Валентные состояния атома углерода — Гипермаркет знаний. Ковалентные связи в соединениях углерода

Продолжение. Начало см. в № 15, 16/2004

Урок 5. Гибридизация
атомных орбиталей углерода

Ковалентная химическая связь образуется при помощи общих связывающих электронных пар по типу:

Образовывать химическую связь, т.е. создавать общую электронную пару с «чужим» электроном от другого атома, могут только неспаренные электроны. Неспаренные электроны при записи электронных формул находятся по одному в клетке-орбитали.
Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома. Электронное облако – это область пространства, в которой с высокой вероятностью может быть обнаружен электрон.
Для согласования электронного строения атома углерода и валентности этого элемента пользуются представлениями о возбуждении атома углерода. В нормальном (невозбужденном) состоянии атом углерода имеет два неспаренных 2р 2 -электрона. В возбужденном состоянии (при поглощении энергии) один из 2s 2 -электронов может переходить на свободную р -орбиталь. Тогда в атоме углерода появляется четыре неспаренных электрона:

Напомним, что в электронной формуле атома (например, для углерода 6 С – 1s 2 2s 2 2p 2) большие цифры перед буквами – 1, 2 – обозначают номер энергетического уровня. Буквы s и р указывают форму электронного облака (орбитали), а цифры справа над буквами говорят о числе электронов на данной орбитали. Все s -орбитали сферические:

На втором энергетическом уровне кроме 2s -орбитали имеются три 2р -орбитали. Эти 2р -орбитали имеют эллипсоидную форму, похожую на гантели, и ориентированы в пространстве под углом 90° друг к другу. 2р -Орбитали обозначают 2р х , 2р y и 2р z в соответствии с осями, вдоль которых эти орбитали расположены.

При образовании химических связей электронные орбитали приобретают одинаковую форму. Так, в предельных углеводородах смешиваются одна s -орбиталь и три р -орбитали атома углерода с образованием четырех одинаковых (гибридных) 3 -орбиталей:

Это – 3 -гибридизация.
Гибридизация – выравнивание (смешивание) атомных орбиталей (s и р ) с образованием новых атомных орбиталей, называемых гибридными орбиталями .

Гибридные орбитали имеют асимметричную форму, вытянутую в сторону присоединяемого атома. Электронные облака взаимно отталкиваются и располагаются в пространстве максимально далеко друг от друга. При этом оси четырех 3-гибридных орбиталей оказываются направленными к вершинам тетраэдра (правильной треугольной пирамиды).
Соответственно углы между этими орбиталями – тетраэдрические, равные 109°28".
Вершины электронных орбиталей могут перекрываться с орбиталями других атомов. Если электронные облака перекрываются по линии, соединяющий центры атомов, то такую ковалентную связь называют сигма()-связью . Например, в молекуле этана С 2 Н 6 химическая связь образуется между двумя атомами углерода перекрыванием двух гибридных орбиталей. Это -связь. Кроме того, каждый из атомов углерода своими тремя 3 -орбиталями перекрывается с s -орбиталями трех атомов водорода, образуя три -связи.

Всего для атома углерода возможны три валентных состояния с различным типом гибридизации. Кроме 3 -гибридизации существует 2 - и -гибридизация.
2 -Гибридизация – смешивание одной s - и двух р -орбиталей. В результате образуются три гибридные 2 -орбитали. Эти 2 -орбитали расположены в одной плоскости (с осями х , у ) и направлены к вершинам треугольника с углом между орбиталями 120°. Негибридизованная
р -орбиталь перпендикулярна к плоскости трех гибридных 2 -орбиталей (ориентирована вдоль оси z ). Верхняя половина р -орбитали находится над плоскостью, нижняя половина – под плоскостью.
Тип 2 -гибридизации углерода бывает у соединений с двойной связью: С=С, С=О, С=N. Причем только одна из связей между двумя атомами (например, С=С) может быть -связью. (Другие связывающие орбитали атома направлены в противоположные стороны.) Вторая связь образуется в результате перекрывания негибридных р -орбиталей по обе стороны от линии, соединяющей ядра атомов.

Ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей соседних углеродных атомов, называется пи()-связью .

