Ультрафиолетовое излучение в природе и медицине. Источники ультрафиолетового излучения

Общая характеристика

Наибольшей биологической активностью обладают ультрафиолетовые лучи. В естественных условиях мощным источником ультрафиолетовых лучей является солнце. Однако лишь длинноволновая его часть достигает земной поверхности. Более коротковолновая радиация поглощается атмосферой уже на высоте 30-50 км от поверхности земли.

Наибольшая интенсивность потока ультрафиолетовой радиации наблюдается незадолго до полудня с максимумом в весенние месяцы.

Как уже указывалось, ультрафиолетовые лучи обладают значительной фотохимической активностью, что широко используется в практике. Ультрафиолетовое облучение применяется при синтезе ряда веществ, отбеливании тканей, изготовлении лакированной кожи, светокопировании чертежей, получении витамина D и других производственных процессах.

Важным свойством ультрафиолетовых лучей является их способность вызывать люминесценцию.

При некоторых процессах имеет место воздействие на работающих ультрафиолетовых лучей, например электросварка вольтовой дугой, автогенная резка и сварка, производство радиоламп и ртутных выпрямителей, литье и плавка металлов и некоторых минералов, светокопировка, стерилизация воды и т. д. Этому же воздействию подвергаются медицинский и технический персонал, обслуживающий ртутно-кварцевые лампы.

Ультрафиолетовые лучи обладают способностью изменять химическую структуру тканей и клеток.

Длина волны ультрафиолетового излучения

Биологическая активность ультрафиолетовых лучей различной длины волны неодинакова. Ультрафиолетовые лучи с длиной волны от 400 до 315 mμ. оказывают относительно слабое биологическое действие. Лучи с меньшей длиной волны отличаются большей биологической активностью. Ультрафиолетовые лучи длиной 315-280 mμ оказывают сильное кожное и антирахитическое действие. Особенно большой активностью обладает излучение с длиной волн 280-200 mμ. (бактерицидное действие, способность активно воздействовать на тканевые белки и липоиды, а также вызывать гемолиз).

В производственных условиях имеет место воздействие ультрафиолетовых лучей с длиной волны от 36 до 220 mμ. т. е. обладающих значительной биологической активностью.

В отличие от тепловых лучей, основным свойством которых является развитие гиперемии в участках, подвергшихся облучению, действие на организм ультрафиолетовых лучей представляется значительно более сложным.

Ультрафиолетовые лучи относительно мало проникают через кожу и их биологическое действие связано с развитием многих нейрогуморальных процессов, обусловливающих сложный характер влияния их на организм.

Ультрафиолетовая эритема

В зависимости от интенсивности источника света и содержания в его спектре инфракрасных или ультрафиолетовых лучей изменения со стороны кожи будут неодинаковыми.

Воздействие ультрафиолетовых лучей на кожу вызывает характерную реакцию со стороны сосудов кожи - ультрафиолетовую эритему. Ультрафиолетовая эритема существенно отличается от тепловой эритемы, вызванной инфракрасным облучением.

Обычно при применении инфракрасных лучей выраженных изменений со стороны кожи не наблюдается, так как возникающее чувство жжения и боль препятствуют длительному воздействию этих лучей. Эритема, развивающаяся в результате действия инфракрасных лучей, возникает непосредственно после облучения, является нестойкой, держится недолго (30-60 минут) и носит главным образом гнездный характер. После длительного воздействия инфракрасных лучей появляется бурая пигментация пятнистого вида.

Ультрафиолетовая эритема появляется после облучения вслед за некоторым латентным периодом. Этот период колеблется у разных людей от 2 до 10 часов. Продолжительность латентного периода ультрафиолетовой эритемы находится в известной зависимости от длины волны: эритема от длинноволновых ультрафиолетовых лучей появляется позднее и держится дольше, чем от коротковолновых.

Эритема, вызванная ультрафиолетовыми лучами, имеет ярко-красную окраску с резкими границами, точно соответствующими участку облучения. Кожа становится несколько отечной и болезненной. Наибольшего развития эритема достигает через 6-12 часов после появления, держится в течение 3-5 дней и постепенно бледнеет, приобретая коричневый оттенок, причем происходит равномерное и интенсивное потемнение кожи вследствие образования в ней пигмента. В некоторых случаях в период исчезновения эритемы наблюдается небольшое шелушение.

Степень развития эритемы зависит от величины дозы ультрафиолетовых лучей и индивидуальной чувствительности. При прочих равных условиях, чем больше доза ультрафиолетовых лучей, тем интенсивнее воспалительная реакция кожи. Наиболее выраженная эритема вызывается лучами с длинами волн около 290 mμ. При передозировке ультрафиолетового облучения эритема приобретает синюшный оттенок, края эритемы становятся расплывчатыми, облученный участок отечен и болезнен. Интенсивное облучение может вызвать ожог с развитием пузыря.

Чувствительность различных участков кожи к ультрафиолету

Кожные покровы живота, поясницы, боковых поверхностей грудной клетки обладают наибольшей чувствительностью к ультрафиолетовым лучам. Наименее чувствительна кожа кистей рук и лица.

Лица с нежной, слабопигментированной кожей, дети, а также страдающие базедовой болезнью и вегетативной дистонией обладают большей чувствительностью. Повышенная чувствительность кожи к ультрафиолетовым лучам наблюдается весной.

Установлено, что чувствительность кожи к ультрафиолетовым лучам может изменяться в зависимости от физиологического состояния организма. Развитие эритемной реакции зависит в первую очередь от функционального состояния нервной системы.

В ответ на ультрафиолетовое облучение в коже образуется и откладывается пигмент, являющийся продуктом белкового обмена кожи (органическое красящее вещество - меланин).

Длинноволновые ультрафиолетовые лучи вызывают более интенсивный загар, чем коротковолновые. При повторном ультрафиолетовом облучении кожа становится менее восприимчивой к этим лучам. Пигментация кожи развивается нередко и без предварительно видимой эритемы. В пигментированной коже ультрафиолетовые лучи не вызывают фотоэритемы.

Положительное влияние ультрафиолета

Ультрафиолетовые лучи понижают возбудимость чувствительных нервов (болеутоляющее действие) и оказывают также антиспастическое и антирахитическое действие. Под влиянием ультрафиолетовых лучей происходит образование очень важного для фосфорно-кальциевого обмена витамина D (находящийся в коже эргостерин превращается в витамин D). Под воздействием ультрафиолетовых лучей усиливаются окислительные процессы в организме, увеличивается поглощение тканями кислорода и выделение углекислоты, активируются ферменты, улучшается белковый и углеводный обмен. Повышается содержание кальция и фосфатов в крови. Улучшаются кроветворение, регенеративные процессы, кровоснабжение и трофика тканей. Расширяются сосуды кожи, снижается кровяное давление, повышается общий биотонус организма.

Благоприятное действие ультрафиолетовых лучей выражается в изменении иммунобиологической реактивности организма. Облучение стимулирует выработку антител, повышает фагоцитоз, тонизирует ретикулоэндотелиальную систему. Благодаря этому повышается сопротивляемость организма к инфекциям. Важное значение в этом отношении имеет дозировка облучения.

Ряд веществ животного и растительного происхождения (гематопорфирин, хлорофилл и т. д.), некоторые химические препараты (хинин, стрептоцид, сульфидин и т. д.), особенно флуоресцирующие краски (эозин, метиленовая синька и т. д.), обладают свойством повышать чувствительность организма к свету. В промышленности у лиц, работающих с каменноугольной смолой, отмечаются заболевания кожи открытых частей тела (зуд, жжение, краснота), причем эти явления исчезают по ночам. Это связано с фотосенсибилизирующими свойствами содержащегося в каменноугольной смоле акридина. Сенсибилизация имеет место преимущественно в отношении видимых лучей и в меньшей степени в отношении ультрафиолетовых лучей.

Большое практическое значение имеет способность ультрафиолетовых лучей убивать различные бактерии (так называемое бактерицидное действие). Это действие особенно интенсивно выражено у ультрафиолетовых лучей с длинами волн менее (265 - 200 mμ). Бактерицидное действие света связано с влиянием на протоплазму бактерий. Доказано, что после ультрафиолетового облучения митогенетическое излучение в клетках и крови повышается.

По современным представлениям, в основе действия света на организм лежит главным образом рефлекторный механизм, хотя большое значение придается и гуморальным факторам. Особенно это относится к действию ультрафиолетовых лучей. Нужно также иметь в виду возможность действия видимых лучей через органы зрения на кору и вегетативные центры.

