очерк развития учения о строении атомного ядра (IV. Общее строение ядра) // УФН. - 1933. - Вып. 1.
Г. Гамов. Очерк развития учения о строении атомного ядра (V) // УФН. - 1934. - Вып. 4.
Г. Гамов. Очерк развития учения о строении атомного ядра (части I и IV) // УФН. - 1993. - Т. 163, вып. 4.

| Гамов, Георгий Антонович

Георгий Антонович Гамов (также известен как Джордж Гамов , англ. George Gamow ; 20 февраля (4 марта) 1904, Одесса - 19 августа 1968, Боулдер) - советский и американский физик-теоретик, астрофизик и популяризатор науки.

Георгий Антонович принадлежал к типу учёных-универсалов, «генераторов идей» и отличался особым талантом постановки и решения самых ключевых задач науки.

Человек яркий и азартный, неистощимый шутник и выдумщик, Гамов был и остаётся одним из любимейших героев «физического» фольклора - рассказы о нём передаются из поколения в поколения физиками всего мира.

Родился Гамов 4 марта 1904 г. в Одессе, в семье преподавателя словесности. Свои первые научные наблюдения Георгий сделал в детстве - отец подарил ему микроскоп и телескоп. Детское увлечение физикой стало призванием: Гамов за три года закончил Петроградский университет и вскоре отправился на стажировку в Германию, в Гёттингенский университет. Там он впервые заявил о себе как о выдающемся учёном - его доклад о туннельном эффекте в ядерных реакциях стал сенсацией. Идея Гамова о преодолении α-частицей барьера энергии, невозможного в классической физике, но возможного в квантовой, объяснила механизм этих реакций. Молодой учёный получил приглашения работать с крупнейшими физиками того времени: сначала с Нильсом Бором, затем с Робертом Резерфордом. В 25 лет он уже признан одним из крупнейших специалистов в области теоретической ядерной физики. Он побывал в научных центрах разных стран, выступал на конференциях, участвовал в исследованиях советских учёных в области ядерной физики.

Но в 1931 г. свободная научная деятельность Георгия Гамова впервые натолкнулась на поставленную государством преграду: ему не разрешено выехать в Рим для участия в международном научном конгрессе. Для учёного «римское фиаско», как он позднее назвал его, стало поворотным моментом в судьбе. У разных людей разный «порог чувствительности» к ограничению свободы. Для Гамова этого было достаточно: работа без возможности общаться с мировым научным сообществом его не устраивала. В 1932 г. он выехал вместе с женой на международный конгресс в Брюссель и больше на родину не вернулся, обосновавшись в США. Естественно, в Советском Союзе сразу сделано было всё возможное, чтобы вычеркнуть само имя учёного из истории отечественной физики. До середины 60-х гг. были запрещены лаже ссылки на его работы, о публикациях вплоть до последних лет не могло быть и речи. Восстановили его в составе отечественной Академии наук только в 1990 г. - посмертно.

С именем Гамова связана одна из самых ярких и грандиозных астрофизических теорий - концепция Большого Взрыва, или теория горячей Вселенной. Он был первым, кому удалось соединить космологию с физикой микромира. Поражающая воображение картина взрывающейся, разлетающейся Вселенной, где в раскалённом котле ядерных реакций рождаются химические элементы, сначала казалась дерзкой, затем - убедительной, а сегодня она стала хрестоматийной.

Гамов обладал особым чутьём на переломные моменты в науке. После физики его внимание приковала генетика, которая стояла в тот момент на пороге совершенно нового уровня развития. От одной величайшей тайны - рождения Вселенной - Гамов перешёл к другой - тайне Жизни. Его талант точно ставить самые важные вопросы позволил учёному сформулировать ключевую задачу: расшифровать «тайнопись» Жизни - генетический код. Новые исследования генетиков блестяще подтвердили его идеи -это был третий «Большой Взрыв» в науке, которым она обязана Гамову.

И. С. Шкловский однажды сказал о Гамове: «Я считаю Г. А. Гамова, пожалуй, крупнейшим русским физиком XX века. В конце концов, от учёного остаются только конкретные результаты его труда. Применяя футбольную аналогию, имеют реальное значение не изящные финты и дриблинг, а забитые голы. В этом сказывается жестокость науки. Гамов обессмертил своё имя тремя выдающимися «голами»:

1) теорией α-распада, более обще - «подбарьерными» процессами (1928 г.);

2) теорией «горячей Вселенной» и, как следствие её, - предсказанием реликтового излучения (1948 г.), обнаружение которого в 1965 г. ознаменовало собой новый этап в космологии; 3) открытием феномена генетического кода (1953 г.) - фундамента современной биологии. Конечно, Гамов - невозвращенец, и это нехорошо. Но можем ли мы представить музыкальную культуру России XX века без имён Ша¬ляпина и Рахманинова?».

