Вернер карл гейзенберг. Один из создателей квантовой механики

Немецкий физик-теоретик, удостоенный в 1932 Нобелевской премии по физике за создание матричной механики. Родился 5 декабря 1901 в Вюрцбурге.


Родился 5 декабря 1901 в Вюрцбурге. В 1920 поступил в Мюнхенский университет, где прослушал курс лекций по теоретической физике А.Зоммерфельда; досрочно окончил университет в 1923. В 1923–1927 – ассистент М.Борна в Гёттингенском университете, в 1927–1941 – профессор физики Лейпцигского и Берлинского университетов, с 1941 – директор Института физики Макса Планка в Берлине и профессор Гёттингенского университета.

В 1925 Гейзенберг совместно с Н.Бором разработал т.н. матричную механику – первый вариант квантовой механики. К этой теории Гейзенберг пришел, пытаясь разрешить противоречия модели строения атома, сочетающей классические уравнения движения и постулаты Бора. Гейзенберг постулировал, что элементарные частицы обладают волновыми свойствами и не могут быть наблюдаемы в традиционном смысле. Это – распространяющиеся в пространстве волновые «пакеты», которые в зависимости от характера исследования можно рассматривать либо как волны, либо как частицы. Каждой физической величине ставился в соответствие некий оператор, а операторы представлялись в виде бесконечных матриц (отсюда и название теории). На основе своей теории Гейзенберг произвел квантовомеханический расчет атома гелия, показав возможность существования его в двух различных состояниях (орто- и пара-).

В 1927 Гейзенберг сформулировал в математическом виде «принцип неопределенности», возникший из необходимости учета материального характера наблюдения за элементарной частицей. Согласно этому принципу, невозможно точно указать одновременно координаты частицы и ее импульс: чем точнее экспериментатор определит одну из этих характеристик, тем менее точным будет значение другой. В описание атомного объекта, его состояния и поведения вводился существенно новый момент – понятие вероятности.

В 1928 Гейзенберг совместно с П.Дираком выдвинул идею обменного взаимодействия, независимо от Я.И.Френкеля разработал квантовомеханическую теорию спонтанной намагниченности ферромагнетиков, основанную на обменном взаимодействии электронов. В 1929 совместно с В.Паули работал над построением теории квантовой электродинамики, введя схему квантования полей. Пытался получить массы и другие характеристики элементарных частиц из единого полевого уравнения.

Гейзенберг опубликовал ряд книг, в числе которых Физические принципы квантовой теории (Die physikalische Prinzipien der Quantentheorie , 1930), Физика и философия (Physik und Philosophie , 1958), Физика и за ее пределами (Physics and Beyond , 1971).

Вернер Гейзенберг

Гейзенберг (Хайзенберг) (Heisenberg) Вернер (1901-1976), немецкий физик-теоретик, один из создателей квантовой механики. Предложил (1925) матричный вариант квантовой механики; сформулировал (1927) принцип неопределенности; ввел концепцию матрицы рассеяния (1943). Труды по структуре атомного ядра, релятивистской квантовой механике, единой теории поля, теории ферромагнетизма, философии естествознания. Нобелевская премия (1932).

Вернер Гейзенберг (1901-1976) - немецкий физик-теоретик, один из создателей квантовой механики. Предложил матричный вариант квантовой механики, сформулировал принцип неопределенности, ввел концепцию матрицы рассеяния. Автор трудов по структуре атомного ядра, релятивистской квантовой механике, единой теории поля, теории ферромагнетизма, философии естествознания. Лауреат Нобелевской премии 1932 г.

Использованы сведения примечаний к кн.: Конт-Спонвиль Андре. Философский словарь / Пер. с фр. Е.В. Головиной. – М., 2012.