Образование
-связи

Из-за меньшего перекрывании орбиталей -связь менее прочная, чем -связь.
-Гибридизация – это смешивание (выравнивание по форме и энергии) одной s- и одной
р -орбиталей с образованием двух гибридных -орбиталей. -Орбитали расположены на одной линии (под углом 180°) и направлены в противоположные стороны от ядра атома углерода. Две
р -орбитали остаются негибридизованными. Они размещены взаимно перпендикулярно
направлениям -связей. На рисунке -орбитали показаны вдоль оси y , а негибридизованные две
р -орбитали– вдоль осей х и z .

Тройная углерод-углеродная связь СС состоит из -связи, возникающей при перекрывании
sp -гибридных орбиталей, и двух -связей.
Взаимосвязь таких параметров атома углерода, как число присоединенных групп, тип гибридизации и типы образуемых химических связей, показана в таблице 4.

Таблица 4

Ковалентные связи углерода

Число групп,
связанных
с углеродом
Тип
гибридизации
Типы
участвующих
химических связей
Примеры формул соединений
4 sp 3 Четыре - связи
3 sp 2 Три - связи и
одна - связь
2 sp Две - связи
и две -связи

H–CC–H

Упражнения .

1. Какие электроны атомов (например, углерода или азота) называют неспаренными?

2. Что означает понятие «общие электронные пары» в соединениях с ковалентной связью (например, СН 4 или Н 2 S)?

3. Какие электронные состояния атомов (например, С или N) называют основными, а какие возбужденными?

4. Что означают цифры и буквы в электронной формуле атома (например, С или N)?

5. Что такое атомная орбиталь? Сколько орбиталей на втором энергетическом уровне атома С и чем они различаются?

6. В чем отличие гибридных орбиталей от исходных орбиталей, из которых они образовались?

7. Какие типы гибридизации известны для атома углерода и в чем они заключаются?

8. Нарисуйте картинку пространственного расположения орбиталей для одного из электронных состояний атома углерода.

9. Какие химические связи называют и какие ? Укажите - и -связи в соединениях:

10. Для атомов углерода приведенных ниже соединений укажите: а) тип гибридизации; б) типы его химических связей; в) валентные углы.

Ответы на упражнения к теме 1

Урок 5

1. Электроны, которые находятся по одному на орбитали, называют неспаренными электронами . Например, в электронографической формуле возбужденного атома углерода – четыре неспаренных электрона, а у атома азота – три:

2. Два электрона, участвующие в образовании одной химической связи, называют общей электронной парой . Обычно до образования химической связи один из электронов этой пары принадлежал одному атому, а другой электрон – другому атому:

3. Электронное состояние атома, в котором соблюдается порядок заполнения электронных орбиталей: 1s 2 , 2s 2 , 2p 2 , 3s 2 , 3p 2 , 4s 2 , 3d 2 , 4p 2 и т.д., называют основным состоянием . В возбужденном состоянии один из валентных электронов атома занимает свободную орбиталь с более высокой энергией, такой переход сопровождается разъединением спаренных электронов. Схематически это записывают так:

Тогда как в основном состоянии было только два валентных неспаренных электрона, то в возбужденном состоянии таких электронов становится четыре.

5. Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра данного атома. На втором энергетическом уровне атома углерода четыре орбитали – 2s , 2р x , 2р y , 2р z . Эти орбитали различаются:
а) формой электронного облака (s – шар, р – гантель);
б) р -орбитали имеют разную ориентацию в пространстве – вдоль взаимно перпендикулярных осей x , y и z , их обозначают р x , р y , р z .

6. Гибридные орбитали отличаются от исходных (негибридных) орбиталей формой и энергией. Например, s -орбиталь – форма сферы, р – симметричная восьмерка, sp -гибридная орбиталь – асимметричная восьмерка.
Различия по энергии: E (s ) < E () < E (р ). Таким образом, sp -орбиталь – усредненная по форме и энергии орбиталь, полученная смешиванием исходных s - и p -орбиталей.

7. Для атома углерода известны три типа гибридизации: sp 3 , sp 2 и sp (см. текст урока 5 ).

9. -связь – ковалентная связь, образующаяся путем лобового перекрывания орбиталей по линии, соединяющей центры атомов.
-связь – ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей по обе стороны от линии, соединяющей центры атомов.
-Связи показывают второй и третьей черточкой между соединенными атомами.