Советский и американский физик-теоретик, астрофизик и популяризатор науки. В 1933 году покинул СССР, в 1940 году получил гражданство США. Член-корреспондент АН СССР (с 1932 по 1938 год, восстановлен посмертно в 1990 году). Член Национальной академии наук США (1953).


Гамов известен своими работами по квантовой механике, атомной и ядерной физике, астрофизике, космологии, биологии. Он является автором первой количественной теории альфа-распада, одним из основоположников теории «горячей Вселенной» и одним из пионеров применения ядерной физики к вопросам эволюции звёзд. Он впервые чётко сформулировал проблему генетического кода. Широкую известность Гамову принесли его научно-популярные произведения, в которых живым и доступным языком рассказывается о современных научных представлениях.

Происхождение и юность (1904-1922)

Георгий Гамов родился в Одессе 4 марта 1904 года в учительской семье. Его отец, Антон Михайлович Гамов, преподавал русский язык и литературу в частной гимназии. Его мать, Александра Арсеньевна Лебединцева, рано умерла. Как по отцовской, так и по материнской линии Гамов происходил из известных в Малороссии семей. Большинство Лебединцевых были священниками, занимая видные посты в церковной иерархии. Впрочем, среди них нашлось место известному математику К. Ф. Лебединцеву, автору ряда учебников по алгебре начала XX века, и народовольцу Всеволоду Лебединцеву, который приходился Георгию Гамову двоюродным братом и был казнён за попытку покушения на министра юстиции Ивана Щегловитова. Со стороны отца большинство предков Гамова были военными, его дед занимал пост коменданта Кишинёва.

Отец поощрял увлечение Гамова науками, физикой, астрономией, биологией. Поэтому после окончания школы в 1921 году он поступил на математическое отделение физико-математического факультета Новороссийского (Одесского) университета, где его преподавателями были физик Николай Кастерин и математик Вениамин Каган . Одновременно Гамов подрабатывал вычислителем в Одесской астрономической обсерватории.

Учёба в Ленинградском университете (1922-1928)

В 1922 году Гамов решил поступить на физико-математический факультет Петроградского университета, который был центром зарождавшейся советской физической науки. Чтобы иметь дополнительные средства к существованию, после прибытия в Петроград в июле 1922 года Гамов устроился наблюдателем на Метеорологическую станцию Лесного института, трижды в день снимая показания приборов. Он оставался на этой работе, полученной по протекции старого знакомого его отца профессора В. Н. Оболенского, до сентября 1923 года, совмещая её с учёбой в университете.

С сентября 1923 по октябрь 1924 года Гамов заведовал полевой метеорологической обсерваторией 1-й Артиллерийской школы, читал там лекции по физике. В октябре 1924 года Гамов был приглашён Дмитрием Рождественским в Государственный оптический институт, где молодой сотрудник занимался разработкой методики отбраковки оптического стекла и изучением аномальной дисперсии света в парах калия. Это сотрудничество продолжалось до апреля 1925 года, когда Гамов решил окончательно сосредоточиться на теоретических исследованиях. Он хотел специализироваться в области общей теории относительности, и вскоре его руководителем стал Александр Фридман . После безвременной смерти последнего (в сентябре 1925 года) руководство Гамовым принял Юрий Крутков , ученик Пауля Эренфеста. Дипломная работа Гамова была посвящена некоторым вопросам теории адиабатических инвариантов. Безусловную пользу молодому учёному принесли лекции, которые в то время в университете читали такие известные физики и математики как Орест Хвольсон , Всеволод Фредерикс, Александр Тудоровский, Владимир Смирнов , Юрий Крутков .