В развитии эритемы, вызванной светом, существенное значение придается влиянию лучей на рецепторный аппарат кожи. При воздействии ультрафиолетовых лучей в результате распада белков в коже образуются гистамин и гистаминоподобные продукты, которые расширяют кожные сосуды и повышают их проницаемость, что ведет к гиперемии и отечности. Образующиеся в коже при воздействии ультрафиолетовых лучей продукты (гистамин, витамин D и др.) поступают в кровь и вызывают те общие сдвиги в организме, которые имеют место при облучении.

Таким образом, развивающиеся в облученном участке процессы ведут нейрогуморальным путем к развитию общей реакции организма. Эта реакция определяется главным образом состоянием высших регулирующих отделов центральной нервной системы, которое, как известно, может меняться под влиянием различных факторов.

Нельзя говорить о биологическом действие ультрафиолетового облучения вообще, вне зависимости от длины волны. Коротковолновое ультрафиолетовое излучение вызывает денатурацию белковых веществ, длинноволновое - фотолитический распад. Специфическое действие разных участков спектра ультрафиолетового излучения выявляется главным образом в начальной стадии.

Применение ультрафиолетового излучения

Широкое биологическое действие ультрафиолетовых лучей дает возможность в определенных дозах использовать их для профилактических и лечебных целей.

Для ультрафиолетового облучения пользуются солнечным светом, а также искусственными источниками облучения: ртутно-кварцевыми и аргонортутно-кварцевыми лампами. Спектр излучения ртутно-кварцевых ламп характеризуется наличием более коротких ультрафиолетовых лучей, чем в солнечном спектре.

Ультрафиолетовое облучение может быть общим или местным. Дозировка процедур производится по принципу биодоз.

В настоящее время ультрафиолетовое облучение широко используют, прежде всего, для профилактики различных заболеваний. С этой целью ультрафиолетовое облучение применяют для оздоровления окружающей человека внешней среды и изменения его реактивности (в первую очередь - повышения его иммунобиологических свойств).

С помощью специальных бактерицидных ламп может производиться стерилизация воздуха в лечебных учреждениях и жилых помещениях, стерилизация молока, воды и т. д. широко используется ультрафиолетовое облучение для предупреждения рахита, гриппа, в целях общего укрепления организма в лечебных и детских учреждениях, школах, физкультурных залах, фотариях при угольных шахтах, при тренировке спортсменов, для акклиматизации к условиям севера, при работах в горячих цехах (ультрафиолетовое облучение дает больший эффект в сочетании с воздействием инфракрасной радиации).

Ультрафиолетовые лучи особенно широко используются для облучения детей. В первую очередь такое облучение показано, ослабленным, часто болеющим детям, проживающим в северных и средних широтах. При этом улучшается общее состояние детей, сон, нарастает вес, снижается заболеваемость, уменьшается частота катаральных явлений и, длительность заболеваний. Улучшается общее физическое развитие, нормализуется кровь, проницаемость сосудов.

Значительное распространение получило также ультрафиолетовое облучение горнорабочих в фотариях, которые в большом количестве организованы на предприятиях горнорудной промышленности. При систематическом массовом облучении шахтеров, занятых на подземных работах, отмечается улучшение самочувствия, повышение трудоспособности, уменьшение утомляемости, снижение заболеваемости с временной утратой трудоспособности. После облучения шахтеров повышается процентное содержание гемоглобина, появляется моноцитоз, уменьшается число случаев гриппа, снижается заболеваемость опорно-двигательного аппарата, периферической нервной системы, реже наблюдаются гнойничковые заболевания кожи, катары верхних дыхательных путей и ангины, улучшаются показания жизненной емкости, легких.

Применение ультрафиолетового излучения в медицине

Применение ультрафиолетовых лучей с терапевтической целью базируется в основном на противовоспалительном, антиневралгическом и десенсибилизирующем действии этого вида лучистой энергии.

В комплексе с другими лечебными мероприятиями ультрафиолетовое облучение проводится:

1) при лечении рахита;

2) после перенесенных инфекционных заболеваний;

3) при туберкулезных заболеваниях костей, суставов, лимфатических узлов;

4) при фиброзном туберкулезе легких без явлений, указывающих на активацию процесса;

5) при заболеваниях периферической нервной системы, мышц и суставов;

6) при заболеваниях кожи;

7) при ожогах и отморожениях;

8) при гнойных осложнениях ран;

9) при рассасывании инфильтратов;

10) в целях ускорения регенеративных процессов при травмах костей и мягких тканей.

Противопоказаниями к облучению являются:

1) злокачественные новообразования (так как облучение ускоряет их рост);

2) резкое истощение;

3) повышенная функция щитовидной железы;

4) выраженные сердечно-сосудистые заболевания;

5) активный туберкулез легких;

6) заболевания почек;

7) выраженные изменения центральной нервной системы.

Следует помнить, что получение пигментации, особенно в короткий срок, не должно быть целью лечения. В ряде случаев хороший терапевтический эффект наблюдается и при слабой пигментации.

Негативное действие ультрафиолета

Длительное и интенсивное ультрафиолетовое облучение может оказать неблагоприятное влияние на организм и вызвать патологические изменения. При значительном облучении отмечаются быстрая утомляемость, головные боли, сонливость, ухудшение памяти, раздражительность, сердцебиение, понижение аппетита. Чрезмерное облучение может вызвать гиперкальциемию, гемолиз, задержку роста и понижение сопротивляемости инфекциям. При сильном облучении развиваются ожоги и дерматиты (жжение и зуд кожи, диффузная эритема, отечность). При этом отмечается повышение температуры тела, головная боль, разбитость. Ожоги и дерматиты, возникающие под воздействием солнечной радиации, связаны преимущественно с влиянием ультрафиолетовых лучей. У работающих на открытом воздухе под влиянием солнечной радиации могут возникнуть длительно и тяжело протекающие дерматиты. Необходимо помнить о возможности перехода описываемых дерматитов в рак.

В зависимости от глубины проникновения лучей различных участков солнечного спектра могут развиться изменения глаз. Под влиянием инфракрасных и видимых лучей возникает острый ретинит. Хорошо известна так называемая катаракта стеклодувов, развивающаяся в результате длительного поглощения инфракрасных лучей хрусталиком. Помутнение хрусталика происходит медленно, главным образом у рабочих горячих цехов со стажем работы 20-25 лет и больше. В настоящее время профессиональные катаракты в горячих цехах встречаются редко вследствие значительного улучшения условий труда. Роговица и конъюнктива реагируют главным образом на ультрафиолетовые лучи. Эти лучи (особенно с длиной волны менее 320 mμ .) вызывают в ряде случаев заболевание глаз, известное под названием фотоофтальмии или электроофтальмии. Это заболевание наиболее часто встречается у электросварщиков. В таких случаях часто наблюдается острый кератоконъюнктивит, который обычно возникает через 6-8 часов после работы, нередко ночью.

При электроофтальмии отмечается гиперемия и припухание слизистой, блефароспазм, светобоязнь, слезотечение. Часто обнаруживается поражение роговицы. Продолжительность острого периода болезни 1-2 дня. У работающих на открытом воздухе при ярком солнечном освещении широких покрытых снегом пространств фотоофтальмия протекает иногда в виде так называемой снежной слепоты. Лечение фотоофтальмии заключается в пребывании в темноте, применении новокаина и холодных примочек.

Средства защиты от ультрафиолетового излучения

Для защиты глаз от неблагоприятного действия ультрафиолетовых лучей на производствах пользуются щитками или шлемами со специальными темными стеклами, защитными очками, а для защиты остальных частей тела и окружающих лиц - изолирующими ширмами, переносными экранами, спецодеждой.

Всем известно, что Солнце — центр нашей системы планет и стареющая звезда — испускает лучи. Солнечное излучение состоит из ультрафиолетовых лучей (УФ / UV) типа А, или UVA — длинноволновых, типа В, или UVB — коротковолновых. Наше понимание того, какие виды повреждений они могут причинять коже и как лучше всего защититься от УФ, похоже, меняется каждый год — по мере появления новых исследований. Например, когда-то считалось, что только UVB вредны для кожи, но мы все больше и больше узнаем из исследований о повреждениях, вызванных UVA. Как следствие, появляются и улучшенные формы защиты от UVA, которые способны при правильном применении предотвратить повреждения от воздействия солнца.

Что такое УФ-излучение?

УФ-излучение является частью электромагнитного (светового) спектра, который достигает Земли от Солнца. Длина волн УФ-излучения меньше спектра видимого света, что делает его невидимым для невооруженного глаза. Излучение по длине волн делится на UVA, UVB и UVC, причем UVA — наиболее длинноволновое (320-400 нм, где нм — миллиардная часть метра). UVA подразделяется еще на два диапазона волн: UVA I (340-400 нм) и UVA II (320-340 нм). Диапазон UVB — от 290 до 320 нм. Более короткие лучи UVC поглощаются озоновым слоем и не достигают поверхности земли.