Органическая химия – химия атома углерода. Число органических соединений в десятки раз больше, чем неорганических, что может быть объяснено только особенностями атома углерода :

а) он находится в середине шкалы электроотрицательности и второго периода, поэтому ему невыгодно отдавать свои и принимать чужие электроны и приобретать положительный или отрицательный заряд;

б) особенное строение электронной оболочки – нет электронных пар и свободных орбиталей (есть еще только один атом с подобным строением – водород, вероятно, поэтому углерод с водородом образует столь много соединений - углеводородов).

Электронное строение атома углерода

С – 1s 2 2s 2 2p 2 или 1s 2 2s 2 2p x 1 2p y 1 2p z 0

В графическом виде:

Атом углерода в возбужденном состоянии имеет следующую электронную формулу:

*С – 1s 2 2s 1 2p 3 или 1s 2 2s 1 2p x 1 2p y 1 2p z 1

В виде ячеек:

Форма s- и p – орбиталей


Атомная орбиталь - область пространства, где с наибольшей вероятностью можно обнаружить электрон, с соответствующими квантовыми числами.

Она представляет собой трехмерную электронную «контурную карту», в которой волновая функция определяет относительную вероятность нахождения электрона в данной конкретной точке орбитали.

Относительные размеры атомных орбиталей увеличиваются по мере возрастания их энергий (главное квантовое число - n), а их форма и ориентация в пространстве определяется – квантовыми числами l и m. Электроны на орбиталях характеризуются спиновым квантовым числом. На каждой орбитали могут находиться не более 2 электронов с противоположными спинами.

При образовании связей с другими атомами атом углерода преобразует свою электронную оболочку так, чтобы образовались наиболее прочные связи, а, следовательно, выделилось как можно больше энергии, и система приобрела наибольшую устойчивость.

Для изменения электронной оболочки атома требуется энергия, которая затем компенсируется за счет образования более прочных связей.

Преобразование электронной оболочки (гибридизация) может быть, в основном, 3 типов, в зависимости от числа атомов, с которыми атом углерода образует связи.

Виды гибридизации:

sp 3 – атом образует связи с 4 соседними атомами (тетраэдрическая гибридизация):

Электронная формула sp 3 – гибридного атома углерода:

*С –1s 2 2(sp 3) 4 в виде ячеек

Валентный угол между гибридными орбиталями ~109°.

Стереохимическая формула атома углерода:

sp 2 – Гибридизация (валентное состояние) – атом образует связи с 3 соседними атомами (тригональная гибридизация):

Электронная формула sp 2 – гибридного атома углерода:

*С –1s 2 2(sp 2) 3 2p 1 в виде ячеек

Валентный угол между гибридными орбиталями ~120°.

Стереохимическая формула sp 2 – гибридного атома углерода:

sp – Гибридизация (валентное состояние ) – атом образует связи с 2 соседними атомами (линейная гибридизация):

Электронная формула sp – гибридного атома углерода:

*С –1s 2 2(sp) 2 2p 2 в виде ячеек

Валентный угол между гибридными орбиталями ~180°.

Стереохимическая формула:

Во всех видах гибридизации участвует s-орбиталь, т.к. она имеет минимум энергии.

Перестройка электронного облака позволяет образовывать максимально прочные связи и минимальное взаимодействие атомов в образующейся молекуле. При этом гибридные орбитали могут быть не идентичные, а валентные углы – разные, например СН 2 Cl 2 и СCl 4

2. Ковалентные связи в соединениях углерода

Ковалентные связи, свойства, способы и причины образования – школьная программа.

Напомню, лишь что:

1. Образование связи между атомами можно рассматривать как результат перекрывания их атомных орбиталей, при этом, чем оно эффективнее (больше интеграл перекрывания), тем прочнее связь.

Согласно расчетным данным, относительные эффективности перекрывания атомных орбиталей S отн возрастают следующим образом:

Следовательно, использование гибридных орбиталей, например, sp 3 -орбиталей углерода в образовании связей с четырьмя атомами водорода, приводит к возникновению более прочных связей.

2. Ковалентные связи в соединениях углерода образуются двумя способами:

А) Если две атомные орбитали перекрываются вдоль их глав­ных осей, то образующуюся связь называют - σ-связью .