Во времена студенчества формируется тесный кружок молодых физиков-единомышленников, названный его участниками «Джаз-бандой». Его ядро первоначально составили Гамов, Дмитрий Иваненко, Андрей Ансельм и В. А. Кравцов. Вскоре к ним присоединились Лев Ландау , Матвей Бронштейн и Виктор Амбарцумян . Трое друзей из этого кружка, Гамов, Иваненко и Ландау, опубликовали в начале 1928 года в Журнале Русского физико-химического общества статью «Мировые постоянные и предельный переход», в которой дали иерархию физических теорий на основе системы фундаментальных констант, включающих скорость света, гравитационную постоянную и постоянную Планка (так называемая cGh-система). Несмотря на то, что сами авторы считали эту работу всего лишь шуткой и никогда на неё не ссылались, впоследствии она привлекла внимание исследователей своими идеями, которые касаются фундаментальных основ физики и принципов её развития.

Гамов за границей. Теория альфа-распада (1928-1931)

Гамов окончил университет в 1926 году и поступил в аспирантуру. В том же году он был рекомендован в качестве кандидата на поездку в Германию на стажировку. Однако разрешение и все необходимые документы были получены лишь весной 1928 года. В июне он прибыл в Гёттинген, где был представлен руководителю тамошней группы теоретиков Максу Борну. Решив заняться какой-либо нерешённой теоретической проблемой, Гамов выбрал в качестве основного направления теорию атомного ядра, и в частности - проблему альфа-распада, одного из видов радиоактивности. Применив идею о квантовомеханическом проникновении волновой функции альфа-частицы через кулоновский барьер (туннельный эффект), ему удалось показать, что частицы даже с не очень большой энергией могут с определённой вероятностью вылетать из ядра. Это было первое успешное объяснение поведения радиоактивных элементов на основе квантовой теории. Следует отметить, что идею о подбарьерном туннелировании в то время уже использовали при объяснении явлений термоэлектронной (Лотар Нордгейм) и автоэлектронной эмиссии (Нордгейм и Ральф Фаулер), а также при рассмотрении поведения двухатомных молекул (Фридрих Хунд). Практически одновременно с Гамовым качественную идею о роли туннельного эффекта в процессе альфа-распада высказали Рональд Гёрни и Эдвард Кондон, однако Гамову удалось получить важные количественные результаты. На основе своей теории Гамов смог оценить размер ядер (порядка 10 − 13 см) и, что ещё более важно, дать теоретический вывод эмпирического закона Гейгера - Неттолла, связывающего энергию вылетающей альфа-частицы с характерным временем альфа-распада (периодом полураспада ядер). Уже в июле Гамов окончил свою статью и отослал её в журнал «Zeitschrift für Physik», его теория быстро получила признание, а успех Гамова сделал его широко известным в научном мире.

В сентябре 1928 года срок командировки Гамова истёк и ему необходимо было возвращаться в Ленинград. По дороге он заехал в Копенгаген, где встретился с Нильсом Бором, который предложил ему остаться на год в его институте и выхлопотал ему стипендию фонда Карлсберга. Этому поспособствовало и рекомендательное письмо на имя Бора, написанное Абрамом Иоффе. За время своей продлившейся командировки Гамов посетил другие важнейшие научные центры того времени: в Лейдене он обсуждал с Паулем Эренфестом первые шаги капельной модели ядра и связанные с ней представления об уровнях энергии ядер; в Кембридже он включился в обсуждение перспектив расщепления ядер ускоренными протонами, которые оказались весьма эффективным инструментом благодаря туннельному эффекту (соответствующие эксперименты были осуществлены Джоном Кокрофтом и Эрнестом Уолтоном в 1932 году).

Весной 1929 года Гамов вернулся в Ленинград, а уже осенью он вновь был в Копенгагене. Этому способствовало получение им годовой стипендии Рокфеллеровского фонда (120 долларов в месяц), на которую он был выдвинут его бывшим научным руководителем Крутковым и академиком Алексеем Крыловым. Его кандидатуру поддержали кембриджские физики Эрнест Резерфорд и Ральф Фаулер. За рубежом Гамов по-прежнему активно участвовал в работах по ядерной тематике, проводившихся в Дании и Англии, много путешествовал. Он планировал отправиться в путешествие по Европе на мотоцикле летом 1931 года, однако по окончании срока командировки был вынужден вернуться в СССР, поскольку у него истёк срок действия визы.