Однако два типа лучей — UVA и UVB — проникают в атмосферу и являются причиной многих болезней — преждевременного старения кожи, повреждения глаз (включая катаракту) и рака кожи. Они также подавляют работу иммунной системы, уменьшая способность организма бороться с этими и другими заболеваниями.

УФ-излучение и рак кожи

Повреждая клеточную ДНК кожи, чрезмерное УФ-излучение вызывает генетические мутации, которые могут привести к раку кожи. Поэтому и Департамент здравоохранения и социальных служб США, и Всемирная организация здравоохранения признали УФ доказанным канцерогеном для человека. Ультрафиолетовое излучение считается основной причиной рака кожи немеланомы (NMSC), включая карциному базальной клетки (BCC) и плоскоклеточную карциному (SCC). Эти виды рака поражают ежегодно более миллиона людей в мире, из которых более 250 000 — граждане США. Многие эксперты считают, что, особенно для людей с бледной кожей, УФ-излучение часто играет ключевую роль в развитии меланомы — самой опасной формы рака кожи, которая ежегодно убивает более 8 000 американцев.

УФ А-излучение

Большинство из нас подвергается воздействию большого количества ультрафиолета на протяжении жизни. Лучи UVA составляют до 95 % УФ-излучения, достигающего поверхности Земли. Хотя они менее интенсивны, чем UVB, лучи UVA в 30-50 раз более распространены. Они присутствуют с относительно равной интенсивностью в течение всего светового дня в течение года и могут проникать сквозь облака и стекло.

Именно UVA, которое проникает в кожу более глубоко, чем UVB, виновато в старении кожи и возникновении морщин (так называемая солнечная геродермия), но до недавнего времени ученые полагали, что UVА не наносило значительного ущерба эпидермису (самый внешний слой кожи), где локализуется большинство случаев рака кожи. Однако исследования последних двух десятилетий показывают, что именно UVA повреждает клетки кожи, называемые кератиноцитами, в базальном слое эпидермиса, где развивается большинство случаев рака кожи. Базальные и плоскоклеточные клетки — это разновидности кератиноцитов.

Также именно UVA вызывает в основном загар, и теперь мы знаем, что загар (безразлично, где он получен — на открытом воздухе или в солярии) наносит коже ущерб, который усугубляется с течением времени, поскольку повреждаются ДНК кожи. Оказывается, кожа темнеет именно потому, что таким образом организм пытается предотвратить дальнейшее повреждение ДНК. Данные мутации могут привести к раку кожи.

Вертикальный солярий в основном излучает UVA. Лампы, используемые в салонах для загара, излучают дозы UVA в 12 раз больше, чем солнце. Неудивительно, что у людей, которые используют салон для загара, в 2,5 раза чаще развивается плоскоклеточный рак и в 1,5 раза чаще — базально-клеточный рак. Согласно недавним исследованиям, первое воздействие солярия в молодом возрасте повышает риск меланомы на 75%.

УФ В-излучение

UVB, которые являются главной причиной покраснения кожи и солнечных ожогов, наносят в основном ущерб более поверхностным эпидермальным слоям кожи. UVB играет ключевую роль в развитии рака кожи, старении и потемнении кожи. Интенсивность излучения зависит от сезона, местоположения и времени суток. Самое значительное количество UVB поражает США в период с 10:00 до 16:00 с апреля по октябрь. Однако лучи UVB могут повреждать кожу круглый год, особенно на больших высотах и на отражающих поверхностях, таких как снег или лед, которые отдают назад до 80% лучей, так что они попадают на кожу дважды. Радует только то, что UVB практически не проникают через стекло.

Защитные меры

Помните, что защищаться от УФ-излучения следует как внутри помещений, так и снаружи. Всегда ищите тень на улице, особенно между 10:00 и 16:00. А поскольку UVA проникает через стекло, подумайте над укреплением тонированной UV-защитной пленки на верхних частях боковых и задних стекол вашего автомобиля, а также на окнах дома и офиса. Такая пленка блокирует до 99,9% УФ-излучения и пропускает до 80% видимого света.

На открытом воздухе одевайте, чтобы ограничить воздействие УФ-излучения, специальную солнцезащитную одежду с UPF (коэффициент защиты от ультрафиолетового излучения). Чем выше значения UPF, тем лучше. Например, рубашка с UPF 30 означает, что только 1/30-я ультрафиолетового излучения Солнца может достичь кожи. Существуют и специальные добавки в средства для стирки, которые в обычных тканях обеспечивают более высокие значения UPF. Не игнорируйте возможность защититься — выбирайте те ткани, у которых лучшая защита от солнечных лучей. Например, яркая или темная блестящая одежда отражает больше УФ-излучения, чем светлые и отбеленные хлопчатобумажные ткани; правда, свободная одежда обеспечивает больший барьер между вашей кожей и солнечными лучами. Наконец, широкополые шляпы и солнцезащитные очки с УФ-защитой помогают защитить чувствительную кожу на лбу, шее и вокруг глаз — именно в этих областях обычно бывают наиболее тяжелые повреждения.

Защитный фактор (SPF) и УФ В-излучение

С появлением современных солнцезащитных кремов появилась традиция измерять их эффективность фактором защиты от солнца, или SPF. Как ни странно, SPF — это не фактор и не мера защиты как таковой.

Эти числа просто указывают, сколько времени потребуется, чтобы UVB-лучи вызвали покраснение кожи при использовании солнцезащитного крема по сравнению с тем, как кожа будет краснеть без применения данного продукта. Например, пользуясь солнцезащитным кремом с SPF 15, человек продлит время безопасного нахождения на солнце в 15 раз по сравнению с пребыванием в аналогичных условиях без солнцезащитного крема. Солнцезащитный крем SPF 15 экранирует 93% солнечных лучей UVB; SPF 30 — 97%; и SPF 50 — до 98%. Крем с SPF 15 или даже выше необходимы для адекватной повседневной защиты кожи в солнечное время года. Для более длительного или интенсивного воздействия солнца, например нахождения на пляже, рекомендуется SPF 30 или выше.

Солнцезащитный компонент

Поскольку UVA и UVB вредны для кожи, то нужна защита от обоих видов лучей. Эффективная защита начинается с SPF от 15 или выше, также важны следующие ингредиенты: stabilized a avobenzone, ecamsule (также известный как Mexoryl TM), oxybenzone, titanium dioxide, и zinc oxide . На этикетках солнцезащитных средств можно прочесть фразы типа «защищает от нескольких спектров лучей», «с широким спектром защиты» или «защита от UVA/UVB — все это указывает на то, что предусмотрена защита от UVA. Однако такие фразы могут не совсем соответствовать действительности.

В настоящее время 17 активных ингредиентов одобрены FDA (Управлением по контролю за качеством пищевых продуктов и лекарственных препаратов) для использования в солнцезащитных кремах. Эти фильтры делятся на две широкие категории: химические и физические. Большинство УФ-фильтров — химические, то есть они образуют тонкую защитную пленку на поверхности кожи и поглощают УФ-излучение, прежде чем лучи проникнут в кожу. Физические солнцезащитные средства чаще всего состоят из нерастворимых частиц, отражающих УФ-лучи от кожи. Большинство солнцезащитных кремов содержат смесь химических и физических фильтров.

Солнцезащитные средства, одобренные FDA

Название активного ингредиента / УФ-фильтра

Диапазон охвата

UVA1: 340-400 nm

UVA2: 320-340 nm

Химические абсорбенты :

Aminobenzoic acid (PABA)

Ecamsule (Mexoryl SX)

Ensulizole (Phenylbenzimiazole Sulfonic Acid)

Meradimate (Menthyl Anthranilate)

Octinoxate (Octyl Methoxycinnamate)

Octisalate (Octyl Salicylate)

Trolamine Salicylate

Физические фильтры :

Titanium Dioxide

  • Ищите тень, особенно между 10:00 и 16:00.
  • Не обгорайте.
  • Избегайте интенсивного загара и вертикального солярия.
  • Носите закрытую одежду, в том числе широкополую шляпу и солнцезащитные очки с ультрафиолетовыми фильтрами.
  • Используйте солнцезащитный крем широкого спектра (UVA/UVB) с SPF 15 или выше каждый день. Для продолжительной активности на открытом воздухе используйте водостойкий солнцезащитный крем с широким спектром (UVA/UVB) с SPF 30 или выше.
  • Наносите достаточную порцию (2 столовые ложки минимум) солнцезащитного крема на все тело за 30 минут до выхода на улицу. Повторно применять крем следует каждые два часа или сразу после купания/чрезмерного потоотделения.
  • Берегите новорожденных от солнца, поскольку солнцезащитные кремы можно использовать только для младенцев старше шести месяцев.
  • Каждый месяц проверяйте свою кожу с ног до головы — если обнаружили что-то подозрительное, то бегом к доктору.
  • Ежегодно посещайте врача для профессионального обследования кожи.