Геометрия. Так, при обра­зовании связей с атомами водорода в метане четыре гибридные sр 3 ~орбитали атома углерода перекрываются с s-орбиталями четырех атомов водорода, образуя четыре идентичные прочные σ-связи, располагающиеся под углом 109°28" друг к другу (стандартный тетраэдрический угол). Сходная строго симмет­ричная тетраэдрическая структура возникает также, например, при образовании ССl 4 ; если же атомы, образующие связи с уг­леродом, неодинаковы, например в случае СН 2 С1 2 , пространст­венная структура будет несколько отличаться от полностью симметричной, хотя по существу она остается тетраэдрической.

Длина σ-связи между атомами углерода зависит от гибридизации атомов и уменьшается при переходе от sр 3 – гибридизации к sр. Это объясняется тем, что s – орбиталь находится ближе к ядру, чем р-орбиталь, поэтому, чем больше её доля в гибридной орбитале, тем она короче, а следовательно, короче и образующаяся связь

Б) Если две атомные p -орбитали, расположенные параллельно друг другу, осуществляют боковое перекрывание над и под плоскостью, где расположены атомы, то образующуюся связь называют - π (пи) -связью

Боковое перекрывание атомных орбиталей менее эффективно, чем перекры­вание вдоль главной оси, поэтому π -связи менее прочны, чем σ -связи. Это проявляется, в частности, в том, что энергия двойной углерод-углеродной связи превышает энергию одинарной связи менее чем в два раза. Так, энергия связи С-С в этане равна 347 кДж/моль, тогда как энергия связи С = С в этене составляет только 598 кДж/моль, а не ~ 700 кДж/моль.

Степень бокового перекрывания двух атомных 2р-орбиталей , а следовательно, и прочность π -связи максимальна, если два атома углерода и четыре связанные с ними атомы расположены строго в одной плоскости , т. е. если они копланарны , поскольку только в этом случае атомные 2р-орбитали точно параллельны одна другой и поэтому способны к максимальному перекрыванию. Любое отклонение от копланарного состояния вследствие пово­рота вокруг σ -связи, соединяющей два атома углерода, приве­дет к уменьшению степени перекрывания и соответственно к снижению прочности π -связи, которая, таким образом, способ­ствует сохранению плоскостности молекулы.

Вращение вокруг двойной углерод-углеродной связи невозможно.

Распределение π -электронов над и под плоскостью молекулы означает су­ществование области отрицательного заряда , готовой к взаимо­действию с любыми электронодефицитными реагентами.

Атомы кислорода, азота и др. также имеют разные валентные состояния (гибридизации), при этом их электронные пары могут находиться как на гибридных, так и p-орбиталях.

Углерод (С) - шестой элемент периодической таблицы Менделеева с атомным весом 12. Элемент относится к неметаллам и имеет изотоп 14 С. Строение атома углерода лежит в основе всей органической химии, т. к. все органические вещества включают молекулы углерода.

Атом углерода

Положение углерода в периодической таблице Менделеева:

  • шестой порядковый номер;
  • четвёртая группа;
  • второй период.

Рис. 1. Положение углерода в таблице Менделеева.

Опираясь на данные из таблицы, можно заключить, что строение атома элемента углерода включает две оболочки, на которых расположено шесть электронов. Валентность углерода, входящего в состав органических веществ, постоянна и равна IV. Это значит, что на внешнем электронном уровне находится четыре электрона, а на внутреннем - два.

Из четырёх электронов два занимают сферическую 2s-орбиталь, а оставшиеся два - 2p-орбиталь в виде гантели. В возбуждённом состоянии один электрон с 2s-орбитали переходит на одну из 2p-орбиталей. При переходе электрона с одной орбитали на другую затрачивается энергия.

Таким образом, возбуждённый атом углерода имеет четыре неспаренных электрона. Его конфигурацию можно выразить формулой 2s 1 2p 3 . Это даёт возможность образовывать четыре ковалентные связи с другими элементами. Например, в молекуле метана (СН 4) углерод образует связи с четырьмя атомами водорода - одна связь между s-орбиталями водорода и углерода и три связи между p-орбиталями углерода и s-орбиталями водорода.

Схему строения атома углерода можно представить в виде записи +6C) 2) 4 или 1s 2 2s 2 2p 2 .

Рис. 2. Строение атома углерода.

Физические свойства

Углерод встречается в природе в виде горных пород. Известно несколько аллотропных модификаций углерода:

  • графит;
  • алмаз;
  • карбин;
  • уголь;
  • сажа.