ГЕЙЗЕНБЕРГ Вернер (1901-1976) - немецкий физик-теоретик, один из создателей квантовой механики. Внес значительный вклад в развитие квантовой электродинамики, квантовой теории поля, теорию ядра, физику космических излучений, теорию элементарных частиц. Сформулировал соотношение неопределенностей, ограничившее применение классических понятий к микромиру. При решении ряда гносеологических проблем Гейзенберг делал идеалистические выводы, утверждая, в частности, что идея реальности в современной науке «расплывается» и заменяется математическими конструкциями. Соотношение неопределенностей явилось для него основой критики не только механического, но и вообще материалистического понимания причинности, отрицания правомерности четкого разграничения объективного и субъективного в теории и эксперименте. В последние годы жизни эволюционировал от неопозитивистских представлений, характерных для представителей так называемой копенгагенской школы, уделяя большое внимание философскому анализу диалектики части и целого, склонялся в ряде выводов к объективному идеализму в духе Платона.

Философский словарь. Под ред. И.Т. Фролова . М., 1991, с. 83-84.

Гейзенберг, Хайзенберг (Heisenberg) Вернер (5. 12. 1901, Вюрцбург,- 1.2.1976, Мюнхен), немецкий физик-теоретик, один из создателей квантовой механики. С 1941 года директор Института кайзера Вильгельма (с 1946 года - Институт Макса Планка). Нобелевская премия по физике (1932).

В статье «О квантово-теоретическом истолковании кинематических и механических соотношений» («Quantentheoretische Umdeutung der kinematischen und mechanischen Beziehungen», 1925) Гейзенберг построил исторически первый вариант квантовой механики - матричную механику. В основополагающей работе «О наглядном содержании квантово-теоретической кинематики и механики» («Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik», 1927) дал вывод соотношения неопределённостей, выражающего ограничения на употребление классических понятий в квантовой механике. Гейзенберг является одним ив авторов протонно-нейтронной модели строения атомного ядра (1932). В последние годы жизни Гейзенберг работал над проблемами квантовой теории поля. Значительное место в научном творчестве Гейзенберга занимают разработка философско-методологические проблем физики и её истории. С именем Гейзенберга связывается формулировка принципа наблюдаемости, введение понятия замкнутой физической теории, новая постановка проблемы причинности. Ряд методологических работ Гейзенберга посвящён исследованию связи современной физики с идеями античной философии, в которых он отдаёт предпочтение объективно-идеалистическим натурфилософским идеям Платона. Гейзенберг защищал субстанциальную трактовку энергии в духе энергетизма, считая, что все элементарные частицы «сделаны из энергии». В ряде работ Гейзенберг анализировал понятие простоты научной теории, различные аспекты концепции дополнительности, социокультурные проблемы науки.

Философский энциклопедический словарь. - М.: Советская энциклопедия. Гл. редакция: Л. Ф. Ильичёв , П. Н. Федосеев , С. М. Ковалёв, В. Г. Панов. 1983.

Сочинения: в рус. пер.; Физич. принципы квантовой теории, М.- Л., 1932; Филос. проблемы атомной физики, М., 1953; Физика и философия, М, 1963; Введение в единую полевую теорию элементарных частиц, М., 1968.

Литература: Кузнецов И. В., В чем прав и в чем ошибается Вернер Гейзенбург, «ВФ», 1958, №11; Омельяновский М.Э., Несколько замечаний по поводу статьи В. Г., там же, 1979, № 12, с. 44-48.

В сентябре 1911 года Вернера отдали в престижную гимназию. В 1920 году Гейзенберг поступил в Мюнхенский университет. Окончив его, Вернер был назначен ассистентом профессора Макса Борна в Геттингенском университетеПо теории квантов атом испускает свет, переходя из одного энергетического состояния в другое. А по теории Эйнштейна интенсивность света определенной частоты зависит от количества фотонов. Значит, можно было попытаться связать интенсивность излучения с вероятностью атомных переходов. Квантовые колебания электронов, уверял Гейзенберг, нужно представлять только с помощью математических соотношений. Надо лишь подобрать для этого подходящий математический аппарат. Молодой ученый выбрал матрицы. Выбор оказался удачным, и скоро его теория была готова. Работа Гейзенберга заложила основы науки о движении микроскопических частиц - квантовой механики.

Математические аппараты, которыми пользовались Гейзенберг и Дирак при разработке теорий атома в новой механике, были для большинства физиков и непривычны, и сложны. Не говоря уже о том, что никто из них, несмотря на все ухищрения, не мог свыкнуться с мыслью, что волна - это частица, а частица - волна.