Ультрафиолетовое излучение Солнца и искусственных источников в зависимости от длины волны делят на три диапазона:

  • - область А – длина волны 400-320 нм (длинноволновое ультрафиолетовое излучение УФ-А);
  • - область Б – длина волны 320-275 нм (средневолновое ультрафиолетовое излучение УФ-В);
  • - область С – длина волны 275-180 нм (коротковолновое ультрафиолетовое излучение УФ-С).

В действии длинно, средне и коротковолнового излучения на клетки, ткани и организм имеются существенные различия.

Область А (УФ-А) длинноволновое излучение оказывает разнообразное биологическое действие, вызывает пигментацию кожи и флуоресценцию органических веществ. УФ-А – лучи обладают наибольшей проникающей способностью, что позволяет некоторым атомам и молекулам тела избирательно поглощать энергию УФ-излучения и переходить в неустойчивое возбужденное состояние. Последующий переход в исходное состояние сопровождается выделением квантов света (фотонов), способных инициировать различные фотохимические процессы, прежде всего затрагивающие ДНК, РНК, белковые молекулы.

Фототехнические процессы вызывают реакции и изменения со стороны различных органов и систем, которые составляют основу физиологического и лечебного действия УФ – лучей. Происходящие в облученном УФ – лучами организме сдвиги и эффекты (фотоэритема, пигментация, десенсибилизация, бактерицидный эффект и др.) имеют четкую спектральную зависимость (рис. 1), что и служит основой дифференцированного применения различных участков УФ – спектра.

Рисунок 1 - Спектральная зависимость важнейших биологических эффектов ультрафиолетового излучения

Облучение средневолновыми УФ-лучами вызывает фотолиз белка с образованием биологически активных веществ, а воздействие коротковолновыми лучами чаще приводит к коагуляции и денатурации белковых молекул. Под воздействием УФ-лучей диапазонов В и С, особенно в больших дозировках, происходят изменения в нуклеиновых кислотах, в результате чего возможно возникновение клеточных мутаций.

В то же время длинноволновые лучи приводят к образованию специфического фермента фотореактивации, способствующего восстановлению нуклеиновых кислот.

  1. Наиболее широко УФ-излучение используется с лечебными целями.
  2. Используются УФ-лучи также для стерилизации и дезинфекции воды, воздуха, помещений, предметов и т. д.
  3. Весьма распространено их применение с профилактическими и косметическими целями.
  4. Применяют УФ-излучение и с диагностическими целями, для определения реактивности организма, в люминисцентных методах.

УФ-излучение – жизненно необходимый фактор, а его длительный недостаток ведет к развитию своеобразного симптомокомплекса, имеющего «световым голоданием» или «УФ-недостаточностью». Наиболее часто он проявляется развитием авитаминоза D, ослаблением защитных иммунобиологических реакций организма, обострением хронических заболеваний, функциональными расстройствами нервной системы и т. д.К контингентам, испытывающим «УФ-недостаточность», относятся рабочие шахт, рудников, метро, люди работающие в бесфонарныхи безоконных цехах, машинных отделениях и на Крайнем Севере.

Ультрафиолетовое облучение

Ультрафиолетовое облучение производится различными искусственными изделиями с отличными друг от друга длинами волн λ. Поглощение УФ-лучей сопровождается рядом первичных фотохимических и фотофизических процессов, которые зависят от их спектрального состава и определяют физиологическое и лечебное действие фактора на организм.

Длинноволновые ультрафиолетовые (ДУФ) лучи стимулируют пролиферацию клеток мальпигиевого слоя эпидермоса и декарбоксилирование тирозина с последующим образованием в клетках шиповидногослоя. Далее идет стимулирование синтеза АКТГ и других гармонов и т. д. Получаются различные иммунологические сдвиги.

ДУФ-лучи оказывают более слабое, чем другие УФ-лучи биологическое, в том числе и эритемообразующее действие. Для усиления чувствительности кожи к ним используют фотосенсибилизаторы, чаще всего соединения фурокумаринового ряда (пувален, бероксан, псорален, амминофурин и др.)

Это свойство длинноволнового излучения позволяет его применять при лечении кожных заболеваний. Метод ПУВА-терапии (используется и салициловый спирт).

Таким образом можно выделить основные характеристики лечебных эффектов ДУФ-лучей:

  1. Лечебными эффектами являются
  • - фотосенсибилизирующий,
  • - пигментообразующий,
  • - иммуностимулирующий.
  1. ДУФ-лучи, как и другие области УФ-излучения вызывают изменение функционального состояния ЦНС и ее высшего отдела коры головного мозга. За счет рефлекторной реакции улучшается кровообращение, усиливается секторная активность органов пищеварения и функциональное состояние почек.
  2. ДУФ-лучи влияют на обмен веществ, прежде всего минеральный и азотный.
  3. Широко применяют местные аппликации фотосенсибилизаторов при ограниченных формах псориаза. В последнее время с успехом в качестве сенсибилизатора используют УФ-В как обладающее большей биологической активностью. Комбинированное облучение УФ-А и УФ-В называют селективным облучением.
  4. ДУФ-лучи используют как для местных, так и для общих облучений. Основными показаниями для их применения являются:
  • - кожные заболевания (псориаз, экзема, витилиго, себорея и др.)
  • - хронические воспалительные заболевания внутренних органов (особенно органов дыхания)
  • - заболевания органов опоры и движения различной этнологии
  • - ожоги, отморожения
  • - вялозаживающие раны и язвы, косметические цели.

Протвопоказания

  • - острые противовоспалительные процессы,
  • - заболевания печени и почек с выраженным нарушением их функций,
  • - гипертиреоз,
  • - повышенная чувствительность к ДУФ-излучениям.

Средневолновое ультрафиолетовое (СУФ) излучение обладает выраженным и разносторонним биологическим действием.

При поглощении квантов СУФ-излучения в коже образуются низкомолекулярные продукты фотолиза белка и продукты перекисного окисления липидов. Они вызывают изменения ультраструктурной организации биологических мембран, белково-липидных комплексов, мембранных ферментов и их важнейших физико-химических и функциональных свойств.

Продукты фотораспада активируют систему мононуклеарных фагоцитов и вызывают дегрануляцию лаброцитов и базофилов. В результате в облученной области и прилежащих тканях происходит выделение биологически активных веществ (кининн, простогландинн, гепарин, лейкотриены, тромбоксаны и др.) и вазоактивных медиаторов (ацетилхолин, гистамин), которые существенно увеличивают проницаемость и тонус сосудов, а также способствуют расслаблению гладкой мускулатуры. Вследствие гумаральных механизмов увеличивается количество функционирующих капилляров кожи, нарастает скорость местного кровотока, что ведет к формированию эритомы.

Повторные СУФ-облучения могут привести к появлению быстро исчезающей пигментации, способствующей повышению барьерной функции кожи, повышают ее холодовую чувствительность и резистентность к действию токсических веществ и неблагоприятных факторов.

Как эритемная реакция, так и другие сдвиги, вызываемые СУФ-лучами зависят не только от длины волны, но и от дозировки. В фототерапии его применяют в эритемных и субэритемных дозах.

Облучение СУФ-лучами в субэритемных дозировках способствует образованию в коже витамина D, который после его биотрансформации в печени и почках участвует в регуляции фосфорно-кальциевого обмена в организме. СУФ-облучение способствует образованию не только витамина D1, но и его изомера – эргокальцифемина (витамина D2). Последний обладает антирахитическим действием, стимулирует аэробный и анаэробный пути клеточного дыхания. СУФ-лучи в небольших дозировках также модулируют обмен других витаминов (А и С) вызывают активизацию метаболических процессов в облученных тканях. Под их влиянием активируется адаптационно-трофическая функция симпатической нервной системы, нормализуются нарушенные процессы различных видов обмена веществ, сердечнососудистая деятельность.

Таким образом СУФ-излучение обладает выраженным биологическим действием. В зависимости от фазы облучения можно получить эритему на коже и слизистых оболочках или проводить лечение в дозе, не вызывающей ее. Механизм лечебного действия эритемных и безэритемных доз СУФ различный, следовательно будут различными и показания к применению ультрафиолетового излучения.