Вновь в Ленинграде. Эмиграция (1931-1933)

Весной 1931 года Гамов вернулся в Ленинград и сразу же включился в работы по ядерной физике, которые начали проводиться в Радиевом институте, Физико-математическом институте (ФМИ) и Ленинградском университете. Вскоре академик Абрам Иоффе пригласил его консультантом новообразованного Отдела физики ядра в Ленинградском Физико-техническом институте, где уже трудились такие учёные как Николай Семёнов , Игорь Курчатов, Яков Френкель , Владимир Фок и др. В то же время Гамов являлся одним из инициаторов организации Института теоретической физики на базе Физического отдела ФМИ, однако эта инициатива не нашла поддержки у академического руководства. В марте 1932 года заслуги Гамова были оценены на очередных выборах в АН СССР: он был избран членом-корреспондентом.

В 1931 году произошли серьёзные изменения в личной жизни Гамова: он познакомился с выпускницей физико-математического факультета МГУ Любовью Вохминцевой, и вскоре они поженились. В это же время Гамов почувствовал изменения в отношении положения учёных в СССР: в октябре 1931 года в Риме состоялся Международный конгресс по ядерной физике, куда был приглашён и Гамов, но ему так и не удалось получить разрешение на выезд (его доклад прочитал Макс Дельбрюк). После этого Гамов стал искать случай покинуть страну, в том числе нелегально. Летом 1932 года, во время отпуска в Крыму, Гамов с женой попытались доплыть на байдарке до турецкого побережья, однако им помешал шторм.

Удобный случай представился осенью 1933 года, когда Гамов по рекомендации Иоффе был назначен советским представителем на восьмом Сольвеевском конгрессе в Брюсселе. Благодаря знакомству с Николаем Бухариным Гамов смог попасть на приём к Молотову и получить визу и для своей жены. По завершении срока командировки он решил не возвращаться и начал переговоры о получении постоянной работы за рубежом.

Таким образом, целью Гамова была возможность подобно Капице работать за границей, свободно посещать крупнейшие научные центры и мероприятия и при этом в любое время посещать СССР. Однако это желание не нашло понимания на родине, хотя возможность вернуться оставалась ещё довольно долго. Лишь спустя год, в октябре 1934 года, после того как он не вернулся к крайнему установленному сроку, Гамов был окончательно уволен из Радиевого института и ФМИ, и только в 1938 году он был исключён из числа членов-корреспондентов АН СССР.

В Вашингтоне. Энергия и эволюция звёзд (1934-1946)

После отъезда из СССР Гамов работал то в Радиевом институте в Париже, то в Кембриджском университете, то в Институте Бора в Копенгагене, но никто не мог предложить ему постоянное место. Наконец, в 1934 году начали появляться предложения из Америки. Сначала Эрнест Лоуренс попробовал устроить Гамова в Калифорнийский университет в Беркли, однако эта попытка сорвалась из-за финансовых проблем. Вскоре по протекции известного физика Мерла Тьюва он был приглашён на должность профессора в столичный Университет Джорджа Вашингтона, где начал работать с осени 1934 года. Сразу же Гамов инициировал проведение в Вашингтоне ежегодных конференций, на которые собирались крупнейшие физики мира. Другим его важным решением было приглашение в качестве ближайшего сотрудника своего старого знакомого ещё по копенгагенским временам Эдварда Теллера (как образно выражался Гамов, «чтобы было с кем поговорить о теоретической физике»).

Сотрудничество с Теллером оказалось весьма плодотворным. В 1936 году им удалось обобщить теорию бета-распада Ферми, сформулировав правила отбора и введя представление о «переходах Гамова - Теллера» (переходы с изменением спина ядра). В это время он начал более активно интересоваться связью между ядерными процессами и источником энергии звёзд: первые подходы (Ф. Хоутерманс и Р. Аткинсон) к решению этой проблемы появились в 1930 году под влиянием именно гамовской работы по туннельному эффекту при альфа-распаде. В конце 1930-х годов уже самому Гамову (совместно с Теллером) удалось улучшить понимание вопроса об энергии звёзд, учтя последние достижения ядерной физики. Эти исследования оказали сильное влияние на открытие Гансом Бете углеродно-азотного цикла в 1938 году. В 1937-1940 годах Гамов построил первую последовательную теорию эволюции звёзд с термоядерным источником энергии. В 1940-1941 годах вместе со своим учеником Марио Шенбергом он изучил роль нейтрино в катастрофических процессах, происходящих при вспышках новых и сверхновых звёзд (так называемое нейтринное охлаждение). В 1942 году совместно с Теллером он предложил теорию строения красных гигантов, предположив наличие у них устойчивого ядра и оболочки, в которой происходят термоядерные реакции.