В Копенгагене в сентябре 1926 года между Бором и Шредингером разгорелась дискуссия, в которой ни одна из сторон не добилась успеха. В итоге было признано, что никакую из существующих интерпретаций квантовой механики нельзя считать вполне приемлемой.

Гейзенберг в феврале 1927 года дал нужную интерпретацию, сформулировав принцип неопределенности и не сомневаясь в его правильности.

В феврале 1927 года он представил статью "О квантовотеоретическом истолковании кинематических и механических соотношений", посвященной принципу неопределенности.

Согласно принципу неопределенности, одновременное измерение двух сопряженных переменных, таких как положение и импульс движущейся частицы, неизбежно приводит к ограничению точности. Чем более точно измерено положение частицы, тем с меньшей точностью можно измерить ее импульс, и наоборот.

Гейзенберг заявил, что пока справедлива квантовая механика, принцип не-определенности не может быть нарушен.

Принцип неопределенности Гейзенберга вошел в логически замкнутую систему "копенгагенской интерпретации", которую Гейзенберг и Борн перед встречей ведущих физиков мира в октябре 1927 года объявили полностью завершенной и неизменяемой. Эта встреча, пятая из знаменитых Сольвеевских конгрессов, произошла всего несколько недель спустя после того, как Гейзенберг стал профессором теоретической физики в Лейпцигском университете. Будучи всего двадцати пяти лет от роду, он стал самым молодым профессором в Германии.

Гейзенберг впервые представил четко сформулированный вывод о наиболее глубоком следствии из принципа неопределенности, связанном с отношением к классическому понятию причинности.

Гейзенбергу и другим "копенгагенцам" потребовалось совсем немного времени, чтобы донести отстаиваемое ими учение до тех, кто не посещал европейских институтов. В Соединенных Штатах Гейзенберг нашел особенно благоприятную среду для обращения в свою веру новых сторонников. Во время совместного с Дираком кругосветного путешествия в 1929 году Гейзенберг прочел в Чикагском университете курс лекций по "копенгагенской доктрине". В 1933 году одновременно со Шредингером и Дираком его работы получили высшее признание - Нобелевскую премию.

С 1941 по 1945 год Гейзенберг был директором института физики кайзера Вильгельма и профессором Берлинского университета. Не раз отвергая предложения эмигрировать, он возглавил основные исследования по расщеплению урана, в которых был заинтересован Третий рейх.

После окончания войны ученый был арестован и отправлен в Англию.

В 1946 году Гейзенберг вернулся в Германию. Он становится директором Физического института и профессором Геттингенского университета. С 1958 года ученый являлся директором Физического университета и астрофизики, а также профессором Мюнхенского университета.

В последние годы усилия Гейзенберга были направлены на создание единой теории поля. В 1958 году он проквантовал нелинейное спинорное уравнение Иваненко (уравнение Иваненко - Гейзенберга).

Гейзенберг умер в своем доме в Мюнхене 1 февраля 1976 года от рака почки и желчного пузыря.

Перепечатывается с сайта http://100top.ru/encyclopedia/

ГЕЙЗЕНБЕРГ (Heisenberg) Вернер Карл (5 декабря 1901, Вюрцбург - 1 февраля 1976) - немецкий физик-теоретик, один из создателей квантовой механики. Окончил Мюнхенский (1923) и Геттингенский (1924) университеты. Профессор теоретической физики Лейпцигского университета (1927-41), директор Института физики кайзера Вильгельма и профессор Берлинского университета (1941-45). В 1941-45 - один из руководителей немецкого атомного проекта. В 1945 был интернирован в Англии. В 1946-58 - директор Физического института и профессор Гетгингенского университета. С 1958 - директор Института физики и астрофизики, профессор Мюнхенского университета.

Работал в области квантовой механики, квантовой электродинамики, релятивистской квантовой теории поля, теории ядра, магнетизма, физики космических лучей, теории элементарных частиц. В 1925 вместе с М. Борном и П. Йорданом разработал матричную механику - один из вариантов квантовой механики (Нобелевская премия, 1932). В 1927 сформулировал принцип неопределенности, ограничивающий применение к микрообъектам классических понятий. Один из создателей копенгагенской интерпретации квантовой механики. В 1950-60 развил нелинейную единую теорию поля. В Англии в 50-х гг. читал курс лекций по философским проблемам современной физики («Физика и философия», 1959).