Ультрафиолетовая эритема появляется на месте облучения УФ-В через 2-8 ч и связана с гибелью клеток эпидермиса. Продуты фотолиза белков поступают в ток крови и вызывают расширение сосудов, отек кожи, миграцию лейкоцитов, раздражение многочисленных рецепторов, ведущие к возникновению ряда рефлекторных реакций организма.

Кроме того, продукты фотолиза, попадающие в ток крови, оказывают гуморальное действие на отдельные органы, нервную и эндокринную системы организма. Явления асептического воспаления постепенно стихают к седьмому дню, оставляя после себя пигментацию кожи на месте облучения.

Основные лечебные эффекты СУФ-илучения:

  1. СУФ –излучения являются витаминно образующий, трофостимулирующий, иммуномодулирующий – это субэритемные дозы.
  2. Протиивовоспалиительный, анальгетический, десенсибилизирующий – это эритемная доза.
  3. Бронхиальные болезни, астма, закаливание – это безэритемная доза.

Показания к местному применению УФ-В (субэритемные и эритемные дозы):

  • - острый неврит
  • - острый меозит
  • - гнойничковые заболевания кожи (фурукул, карбункул, сикоз и др)
  • - рожа
  • - трофические язвы
  • - вялозаживающие раны
  • - пролежни
  • - воспалительные и посттравматические заболевания суставов
  • - ревматоидный артрит
  • - бронхиальная астма
  • - острый и хронический бронхит
  • - острые респературные заболевания
  • - воспаления придатков матки
  • - хронический тонзиллит.

Безэритемные зоны ультрафиолетового излучения спектра В при общих облучениях организма ликвидируют явления Д-гиповитаминоза, связанного с недостатком солнечного света. Нормализует фосфорно-кальциевый обмен, стимулируют функцию симпатико-адреналовой и гипофизарно-надпочечниковой систем, повышают механическую прочность костной ткани и стимулируют образование костной мозоли, повышают сопротивляемость кожи организма и организма в целом к вредным факторам внешней среды. Уменьшаются аллергические и экссудативные реакции, повышается умственная и физическая работоспособность. Ослабляются другие нарушения в организме, вызванные солнечным голоданием.

Показания к общему применению УФ-В (безэритемные дозы):

  • - D-гиповитаминоз
  • - нарушение обмена веществ
  • - предрасположенность к гнойничковым заболеваниям
  • - нейродермит
  • - псориаз
  • - переломы костей и нарушение образования костной мозоли
  • - бронхиальная астма
  • - хронические заболевания бронхиального аппарата
  • - закаливание организма.

Противопоказания:

  • - злокачественные новообразования
  • - наклонность к кровотечениям
  • - системные заболевания крови
  • - тиреотоксикоз
  • - активный туберкулез
  • - язвенная болезнь желудка и двенадцатиперстной кишки в стадии обострения
  • - гипертоническая болезнь II и III стадии
  • - далекозашедший атеросклероз артерий головного мозга и коронных артерий.

Коротковолновый ультрафиолетовый спектр излучения (КУФ) излучения.

УФ-излучение коротковолнового диапазона является активным физическим фактором, т. к. его кванты обладают наибольшим запасом энергии. Оно способно вызывать денатурацию и фотолиз нуклеиновых кислот и белков за счет избыточного поглащения энергии его квантов различными молекулами, в первую очередь ДНК и РНК.

При действии на микроорганизмы, на клетки это приводит к инактивации их генома и денатурации белка, что ведет к их гибели.

При излучении КУФ-лучей возникает бактерицидный эффект, т. к. прямое попадание их на белок гибельно для клеток вирусов, микроорганизмов и грибов.

КУФ-лучи вызывают после кратковременного спазма расширение кровеносных сосудов, прежде всего субкапелярных вен.

Показания к применению КУФ-излучений:

  • - облучение раневых поверхностей
  • - пролежни и миндалевидных ниш после тонзиллэктомин с бактерицидной цепью
  • - санация носоглотки при острых распиратурных заболеваниях
  • - лечение наружного отита
  • - обеззараживание воздуха в операционных, процедурных, ингаляториях, реанимационных отделениях, палатах больных, детских учреждениях и в школах.

Кожа и ее функция

Кожа человека составляет 18% от массы тела человека и имеет общую площадь 2м2. Состоит кожа из трех анатомически и физиологически тесно взаимосвязанных слоев:

  • - эпидермиса или надкожницы
  • - дермы (собственно кожа)
  • - гиподерма (подкожно жировая подкладка).

Эпидермис построен из различных по форме и строению, послойно расположенных эпителиальных клеток (эпитермоцитов). При этом каждая вышележащая клетка происходит из нижележащей, отражая определенную фазу ее жизни.

Слои эпидермиса распологаются в следующей последовательности (с низу в верх):

  • - базальный (Д) или зародышевый;
  • - слой шиповатых клеток;
  • - слой кератогиалиновых или зернистых клеток;
  • - эпейдиновый или блестящий;
  • - роговой.

Кроме эпидермоцитов в эпидермисе (в базальном слое) располагаются клетки, способные вырабатывать меланин (меланоциты), клетки Лагерганса, Гринстейна и др.

Дерма располагается непосредственно под эпидермисом и отделяется от него основной мембраной. В дерме различают сосочковый и сетчатый слои. Она состоит из коллагеновых, эластических и ретикулиновых (аргирофильных) волокон, между которыми располагается основное вещество.

В дерме, собственно, в коже находится сосочковый слой, богато снабженный кровеносными и лимфатическими сосудами. Здесь же имеются сплетения нервных волокон, дающие начало многочисленным нервным окончаниям в эпидермисе и дерме. В дерме заложены на различных уровнях потовый и сальные железы, волосяные фолликулы.

Подкожная жировая клетчатка является самым глубоким слоем кожи.

Функции кожи сложны и многообразны. Кожа выполняет барьерно - защитную, терморегуляторную, выделительную, обменную, рецепторную и т. д.

Барьерно – защитная функция, считающаяся главнейшей функцией кожи человека и животных, осуществляется за счет различных механизмов. Так, прочный и эластичный роговой слой кожи противостоит механическим влияниям и уменьшает вредное действие химических веществ. Роговой слой, являясь плохим проводником, предохраняет глубжележащие слои от высыхания, охлаждения и действия электрического тока.

Рисунок 2 – Строение кожи

Кожное сало, продукт секреции потовых желез и чешуйки отшелушивающегося эпителия образуют на поверхности кожи эмульсионную пленку (защитную мантию), играющую важную роль в предохранении кожи от воздействия химических, биологических и физических агентов.

Кислая реакция водно-липидной мантии и поверхностных слоев кожи, а также бактерицидные свойства кожного секрета являются важным барьерным механизмом для микроорганизмов.

В защите от световых лучей определенную роль играет пигмент меланин.

Электрофизиологический барьер является основным препятствием проникновения веществ в глубь кожи, в том числе и при электрофорезе. Он располагается на уровне базального слоя эпидермиса и представляет собой электрический слой с разнородными слоями. Наружный слой вследствие кислой реакции имеет «+» заряд, а обращенный внутрь «-». следует иметь в виду, что, с одной стороны, барьерно-защитная функция кожи ослабляет действие физических факторов на организм, а с другой стороны – физические факторы могут стимулировать защитные свойства кожи и тем самым реализовывать лечебные действие.

Физическая терморегуляция организма также является одной из важнейших физиологических функций кожи и имеет непосредственное отношение к механизму действия водолечебных факторов. Она осуществляется кожей путем теплоизлучения в виде инфракрасных лучей (44%) теплопроведения (31%) и испарения воды с поверхности кожи (21%). Важно отметить, что кожа с ее терморегуляторными механизмами играет большую роль в акклиматизации организма.

Секретно-экскреторная функция кожи связана с деятельностью потовых и сальных желез. Она играет важную роль в поддержании гомеостаза организма, в выполнении кожей барьерных свойств.

Дыхательная и резорбционная функция тесно взаимосвязаны. Дыхательная функция кожи, состоящая в поглощении кислорода и выделении углекислоты, в общем балансе дыхания для организма большого значения не имеет. Однако дыхание через кожу может значительно возрастать в условиях высокой температуры воздуха.

Резорбционная функция кожи, ее проницаемость имеют большое значение не только в дерматологии и токсикологии. Значение ее для физиотерапии определяется тем, что химический компонент действия многих лечебных факторов(лекарственных, газовых и минеральных ванн, грязелечения и др.) зависит от проникновения их составных ингредиентов через кожу.

Обменная функция кожи имеет специфические особенности. С одной стороны, в коже происходят только ей присущие обменные процессы (образование кератина, меланина, витамина D и др.), с другой – она принимает активное участие в общем обмене веществ в организме. Особенно велика ее роль в жировом, минеральном, углеводном и витаминном обменах.