В 1941 году Теллер покинул университет и стал участником проекта по созданию атомной бомбы, однако Гамова к этим работам не привлекли по «соображениям безопасности». Он участвовал в решении второстепенных проблем, став консультантом Военно-морского ведомства. В ходе этой деятельности он сблизился в Альбертом Эйнштейном (таким же «непривлечённым»), общение с которым заставило его вспомнить своего учителя Фридмана и обратило его внимание к вопросам космологии. Лишь летом 1948 года Гамов получил от военных соответствующий допуск и смог принять участие в создании водородной бомбы под руководством Теллера.

«Большой Взрыв» и генетический код (1946-1956)

В 1946 году Гамов активно включился в работу в области космологии, предложив модель «горячей Вселенной» (уточнение теории «Большого Взрыва»). Её основаниями стали представления о расширении Вселенной, данные о современной распространённости элементов (особенно о соотношении водорода и гелия) и оценки возраста Вселенной, который в те годы считался примерно равным возрасту Земли. Исходя из большого значения энтропии ранней Вселенной, в 1948 году Гамов совместно со своими учениками Ральфом Альфером и Робертом Херманом разработал теорию образования химических элементов путём последовательного нейтронного захвата (нуклеосинтез). В рамках этой теории было предсказано существование фонового микроволнового (реликтового) излучения и дана оценка его современной температуры (в диапазоне 1-10 К).

Теория Гамова и его сотрудников не привлекла большого внимания физиков (особенно экспериментаторов) и фактически оставалась долгое время незамеченной. Одной из причин этого было то, что рассуждения о ранней Вселенной в то время считались чисто умозрительными. Более того, концепция «горячей Вселенной» представлялась не самой вероятной: серьёзную конкуренцию ей составляли модель «холодной Вселенной» (Яков Зельдович и сотрудники) и теория стационарной Вселенной Фреда Хойла и соавторов. Поэтому открытие в 1965 году Арно Пензиасом и Робертом Вильсоном реликтового излучения (Нобелевская премия 1978 года) произошло во многом случайно. Тем не менее заслуги Гамова и его учеников получили широкое признание коллег. По словам Стивена Вайнберга,

Гамов, Альфер и Херман заслуживают колоссального уважения помимо всего прочего за то, что они серьёзно захотели воспринять раннюю Вселенную и исследовали то, что должны сказать известные физические законы о первых трёх минутах.

В 1954 году, через год после открытия двуспиральной структуры молекул ДНК, Гамов неожиданно внёс существенный вклад в становление новой дисциплины - молекулярной биологии, впервые поставив проблему генетического кода. Он понял, что структура основных строительных блоков клетки - белков, состоящих из 20 основных (природных) аминокислот, - должна быть зашифрована в последовательности из четырёх возможных нуклеотидов, входящих в состав молекулы ДНК. Исходя из простых арифметических соображений, Гамов показал, что «"при сочетании 4 нуклеотидов тройками получаются 64 различные комбинации, чего вполне достаточно для "записи наследственной информации"», и выразил надежду, что «кто-нибудь из более молодых учёных доживёт до его [генетического кода] расшифровки». Таким образом, он был первым, кто предположил кодирование аминокислотных остатков триплетами нуклеотидов.

Впоследствии Гамов предложил конкретную схему реализации генетического кода: сборка белка происходит непосредственно на молекуле ДНК, причём каждая аминокислота помещается в ромбической выемке между четырьмя нуклеотидами, по два от каждой из комплементарных цепей. Хотя такой ромб состоит из четырёх нуклеотидов и, следовательно, число сочетаний равно 256, из-за ограничений, связанных с водородными связями нуклеотидных остатков, возможными оказываются как раз 20 вариантов таких ромбов. Эта схема, получившая название «бубнового кода», предполагает корреляцию между последовательными аминокислотными остатками, так как два нуклеотида всегда входят в два соседних ромба (перекрывающийся код). Дальнейшие исследования показали, что эта модель Гамова не согласуется с опытными данными.

Предположение о триплетном кодировании информации в молекуле ДНК было подтверждено в 1961 году экспериментами Фрэнсиса Крика и сотрудников, а к 1967 году генетический код был окончательно расшифрован. В октябре 1968 года Роберту Холли, Хару Коране и Маршаллу Ниренбергу была присуждена Нобелевская премия за эту работу.