Все эти вещества отличаются строением кристаллической решётки. Наиболее твёрдое вещество - алмаз - имеет кубическую форму углерода. При высоких температурах алмаз превращается в графит с гексагональной структурой.

Рис. 3. Кристаллические решётки графита и алмаза.

Химические свойства

Атомное строение углерода и его способность присоединять четыре атома другого вещества определяют химические свойства элемента. Углерод реагирует с металлами, образуя карбиды:

  • Са + 2С → СаС 2 ;
  • Cr + C → CrC;
  • 3Fe + C → Fe 3 C.

Также реагирует с оксидами металлов:

  • 2ZnO + C → 2Zn + CO 2 ;
  • PbO + C → Pb + CO;
  • SnO 2 + 2C → Sn + 2CO.

При высоких температурах углерод реагирует с неметаллами, в частности с водородом, образуя углеводороды:

С + 2Н 2 → СН 4 .

С кислородом углерод образует углекислый газ и угарный газ:

  • С + О 2 → СО 2 ;
  • 2С + О 2 → 2СО.

Угарный газ также образуется при взаимодействии с водой.

Архитектура молекул

из "Загадки молекул"

Органическая химия - это химия соедине-йий углерода. Соединения углерода с водородом называются углеводородами. Существуют тысячи углеводородов, многие из них содержатся в природном газе и в нефти. Простейшим углеводородом является метан - главная составная часть природного газа. Молекула метана состоит из одного атома углерода и четырех атомов водорода.
Химики любят наглядность, поэтому они создали структурные формулы и разнообразные пространственные модели. Особенно удачны полусферические (калотные - от французского Kalotte - круглая шапочка) модели молекул по Стюарту и Бриглебу, учитывающие радиус действия отдельных атомов.
Для построения объемной пространственной модели молекулы метана возьмем из ящика для моделей атом углерода и четыре атома водорода и соединим их так, чтобы атом углерода был окружен четырьмя атомами водорода. Собранная модель имеет тетраэдрическую форму.
По мере увеличения длины цепи алканов наблюдается переход от газов к жидкостям, а затем к воскообразным телам. Как следует из табл. 1, первые члены ряда алканов - от С до С 4 -при нормальном давлении и комнатной температуре - газы пентан и гексан представляют собой легкоподвижные жидкости, от С15 до С 7 идут маслянистые продукты, а от С, - твердые вещества.
Уже на простейших органических соединениях обнаруживается закономерная связь между строением и свойствами. Опытный химик часто может на основ ании плана постройки соединения сделать заключение о его свойствах и действии.
Углерод может образовывать с водородом также соединения, которые содержат меньше водорода, чем алканы. Например, общий состав этилена (этена) -С2Н4, т. е. он содержит на два атома водорода меньше, чем этан. Здесь между обоими атомами углерода образуется двойная связь, причем оба атома находятся уже в ином состоянии, чем в алканах угол связи не является тетраэдрическим (109°28) - он составляет 120°.
Для построения молекулы этилена мы должны взять из ящика для моделей атомы углерода с двойной связью (рис. 4).
В ацетилене (этине С2Н2) имеются два атома углерода с тройной связью угол связи составляет 180°. Используя атомы углерода в виде соответствующих полусфер, построим модель молекулы ацетилена (рис. 4).
Большое значение имеют циклические соединения, например циклоалкавы (циклопарафины), такие как циклопентан и циклогексан, являющиеся представителями упомянутых ранее нафтенов.
Важнейший среди так называемых ароматических циклических соединений - бензол. Химики прошлого столетия, долго гадали, как построено вещество, которое отвечает составу СвН. Это соединение, очевидно ненасыщенное, но ведет оно себя совершенно иначе, чем этилен, пропилен или ацетилен. Озарение пришло А. Кекуле. Рассказывают, будто ему приснилась змея, которая кусает себя за хвост. Так он представил себе кольчатое строение 26 молекулы бензола.
Формула в лучше всего соответствует особому взаимодействию (состоянию) связей в бензоле при помощи круга в шестиугольнике она выражает, что три пары электронов бензольного кольца объединены в едином секстете. Для более ясного понимания на рис. 4 показана полусферическая модель бензола.