Кожа является также местом синтеза биологически активных веществ (гепарина, гистамина, серотонина и др.).

Рецепторная функция кожи обеспечивает ее связь с внешней средой. Эту функцию кожа осуществляет в виде многочисленных условных и безусловных рефлексов благодаря наличию в ней упомянутых выше различных рецепторов.

Считают, что на 1 см2 кожи 100-200 болевых точек 12-15 холодовых, 1-2 тепловые, 25 точек давления.

Взаимосвязь с внутренними органами связана теснейшим образом – изменения кожи отражаются на деятельности внутренних органов, а нарушения со стороны внутренних органов сопровождаются сдвигами в коже. Эта взаимосвязь особенно четко проявляется при внутренних болезнях в виде так называемых рефлексогенных, или болевых, зон Захарина-Геда.

Захарьина-Геда зоны определенные области кожи, в которых при заболеваниях внутренних органов часто появляются отраженные боли, а также болевая и температурная гиперестезия.

Рисунок 3 – Расположение Захарьина-Геда зоны

Такие зоны при заболеваниях внутренних органов выявлены также в области головы. Например, боли в лобно-носовой области соответствует поражению верхушек легких, желудка, печени, устья аорты.

Боли в среднеглазичной области поражению легких, сердца, восходящей аорты.

Боли в лобно-височной области поражению легких, сердца.

Боли в теменной области поражению привратника и верхней части кишечника и т. д.

Зона комфорта область температурных условий внешней среды, вызывающих у человека субъективно хорошее теплоощущение без признаков охлаждения или перегрева.

Для обнаженного человека 17,3 0С – 21,7 0С

Для одетого человека 16,7 0С – 20,6 0С

Импульсная ультрафиолетовая терапия

НИИ энергетики машиностроения МГТУ им. Н. Э. Баумана (Шашковский С. Г. 2000 г) разработал портативный аппарат «Мелитта 01» для локального облучения пораженных поверхностей кожных покрытий, слизистых оболочек высокоэффективным импульсным ультрафиолетовым излучением сплошного спектра в диапазоне 230-380 нм.

Режим работы данного аппарата импульсный-периодический с частотой 1 Гц. В аппарате предусмотрена автоматическая генерация 1, 4, 8, 16, 32 импульсов. Выходная импульсная плотность мощности на расстоянии 5 см от горелки 25 Вт/см2

Показания:

  • - гнойно-воспалительные заболевания кожи и подкожной клетчатки (фурункул, карбункул, гидраденит) в начальный период гидратации и после хирургического вскрытия гнойной полости;
  • - обширные гнойные раны, раны после некрэктомии, раны перед и после проведения аутодермопластики;
  • - гранулирующие раны после ожогов термических, химических, радиационных;
  • - трофические язвы и вялозаживающие раны;
  • - рожистое воспаление;
  • - герпетическое воспаление кожи и слизистых оболочек;
  • - облучение ран перед первичной хирургической обработке и после нее с целью профилактики развития гнойных осложнений;
  • - обеззараживание воздуха помещений, салона автомобиля, автобуса и автомобиля скорой помощи.

Импульсная магнитная терапия с вращающимся полем и изменяющейся частотой повторения импульсов автоматически.

В основе лечебного действия лежат известные физические законы. На электрический заряд, движущиеся по кровеносному сосуду в магнитном поле, действует сила Лоренца, перпендикулярная вектору скорости заряда, постоянная в постоянном и знакопеременная, в переменном, вращающемся магнитном поле. Это явление реализуется на всех уровнях организма (атомарный, молекулярный, субклеточный, клеточный, тканевой).

Действие импульсной магнитной терапии низкой интенсивности оказывает активное влияние на глубоко расположенную мышечную, нервную, костную ткань, внутренние органы, улучшая микроциркуляцию, стимулируя обменные процессы и регенерацию. Электрические токи большой плотности, индуцированные импульсным магнитным полем, активизирую миелинизированные толстые волокна нервов, вследствие чего блокируется афферентная импульсация из болевого очага по спинальному механизму «воротного блока». Болевой синдром ослабляется или устраняется полностью уже во время процедуры или после первых процедур. По степени выраженности обезболивающего эффекта импульсная магнитная терапия сильно превосходит другие виды магнитной терапии.

Благодаря импульсным вращающимся магнитным полям появляется возможность индицирования в глубине тканей без их повреждений электрических полей и токов, значительной интенсивности. Это позволяет получить выраженный терапевтический противоотечный, обезболивающий, противовоспалительный, стимулирующий процессы регенерации, биостимулирующий эффекты действия, которые по степени выраженности превосходят в несколько раз лечебные эффекты, получаемые от всех известных аппаратов низкочастотной магнитотерапии.

Аппараты импульсной магнитной терапии являются современным эффективным средством лечения травматических повреждений, воспалительных, дегеративно-дистрофических заболеваний нервной и опорно-двигательной системы.

Лечебные эффекты импульсной магнитной терапии: анальгетический, противоотечный, противовоспалительный, вазоактивный, стимулирующий процессы регенерации в поврежденных тканях, нейростимулирующий, миостимулирующий.

Показания:

  • – заболевания и травматические повреждения ЦНС (ишемический инсульт головного мозга, преходящее нарушение мозгового кровообращения, последствия черепно-мозговой травмы с двигательными расстройствами, закрытые травмы спинного мозга с двигательными на рушениями, детский церебральный паралич, функционально истерические параличи),
  • - травматические повреждения опорно-двигательной системы (ушибы мягких тканей, суставов, костей, растяжение связок, закрытые переломы костей и суставов при иммобилизации, в стадии репаративной регенерации, открытые переломы костей, суставов, ранения мягких тканей при иммобилизации,в стадии репаративной регенерации, гипотрофия, атрофия мышц в результате гиподинамии, вызванной травматическими повреждениями опорно-двигательной системы),
  • - воспалительные дегенеративно-дистрофические повреждения опорно-двигательной системы (деформирующий остеоартроз суставов с явлениями синовита и без явлений синовита, распространенный остеохондроз, деформирующий спондилез позвоночника с явлениями вторичного корешкового синдрома, шейный радикулит с явлениями плечелопаточного переатрита, грудной радикулит, пояснично-крестцовый радикулит, анкилозирующий спондилоатрит, сколиотическая болезнь у детей),
  • - хирургические воспалительные заболевания (послеоперационный период после оперативных вмешательств на опорно-двигательном аппарате, коже и подкожной клетчатке, вялозаживающие раны, трофические язвы, фурункулы, карбункулы, флегмоны после хирургического вмешательства, маститы),
  • - заболевания бронхолегочной системы (бронхиальная астма легкой и средней степени тяжести, хронический бронхит),
  • - заболевания органов пищеварения (гипомоторно-эвакуаторные нарушения функции желудка после желудка и ваготомии, гипомоторная дисфункция толстой кишки, желудка и желчного пузыря, хронический гепатит с умеренным нарушением функции печени, хронический панкреатит с секреторной недостаточностью),
  • - заболевания сердечно-сосудистой системы (оккклюзионные поражения переферических артерий атеросклеротического генеза),
  • - урологические заболевания (камень в мочеточнике, состояние после литотрипсии, атония мочевого пузыря, слабость сфинкера и детрузора, простатит),
  • - гинекологические заболевания (воспалительные заболевания матки и придатков, заболевания, обусловленные гипофункцией яичников),
  • - хронический простатит и сексуальные расстройства у мужчин,
  • - стоматологические заболевания (пародонтоз, пломбировочные боли).

Противопоказания:

  • - выраженная гипотония,
  • - системные заболевания крови,
  • - наклонности к кровотечениям,
  • - тромбофлебит,
  • - тромбоэмболическая болезнь, переломы костей до иммобилизации,
  • - беременность,
  • - тиреотоксикоз и узловой зоб,
  • - абсцесс, флегмоны (до вскрытия и дренирования полостей),
  • - злокачественные новообразования,
  • - лихорадочное состояние,
  • - желчекаменная болезнь,
  • - эпилепсия.

Предупреждение:

Импульсную магнитную терапию нельзя применять при наличии имплантированного кардиостимулятора, так как индуцированные электропотенциалы могут нарушать его работу; при различных металлических свободно лежащих в тканях организма предметах (например, осколки при ранениях), если они находятся на расстоянии менее 5 см от индукторов, поскольку при прохождении импульсов магнитного поля предметы из электропроводных материалов (сталь, медь и др.) могут совершать движения и вызывать повреждения окружающих тканей. Воздействовать на область головного мозга, сердца и глаза не допускается.