Гамов-популяризатор. Последние годы (1956-1968)

В середине 1950-х годов Гамов развёлся с Любовью Вохминцевой и женился на Барбаре Перкинс. В 1956 году он переехал в Боулдер, где занял должность профессора Колорадского университета. В том же году Гамов получил от ЮНЕСКО премию Калинга за популяризацию науки. Первые шаги в этой области Гамов совершил зимой 1938 года, когда написал короткий фантастический рассказ о приключениях банковского клерка мистера Томпкинса в мире теории относительности. Поскольку ни один журнал не заинтересовался и не пожелал опубликовать его, Гамов решил больше не возвращаться к этому своему сочинению. Летом того же года на конференции в Варшаве он упомянул об этой неудаче в разговоре с кембриджским физиком Чарльзом Дарвином, внуком знаменитого естествоиспытателя, и тот посоветовал ему отослать рассказ в журнал «Discovery», который издавался в Кембриджском университете под редакцией Чарльза Сноу. Тот согласился напечатать рассказ и предложил написать ещё несколько. Цикл рассказов, объединённый под заголовком «Мистер Томпкинс в стране чудес», был издан отдельной книгой в 1940 году и выдержал множество изданий почти на всех европейских языках. Успех этой книги побудил Гамова написать несколько продолжений приключений мистера Томпкинса (в том числе в мире квантовой механики и молекулярной биологии), а также ряд других научно-популярных книг по физике и астрофизике. Он также являлся автором около десятка статей в известном журнале «Scientific American».

В последние годы Гамов тяжело страдал от нарушений сердечно-сосудистой системы, перенёс несколько операций. Находясь в больнице, он заразился и переболел гепатитом. Гамов умер в Боулдере 19 августа 1968 года, там же находится его могила. Одно из высоких зданий, построенных на территории Колорадского университета, носит название «Башня Гамова». В 1990 году он был посмертно восстановлен в звании члена-корреспондента АН СССР.

Георгий Гамов и его открытия. «Он не умел ни писать, ни считать. Он не сразу сказал бы вам, сколько будет семью восемь. Но его ум был способен охватить всю ».

Так охарактеризовала выдающегося астрофизика и физика-теоретика Георгия Гамова (1904-1968 гг.) британский астроном Вера Рубин, вместе с ним.

Это, конечно, преувеличение. Гамов не только умел писать, но и был автором научно-популярных книг, которые выдержали десятки изданий и продолжают переиздаваться сегодня.

Он первым связал ядерную физику с проблемами «жизни» и стал основоположником теории «горячей Вселенной».

Краткая биография ученого

Мать его происходила из известного в прошлом в рода Лебединцевых, занимавших видные посты в церковной иерархии, а предки отца были военными.

Отец приветствовал увлечение Георгия естественными науками, поэтому после окончания в 1921 г. он поступил на математическое отделение физико-математического факультета Новороссийского (Одесского) университета и одновременно начал работать вычислителем в Одесской обсерватории.

Но уже в 1922 г. Гамов решил перевестись на физико-математический факультет Петроградского университета, который был крупнейшим физическим центром того времени.

Там он увлекся общей теорией относительности, и через два научным руководителем Гамова стал Александр Фридман, вскоре безвременно умерший. Среди его и единомышленников в то время были Дмитрий Иваненко, Лев Ландау, — впоследствии ученые с мировым именем.

В 1926 г. Гамов поступил в аспирантуру, а через два года отправился в Германию на стажировку в группу теоретиков выдающегося немецкого физика Макса Борна.

Там ему удалось впервые объяснить альфа-распад ядер на основе квантовой теории и оценить истинные размеры ядер атомов. молодого теоретика сделал его широко известным на Западе.

Смена гражданства и новые исследования

В 1932 г. Гамов вместе с женой попытался на байдарке доплыть до турецкого побережья, но побегу помешал шторм. Лишь в 1933 г. подвернулся случай — он был назначен представителем на физическом конгрессе в Брюсселе и отказался возвращаться в СССР.

С этого времени он жил и работал во Франции, в Англии, а с 1934 г. — в . Отныне все свои публикации ученый подписывал «Джордж Гамов».

Вместе с Эдвардом Теллером, будущим «отцом» водородной бомбы, Гамов создал теорию звезд на основе предположения, что их энергия возникает в ходе термоядерных реакций.

Ученый исследовал «вселенские катастрофы» — вспышки новых и , а также строение звезд класса «красные гиганты».