Страница 1

Теория валентности сыграла важнейшую роль в развитии теории химии вообще и органической химии в особенности. Исходя из теории валентности, Кекуле предположил, что атом углерода четырехвалентен, и в 1858 г. попытался, опираясь на это предположение, представить строение наиболее простых органических молекул и радикалов . В том же 1858 г. шотландский химик Арчибальд Скотт Купер (1831-1892) предложил изображать силы, соединяющие атомы (или связи, как их принято называть), в виде черточек. После того как была «построена» первая органическая молекула, стало совершенно ясно, почему органические молекулы, как правило, значительно больше и сложнее, чем неорганические.

Согласно представлениям Кекуле, углеродные атомы могут соединяться друг с другом с помощью одной или нескольких из четырех своих валентных связей, образуя длинные цепи - прямые или разветвленные. По-видимому, никакие другие атомы не обладают этой замечательной способностью в той мере, в какой обладает ею углерод.

Итак, представив себе, что у каждого атома углерода четыре валентные связи, а у каждого атома водорода одна такая связь, можно изобразить три простейших углеводорода (соединения, молекулы которых образованы только атомами углерода и водорода), метан CH4, этан C2H6 и пропан C3H8, следующим образом:

Увеличивая число атомов углерода, эту последовательность можно продолжить, причем практически бесконечно. Добавляя к углеводородной цепи кислород (две валентные связи) или азот (три валентные связи), можно представить структурные формулы молекул этилового спирта (C2H6O) и метиламина (CH5N):

Допустив возможность наличия между соседними атомами двух связей (двойная связь) или трех связей (тройная связь), можно изобразить структурные формулы таких соединений, как этилен (C2H4), ацетилен (C2H2), метилцианид (C2H3N), ацетон (C3H6O) и уксусная кислота (C2H4O2):

Полезность структурных формул была настолько очевидной, что многие химики-органики приняли их сразу. Они признали полностью устаревшими все попытки изображать органические молекулы как структуры, построенные из радикалов. В результате было признано необходимым, записывая формулу соединения, показывать его атомную структуру.

Русский химик Александр Михайлович Бутлеров (1823-1886) использовал эту новую систему структурных формул в разработанной им теории строения органических соединений . В 60-х годах прошлого столетия он показал, как с помощью структурных формул можно наглядно объяснить причины существования изомеров (см. гл. 5). Так, например, у этилового спирта и диметилового эфира одна и та же эмпирическая формула C2H6O, однако структурные формулы этих соединений значительно различаются:

поэтому не удивительно, что изменение в расположении атомов приводит к двум наборам очень разных свойств. В этиловом спирте один из шести атомов водорода присоединен к атому кислорода, в то время как в диметиловом эфире все шесть атомов водорода присоединены к атомам углерода. Атом кислорода удерживает атом водорода слабее, чем атом углерода, так что металлический натрий, добавленный к этиловому спирту, замещает водород (одну шестую общего количества). Натрий, добавленный к диметиловому эфиру, совсем не вытесняет водород. Таким образом, при составлении структурных формул можно руководствоваться химическими реакциями, а структурные формулы, в свою очередь, могут помочь понять суть реакций.

Бутлеров особенно много внимания уделил одному из типов изомерии, называемому таутомерией (динамической изомерией), при которой некоторые вещества всегда выступают как смеси двух соединений. Если одно из этих соединений выделить в чистом виде, оно сразу же частично перейдет в другое соединение. Бутлеров показал, что таутомерия обусловлена спонтанным переходом атома водорода от атома кислорода к соседнему атому углерода (и обратно).

Чтобы вполне доказать справедливость системы структурных формул, необходимо было определить структурную формулу бензола - углеводорода, содержащего шесть атомов углерода и шесть атомов водорода. Сделать это удалось далеко не сразу. Казалось, не существует такой структурной формулы, которая бы, отвечая требованиям валентности, в то же время объясняла бы большую устойчивость соединения. Первые варианты структурных формул бензола очень походили на формулы некоторых углеводородов - соединений весьма нестойких и не похожих по химическим свойствам на бензол.



Последние материалы раздела:

SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение
SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко...

Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи
Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи

Учебно-методический комплект "Вертоград" включает Конспекты учителя, Рабочие Тетради и Сборники тестов по следующим предметам:1. ХРАМОВЕДЕНИЕ...

Перемещение Определить величину перемещения тела
Перемещение Определить величину перемещения тела

Когда мы говорим о перемещении, важно помнить, что перемещение зависит от системы отсчета, в которой рассматривается движение. Обратите внимание...