Большой интерес представляет создание импульсных магнитных аппаратов низкой интенсивности (20-150 мТл) с частотой следования импульсов, приблизительно совпадающей с частотой собственных биопотенциалов органов (2-4-6-8-10-12 Гц). Это позволило бы оказывать биорезонансное воздействие на внутренние органы (печень, поджелудочная железа, желудок, легкие) импульсным магнитным полем и положительно влиять на их функцию. Уже известно, что положительно ИМП влияет на частоте 8-10 Гц на функцию печени у больных с токсическим (алкогольным) гепатитом.

И фиолетовый), ультрафиолетовые лучи, УФ-излучение, не видимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн λ 400-10 нм. Вся область ультрафиолетового излучения условно делится на ближнюю (400-200 нм) и далёкую, или вакуумную (200-10 нм); последнее название обусловлено тем, что ультрафиолетовое излучение этого участка сильно поглощается воздухом и его исследование производят с помощью вакуумных спектральных приборов.

Ближнее ультрафиолетовое излучение открыто в 1801 году немецким учёным Н. Риттером и английским учёным У. Волластоном по фотохимическому действию этого излучения на хлористое серебро. Вакуумное ультрафиолетовое излучение обнаружено немецким учёным В. Шуманом при помощи построенного им вакуумного спектрографа с флюоритовой призмой (1885-1903) и безжелатиновых фотопластинок. Он получил возможность регистрировать коротковолновое излучение до 130 нм. Английский учёный Т. Лайман, впервые построив вакуумный спектрограф с вогнутой дифракционной решёткой, регистрировал ультрафиолетовое излучение с длиной волны до 25 нм (1924). К 1927 году был изучен весь промежуток между вакуумным ультрафиолетовым излучением и рентгеновским излучением.

Спектр ультрафиолетового излучения может быть линейчатым, непрерывным или состоять из полос в зависимости от природы источника ультрафиолетового излучения (см. Спектры оптические). Линейчатым спектром обладает УФ-излучение атомов, ионов или лёгких молекул (например, H 2). Для спектров тяжёлых молекул характерны полосы, обусловленные электронно-колебательно-вращательными переходами молекул (см. Молекулярные спектры). Непрерывный спектр возникает при торможении и рекомбинации электронов (см. Тормозное излучение).

Оптические свойства веществ.

Оптические свойства веществ в ультрафиолетовой области спектра значительно отличаются от их оптических свойств в видимой области. Характерной чертой является уменьшение прозрачности (увеличение коэффициента поглощения) большинства тел, прозрачных в видимой области. Например, обычное стекло непрозрачно при λ < 320 нм; в более коротковолновой области прозрачны лишь увиолевое стекло, сапфир, фтористый магний, кварц, флюорит, фтористый литий и некоторые другие материалы. Наиболее далёкую границу прозрачности (105 нм) имеет фтористый литий. Для λ < 105 нм прозрачных материалов практически нет. Из газообразных веществ наибольшую прозрачность имеют инертные газы, граница прозрачности которых определяется величиной их ионизационного потенциала. Самую коротковолновую границу прозрачности имеет гелий - 50,4 нм. Воздух непрозрачен практически при λ < 185 нм из-за поглощения кислородом.

Коэффициент отражения всех материалов (в том числе металлов) уменьшается с уменьшением длины волны излучения. Например, коэффициент отражения свеженапылённого алюминия, одного из лучших материалов для отражающих покрытий в видимой области спектра, резко уменьшается при λ < 90 нм (рис. 1) . Отражение алюминия значительно уменьшается также вследствие окисления поверхности. Для защиты поверхности алюминия от окисления применяются покрытия из фтористого лития или фтористого магния. В области λ < 80 нм некоторые материалы имеют коэффициент отражения 10-30% (золото, платина, радий, вольфрам и др.), однако при λ < 40 нм и их коэффициент отражения снижается до 1% и меньше.

Источники ультрафиолетового излучения.

Излучение накалённых до 3000 К твёрдых тел содержит заметную долю ультрафиолетового излучения непрерывного спектра, интенсивность которого растет с увеличением температуры. Более мощное ультрафиолетовое излучение испускает плазма газового разряда. При этом в зависимости от разрядных условий и рабочего вещества может испускаться как непрерывный, так и линейчатый спектр. Для различных применений ультрафиолетового излучения промышленность выпускает ртутные, водородные, ксеноновые и другие газоразрядные лампы, окна которых (либо целиком колбы) изготовляют из прозрачных для ультрафиолетового излучения материалов (чаще из кварца). Любая высокотемпературная плазма (плазма электрических искр и дуг, плазма, образующаяся при фокусировке мощного лазерного излучения в газах или на поверхности твёрдых тел, и так далее) является мощным источником ультрафиолетового излучения. Интенсивное ультрафиолетовое излучение непрерывного спектра испускают электроны, ускоренные в синхротроне (синхротронное излучение). Для ультрафиолетовой области спектра разработаны также оптические квантовые генераторы (лазеры). Наименьшую длину волны имеет водородный лазер (109,8 нм).

Естественные источники ультрафиолетового излучения - Солнце, звёзды, туманности и другие космические объекты. Однако лишь длинноволновая часть ультрафиолетового излучения (λ > 290 нм) достигает земной поверхности. Более коротковолновое ультрафиолетовое излучение поглощается озоном, кислородом и другими компонентами атмосферы на высоте 30-200 км от поверхности Земли, что играет большую роль в атмосферных процессах. Ультрафиолетовое излучение звёзд и других космических тел, кроме поглощения в земной атмосфере, в интервале 91,2-20 нм практически полностью поглощается межзвёздным водородом.

Приёмники ультрафиолетового излучения.

Для регистрации ультрафиолетового излучения при λ > 230 нм используются обычные фотоматериалы. В более коротковолновой области к нему чувствительны специальные маложелатиновые фотослои. Применяются фотоэлектрические приёмники, использующие способность ультрафиолетового излучения вызывать ионизацию и фотоэффект: фотодиоды, ионизационные камеры, счётчики фотонов, фотоумножители и др. Разработан также особый вид фотоумножителей - каналовые электронные умножители, позволяющие создавать микроканаловые пластины. В таких пластинах каждая ячейка является каналовым электронным умножителем размером до 10 мкм. Микроканаловые пластины позволяют получать фотоэлектрические изображения в ультрафиолетовом излучении и объединяют преимущества фотографических и фотоэлектрических методов регистрации излучения. При исследовании ультрафиолетового излучения также используют различные люминесцирующие вещества, преобразующие ультрафиолетовое излучение в видимое. На этой основе созданы приборы для визуализации изображений в ультрафиолетовом излучении.

Применение ультрафиолетового излучения.

Изучение спектров испускания, поглощения и отражения в УФ-области позволяет определять электронную структуру атомов, ионов, молекул, а также твёрдых тел. УФ-спектры Солнца, звёзд и др. несут информацию о физических процессах, происходящих в горячих областях этих космических объектов (см. Ультрафиолетовая спектроскопия, Вакуумная спектроскопия). На фотоэффекте, вызываемом ультрафиолетовым излучением, основана фотоэлектронная спектроскопия. Ультрафиолетовое излучение может нарушать химические связи в молекулах, в результате чего могут происходить различные химические реакции (окисление, восстановление, разложение, полимеризация и так далее, см. Фотохимия). Люминесценция под действием ультрафиолетового излучения используется при создании люминесцентных ламп, светящихся красок, в люминесцентном анализе и люминесцентной дефектоскопии. Ультрафиолетовое излучение применяется в криминалистике для установления идентичности красителей, подлинности документов и тому подобное. В искусствоведении ультрафиолетовое излучение позволяет обнаружить на картинах не видимые глазом следы реставраций (рис. 2) . Способность многих веществ к избирательному поглощению ультрафиолетового излучения используется для обнаружения в атмосфере вредных примесей, а также в ультрафиолетовой микроскопии.

Мейер А., Зейтц Э., Ультрафиолетовое излучение, пер. с нем., М., 1952; Лазарев Д. Н., Ультрафиолетовая радиация и ее применение, Л. - М., 1950; Samson I. A. R., Techniques of vacuum ultraviolet spectroscopy, N. Y. - L. - Sydney, ; Зайдель А. Н., Шрейдер Е. Я., Спектроскопия вакуумного ультрафиолета, М., 1967; Столяров К. П., Химический анализ в ультрафиолетовых лучах, М. - Л., 1965; Бейкер А., Беттеридж Д., Фотоэлектронная спектроскопия, пер. с англ., М., 1975.

Рис. 1. Зависимости коэффициента отражения r слоя алюминия от длины волны.

Рис. 2. Спектры действия ультр. изл. на биообъекты.

Рис. 3. Выживаемость бактерий в зависимости от дозы ультрафиолетового излучения.