Как и Эйнштейну, в годы Второй мировой Гамову не довелось участвовать в создании — оба ученых были сочтены «неблагонадежными иностранцами». Однако над водородной бомбой ему пришлось поработать вместе со старым приятелем Э. Теллером.

А в 1946 г. Гамов, не терявший интереса к космологии, предложил модель «горячей Вселенной», за которой последовала теория происхождения химических элементов и предсказание существования , возникшего сразу после « ».

В 1965 г. это излучение было обнаружено — смелые выводы ученого подтвердились.

Астрофизические изыскания Гамова

Из школьного курса физики известно, что , расширяясь, охлаждается. Примерно то же происходило и с веществом ранней Вселенной. Если сейчас ее средняя температура невысока, то в первые несколько миллиардов лет существования Вселенной она была чрезвычайно высокой.

Первым, кому эта мысль пришла в голову, был замечательный советский и американский физик-теоретик и астрофизик, уроженец Одессы Георгий Гамов.

Согласно теории Фридмана, эволюции Вселенной предшествовал Большой Взрыв. Он произошел одновременно и повсюду во Вселенной, заполнив пространство очень плотным веществом, из которого через миллиарды лет образовались все тела — , звезды, и планеты, а также .

Но Гамов предположил, что первичное вещество мироздания было не только очень плотным, но и очень горячим. В этом горячем и плотном веществе происходили ядерные реакции и рождались легкие химические элементы.

Известно, что все частицы имеют как , так и корпускулярную природу, то есть каждой частице соответствует волна. Следовательно, вещество и излучение имеют одну и ту же природу, хотя и проявляют себя по-разному.

Но примерно через миллион лет после Большого Взрыва наступил момент, когда вещество «отделилось» от излучения.

Понижение температуры привело к образованию ядер водорода, которые «захватили» из окружающей среды свободные электроны. Пространство стало прозрачным для излучения и оно, так сказать, «оторвалось» от вещества.

С течением времени спектр этого излучения менялся — в расширяющейся Вселенной оно теряло температуру.

Однако сколько бы ни прошло времени, эта температура не могла упасть до абсолютного . Остаток этого первичного излучения — эха Большого Взрыва — должен был заполнить всю Вселенную, и Гамов предположил, что его можно уловить с помощью специальных приборов.

Ученый даже предсказал на основе расчетов, что температура этого древнейшего, или, как его назвали позже, реликтового излучения должна быть на 5-6 градусов выше абсолютного нуля.

Открытия Гамова в биологии

Георгий Гамов на протяжении всей интересовался самыми фундаментальными вопросами мироздания. У астрономии и биологии их два — происхождение Вселенной и происхождение органической жизни.

Не удивительно, что в 1954 г., после структуры молекулы , именно Гамов первым поставил перед наукой проблему генетического кода и предположил, что наследственные , передающиеся из поколения в поколение, зашифрованы в последовательности из четырех нуклеотидов — аминокислот, входящих в состав молекулы ДНК.

Это предположение лишь через семь лет получило подтверждение в экспериментах, а в 1967 г. генетический код был окончательно расшифрован.

Георгий Антонович Гамов родился 20 февраля 1904 г. в Одессе в дворянской семье учителя русского языка и литературы Антона Михайловича Гамова и его жены Александры Арсеньевны, урожденной Лебединцевой. Уже в раннем детстве Георгий увлекся точными науками - физикой, химией, биологией. В семье это увлечение поощряли, и в 1913-м мальчик поступил в Одесское реальное училище. Революция и Гражданская война на семье Гамовых не отразились, страну они решили не покидать и остались в Одессе, так что закончил учебу Георгий уже при Советской власти. В 1920 г. он поступил на математическое отделение физико-математического факультета Новороссийского университета и одновременно устроился на работу в вычислительное бюро Одесской астрономической обсерватории.

Два года спустя Георгий принял важное решение - перевестись на физико-математический факультет Петроградского университета. Центр молодой советской физики тогда размещался именно там, а Гамов не хотел оставаться в стороне от новейших тенденций. Вскоре стало ясно, что с выбором вуза он не ошибся. В 1926 г. одаренный студент был оставлен в аспирантуре, где его руководителем стал знаменитый физик Ю. А. Крутков. Тогда же кандидатура Гамова была рассмотрена на предмет научной стажировки за рубежом, правда, документы ему выдали только в мае 1928 г. В Гёттингенском университете Гамов занялся теорией атомного ядра, и уже в июле 1928-го опубликованная в немецком журнале статья 24-летнего советского физика об альфа-частицах прославила его на весь научный мир.