Для философских воззрений Гейзенберга характерна широта интеллектуальных интересов. Размышляя об абстрактных построениях научных понятий, он стремился развить представление о непреходящей силе науки, которая заключается в особенном способе обобщения, позволяющем охватывать теоретической мыслью разнородные явления и давать этим явлениям единое объяснение. Убедительность научных достижений механики Ньютона коренится прежде всего в том, что эта теория позволила представить единую картину крайне различных явлений мира - от наглядных движений тел, повседневно наблюдаемых на Земле, до гармонического движения Космоса. Единство науки часто открывается непреднамеренно, просто в силу того, что люди задают вопросы природе, совершенствуя при этом технические средства и в особенности язык, на котором они формулируют эти вопросы. В изучении истории науки Гейзенберг призывал не ограничиваться историей открытий и наблюдений, но включать в рассмотрение историю развития понятий. Такие понятия классической механики, как масса, сила, скорость, место и время, представляют собой отвлечение от многих реальных особенностей изучаемых процессов. Содержание этих и других понятий строго определено, и в силу этого теоретические утверждения, в которые входят эти понятия, оказываются верными вне зависимости от указанных особенностей, а значит, верными на все времена и в любых самых отдаленных звездных системах.

Если естествознание открывает нам смысловое единство природы, то искусство побуждает нас к прояснению смысла нашего существования. В искусстве мы хотим отобразить миропонимание, общее всем людям Земли. Хотя мы и говорим, что наша высшая цель - создание новых форм и все завершается построением этих форм, тем не менее, такие формы могут явиться нам лишь при открытии нового содержания. Создавать новое искусство, по мысли Гейзенберга, - значит делать зримым и слышимым новое содержание, а не только изобретать новые формы. Гейзенберг был глубоко озабочен социальными событиями не только в своей стране, но и в мире в целом. Постепенно укореняется ощущение, что локальное нарушение в части мира может повредить всему существованию человечества. Он обращал внимание на то, что мы поставлены перед лицом огромных политических опасностей. Гейзенберг настойчиво искал пути выхода из трагической ситуации, в которой вынуждено жить человечество, и не только в самой науке, которая, по его словам, есть средство взаимопонимания народов, но и в сокровенных особенностях человеческого существа. Гейзенберг надеялся, что человек способен вникнуть не только умом, но и сердцем в ту отпугивающую пустоту и даль, куда нас завели техника и естествознание.

H. Ф. Овчинников

Новая философская энциклопедия. В четырех томах. / Ин-т философии РАН. Научно-ред. совет: В.С. Степин , А.А. Гусейнов , Г.Ю. Семигин. М., Мысль, 2010, т. I, А - Д, с. 494.

Далее читайте:

Ученые с мировым именем (биографический справочник).

Сочинения:

Gesammelte Werke, ser. A, pt. 1-3; ser. В, Springer, 1989; Philosophical Problems of Nuclear Science. N. Y., 1952; Physik und Philosophie. Fr./M., 1959. Физические принципы квантовой теории. Л.-М., 1931; Физика атомного ядра. М,-Л., 1947; Теория атомного ядра. М., 1953; Философские проблемы атомной физики. М., 1953; Нелинейная квантовая теория поля. М., 1959; Введение в единую полевую теорию элементарных частиц. М., 1968; Шаги за горизонт. М., 1987; Физика и философия. М., 1963; Физика и философия. Часть и целое. М., 1989.

Литература:

Овчинников Н. Ф. Ученый-мыслитель XX века. - В кн.: Гейзенберг В. Шаги за горизонт. М., 1987;

Кузнецов И. В., В чем прав и в чем ошибается Вернер Гейзенбург, «ВФ», 1958, №11;

Омельяновский М.Э., Несколько замечаний по поводу статьи Вернера Гейзенбурга, «ВФ», 1979, № 12, с. 44-48.