Биологическое действие ультрафиолетового излучения.

При действии на живые организмы ультрафиолетовое излучение поглощается верхними слоями тканей растений или кожи человека и животных. В основе биологического действия ультрафиолетового излучения лежат химические изменения молекул биополимеров. Эти изменения вызываются как непосредственным поглощением ими квантов излучения, так и (в меньшей степени) образующимися при облучении радикалами воды и других низкомолекулярных соединений.

На человека и животных малые дозы ультрафиолетового излучения оказывают благотворное действие - способствуют образованию витаминов группы D (см. Кальциферолы), улучшают иммунобиологические свойства организма. Характерной реакцией кожи на ультрафиолетовое излучение является специфическое покраснение - эритема (максимальным эритемным действием обладает ультрафиолетовое излучение с λ = 296,7 нм и λ = 253,7 нм), которая обычно переходит в защитную пигментацию (загар). Большие дозы ультрафиолетового излучения могут вызывать повреждения глаз (фотоофтальмию) и ожог кожи. Частые и чрезмерные дозы ультрафиолетового излучения в некоторых случаях могут оказывать канцерогенное действие на кожу.

В растениях ультрафиолетовое излучение изменяет активность ферментов и гормонов, влияет на синтез пигментов, интенсивность фотосинтеза и фотопериодической реакции. Не установлено, полезны ли и тем более необходимы ли для прорастания семян, развития проростков и нормальной жизнедеятельности высших растений малые дозы ультрафиолетового излучения. Большие дозы ультрафиолетового излучения, несомненно, неблагоприятны для растений, о чём свидетельствуют и существующие у них защитные приспособления (например, накопление определённых пигментов, клеточные механизмы восстановления от повреждений).

На микроорганизмы и культивируемые клетки высших животных и растений ультрафиолетовое излучение оказывает губительное и мутагенное действие (наиболее эффективно ультрафиолетовое излучения с λ в пределах 280-240 нм). Обычно спектр летального и мутагенного действия ультрафиолетового излучения примерно совпадает со спектром поглощения нуклеиновых кислот - ДНК и РНК (рис. 3, А) , в некоторых случаях спектр биологического действия близок к спектру поглощения белков (рис. 3, Б) . Основная роль в действии ультрафиолетового излучения на клетки принадлежит, по-видимому, химическим изменениям ДНК: входящие в её состав пиримидиновые основания (главным образом тимин) при поглощении квантов ультрафиолетовое излучение образуют димеры, которые препятствуют нормальному удвоению (репликации) ДНК при подготовке клетки к делению. Это может приводить к гибели клеток или изменению их наследственных свойств (мутациям). Определённое значение в летальном действии ультрафиолетового излучения на клетки имеют также повреждение биолеских мембран и нарушение синтеза различных компонентов мембран и клеточной оболочки.

Большинство живых клеток может восстанавливаться от вызываемых ультрафиолетовым излучением повреждений благодаря наличию у них систем репарации. Способность восстанавливаться от повреждений, вызываемых ультрафиолетовым излучением, возникла, вероятно, на ранних этапах эволюции и играла важную роль в выживании первичных организмов, подвергавшихся интенсивному солнечному ультрафиолетовому облучению.

По чувствительности к ультрафиолетовому излучению биологические объекты различаются очень сильно. Например, доза ультрафиолетового излучения, вызывающая гибель 90% клеток, для разных штаммов кишечной палочки равна 10, 100 и 800 эрг/мм 2 , а для бактерий Micrococcus radiodurans - 7000 эрг/мм 2 (рис. 4, А и Б) . Чувствительность клеток к ультрафиолетовому излучению в большой степени зависит также от их физиологического состояния и условий культивирования до и после облучения (температура, состав питательной среды и др.). Сильно влияют на чувствительность клеток к ультрафиолетовому излучению мутации некоторых генов. У бактерий и дрожжей известно около 20 генов, мутации которых повышают чувствительность к ультрафиолетовому излучению. В ряде случаев такие гены ответственны за восстановление клеток от лучевых повреждений. Мутации других генов нарушают синтез белка и строение клеточных мембран, тем самым повышая радиочувствительность негенетических компонентов клетки. Мутации, повышающие чувствительность к ультрафиолетовому излучению, известны и у высших организмов, в том числе у человека. Так, наследственное заболевание - пигментная ксеродерма обусловлено мутациями генов, контролирующих темновую репарацию.

Генетические последствия облучения ультрафиолетовым излучением пыльцы высших растений, клеток растений и животных, а также микроорганизмов выражаются в повышении частот мутирования генов, хромосом и плазмид. Частота мутирования отдельных генов, при действии высоких доз ультрафиолетового излучения, может повышаться в тысячи раз по сравнению с естественным уровнем и достигает нескольких процентов. В отличие от генетического действия ионизирующих излучений, мутации генов под влиянием ультрафиолетового излучения возникают относительно чаще, чем мутации хромосом. Благодаря сильному мутагенному эффекту ультрафиолетовое излучение широко используют как в генетических исследованиях, так и в селекции растений и промышленных микроорганизмов, являющихся продуцентами антибиотиков, аминокислот, витаминов и белковой биомассы. Генетическое действие ультрафиолетового излучения могло играть существенную роль в эволюции живых организмов. О применении ультрафиолетового излучения в медицине см. Светолечение.

Самойлова К. А., Действие ультрафиолетовой радиации на клетку, Л., 1967; Дубров А. П, Генетические и физиологические эффекты действия ультрафиолетовой радиации на высшие растения, М., 1968; Галанин Н. Ф., Лучистая энергия и ее гигиеническое значение, Л., 1969; Смит К., Хэнеуолт Ф., Молекулярная фотобиология, пер. с англ., М., 1972; Шульгин И. А., Растение и солнце, Л., 1973; Мясник М. Н., Генетический контроль радиочувствительности бактерий, М., 1974.

Живительные лучи.

Солнце испускает три типа ультрафиолетовых лучей. Каждый из этих типов по-разному воздействует на кожу.

Большинство из нас после отдыха на пляже чувствует себя более здоровыми и полными жизни. Благодаря живительным лучам в коже образуется витамин D, который необходим для полноценного усвоения кальция. Но благотворно воздействуют на организм только небольшие дозы солнечного облучения.

Но сильно загорелая кожа это все-таки поврежденная кожа и,как следствие преждевременное старение и высокий риск развития рака кожи.

Солнечный свет - электромагнитное излучение. Кроме видимого спектра излучения в нем присутствует ультрафиолетовое, которое собственно и отвечает за загар. Ультрафиолет стимулирует способность пигментных клеток меланоцитов производить больше меланина, выполняющего защитную функцию.

Типы УФ лучей.

Существуют три типа ультрафиолетовых лучей, которые различаются по длине волны. Ультрафиолетовое излучение способно проникать сквозь эпидермис кожи в более глубокие слои. Это активизирует процесс производства новых клеток и кератина, в результате кожа становится более жесткой и грубой. Солнечные лучи, проникая сквозь дерму разрушают коллаген и приводят к изменениям толщины и текстура кожи.

Ультрафиолетовые лучи А.

Эти лучи обладают наиболее низким уровнем радиации. Раньше было принято считать, что они безвредны, однако, в настоящее время доказано, что это не так. Уровень этих лучей остается практически постоянным на протяжении всего дня и года. Они проникают даже сквозь стекло.

УФ лучи типа А проникают сквозь слои кожи, достигая дермы, повреждают основание и структуру кожи, разрушая волокна коллагена и эластина.

А-лучи способствуют появлению морщин, уменьшают эластичность кожи, ускоряют появление признаков преждевременного старения, ослабляют защитную систему кожи, делая ее более подверженной инфекциям и, возможно, онкологическим заболеваниям.

Ультрафиолетовые лучи В.

Лучи этого типа испускаются солнцем лишь в определенные времена года и часы дня. В зависимости от температуры воздуха и географической широты они обычно проникают в атмосферу в период с 10 до 16 часов.

УФ лучи типа В наносят коже более серьезный урон, так как взаимодействуют с молекулами ДНК, которые содержатся в клетках кожи. В-лучи повреждают эпидермис, что приводит к появлению солнечных ожогов. В-лучи повреждают эпидермис, что приводит к появлению солнечных ожогов. Излучение этого типа усиливает активность свободных радикалов, которые ослабляют естественную защитную систему кожи.

Ультрафиолетовые лучи В способствуют появлению загара и вызывают солнечные ожоги, ведут к преждевременному старению и появлению темных пигментных пятен, делают кожу грубой и шершавой, ускоряют появление морщин, могут спровоцировать развитие предраковых заболеваний и рака кожи.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...