В сентябре 1928 г. по пути в Ленинград Гамов посетил в Копенгагене Нильса Бора. Это стало началом активной зарубежной деятельности молодого советского физика: Бор рекомендовал ему остаться в Дании на год, выхлопотал стипендию. Гамов мог свободно путешествовать по Европе, встречаться с ведущими физиками. В СССР он вернулся в начале 1929 г., но ненадолго - в сентябре уехал в Великобританию, так как получил годовой грант Рокфеллеровского центра для работы в Кавендишской лаборатии в Кембридже. Весной 1931 г. срок действия визы истек, и Гамов в очередной раз вернулся в СССР.

Надо сказать, что такое долговременное пребывание за границей сходило Гамову с рук - он считался одним из талантливейших советских физиков, и ему прощалось многое, в том числе и «буржуазные» привычки, например любовь к мотоциклам и кино. Свидетельством официального признания его заслуг стало избрание в марте 1932 г. членом-корреспондентом Академии наук СССР (Гамов так и остался самым молодым человеком в истории Академии, получившим это звание, - ему было всего двадцать восемь). Внешне в судьбе ученого все выглядело благополучно - он трудился в Радиевом институте, где шли работы над первым в Европе циклотроном, Физико-математическом и Физико-техническом институтах, Ленинградском университете, выпустил книгу «Атомное ядро и радиоактивность». Однако Гамов чувствовал, что ему начинают ставить палки в колеса. Так, его идею о создании Института теоретической физики положили под сукно, а осенью 1931 г. Гамова не выпустили в Рим на Международный конгресс по ядерной физике. Тогда ученый начал вынашивать план побега из СССР. Вместе с женой он даже попытался летом 1932 г., во время отдыха в Крыму, уплыть на байдарке в Турцию, но помешал разыгравшийся шторм.

Только осенью 1933 г. Гамов, назначенный представителем СССР на очередном Сольвеевском конгрессе в Брюсселе, смог вырваться из страны, причем выхлопотал у В. М. Молотова визу и для жены. После завершения командировки на Родину Гамов уже не вернулся. Впрочем, в Советском Союзе еще довольно долго считали Гамова «своим»: только в октябре 1934 г. его уволили из Радиевого института, а в апреле 1938 г. лишили членства в Академии наук. Так молодой физик стал «невозвращенцем».

После бегства из СССР Гамов не сидел без работы - его наперебой звали то в Копенгаген, то в Кембридж, то в Париж. Наконец в октябре 1934 г. ученый окончательно перебрался в США, где получил должность профессора в Университете Джорджа Вашингтона. Там Гамов заинтересовался новой для него проблемой происхождения Вселенной и эволюции звезд. В 1941 г. ученого привлекли к проекту по созданию атомной бомбы, а семь лет спустя - водородной бомбы. По свидетельству П. А. Судоплатова, в это время Гамов и его жена поддерживали связи с советской разведкой, снабжая ее сведениями по продвижению атомных проектов.

Гамов внес огромный вклад в развитие двух далеко отстоящих друг от друга наук - космологии и молекулярной биологии. В первой он стал автором теории «горячей Вселенной», во второй - существенно уточнил формулу ДНК. «По следам» работ Гамова американские ученые Р. Холли, Х. Коран и М. Ниренберг получили в 1968 г. Нобелевскую премию.

Прославился Гамов и как блестящий популяризатор науки. Он придумал смешного персонажа - обычного американца мистера Томпкинса и «провел» его через множество приключений, от исследования собственного тела изнутри до постижения модели Вселенной. Книжки о Томпкинсе стали настольными для нескольких поколений американских школьников. Не меньшим успехом пользовались и его книги «Рождение и смерть Солнца» и «Биография Земли». За свои научные достижения ученый был удостоен премии Калинга (1956), присуждаемой ЮНЕСКО, избран членом Национальной академии наук США, Королевской академии наук и искусств Дании, Международного астрономического союза, Американского физического общества.

С 1956 г. Гамов жил в городе Боулдер, штат Колорадо, где работал профессором Колорадского университета. Там же, в Боулдере, он и скончался 19 августа 1968 г. в возрасте 64 лет. Могила знаменитого физика находится на кладбище «Грин-Маунтин».



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...