Ахутин А. В. Историко-научная концепция Гейзенберга. - «Вопросы истории естествознания и техники», 1988, №4, с. 69-83;

Ахутин А. В. Вернер Гейзенберг и философия,- В кн.: Гейзенберг В. Физика и философия. Часть и целое. М., 1989;

ffo/z N. Werner Heisenberg und die Philosophie. 2Aufl. В., 1968;

Weizsak- kerC. Л Werner Heisenberg. Munch.-Wien, 1977;

Cassidy D. C, Baker M. Werner Heisenberg: A Bibliography of his Writings. Berkeley, 1984;

Hempel H.-P. Natur und Geschichte: der Jahrhundertdialog zwischen Heidegger und Heisenberg. Fr./M., 1990;

Cassidy D. C. Uncertainty: the Life and Science of Werner Heisenberg. N. Y., 1992;

Werner Heisenberg: Physikerund Philosoph Heidelberg, 1993.

Ник. Горькавый

«Космические сыщики» - новая книга писателя, доктора физико-математических наук Николая Николаевича Горькавого. Её герои знакомы читателям по научно-фантастической трилогии «Астровитянка» и научным сказкам, опубликованным в журнале в 2010-2014 гг.; в №№ 1, 4-7, 9, 2015 г.; в №№ 1, 2, 3, 2016 г.

Естественный ускоритель элементарных частиц и плазмы: выброшенное из Солнца 31 августа 2012 года вещество движется со скоростью 1,5 тыс. км/с.

Вернер Карл Гейзенберг. 1933 год. Фото: German Federal Archives/Wikimedia Commons/CC-BY-SA-3.0.

Мюнхенский университет, альма-матер Вернера Гейзенберга. Фото: Diago Delso/Wikimedia Commons/CC-BY-SA-3.0.

Профессор Арнольд Зоммерфельд. 1935 год. Фото: GFHund/Wikimedia Commons/CC-BY-SA-3.0.

Молодой профессор Вернер Гейзенберг. 1927 год. Фото: Wikimedia Commons/PD.

Местечко Зюдельфельд в Южной Баварии, где профессор А. Зоммерфельд совершал лыжные прогулки со своими учениками. Фото: LepoRello/Wikimedia Commons/CC-BY-SA-3.0.

Нильс Бор и Вернер Гейзенберг. Фото: Fermilab, U.S. Departament of Energy/Wikimedia Commons/PD.

Макс Борн. Фото: Wikimedia Commons/PD.

Марка ФРГ с изображением Вернера Гейзенберга и его знаменитого соотношения неопределённостей. Фото: Wikimedia Commons/PD.

Вечерние горы подёргивались прохладным туманом, по зелёным пологим пастбищам бродили коровы, позвякивая шейными колокольчиками и похрустывая свежей травой. На лугу высились стога сена, заготовленные на зиму. В одном из стогов лежал светловолосый подросток и читал книгу немецкого философа Иммануила Канта. Где-то вдали стреляли пушки и рвались снаряды, а мальчик читал про звёзды, про процессы познания, размышлял над проблемами бытия, нравственности и этики. Он не знал, что ждёт впереди его самого, его страну и весь мир. Не знал, что Первая мировая война скоро кончится и что она будет далеко не последней; что в ближайшие десятилетия мир изменится до неузнаваемости, в том числе и благодаря тому, что мальчик по имени Вернер Гейзенберг лежит на лугу и читает Канта для собственного удовольствия. Это был особенный мальчик, не похожий на других.

С этого и надо было начать, - заметила Галатея.

Что ж, с этого и начнём, - ответила принцесса Дзинтара, и её дети, Галатея и Андрей, приготовились слушать очередную вечернюю сказку.

Итак, в начале ХХ века жил-был в Германии мальчик… Его отец, Август Гейзенберг, занимался самым тихим занятием, которое только можно вообразить: изучал древние византийские рукописи, написанные на древнегреческом языке. Он ездил в Италию и Грецию для их исследования и преподавал историю студентам в Мюнхенском университете. У него было два сына: Эрвин, который стал химиком, и Вернер. И надо же было такому случиться, чтобы в семье человека, больше всего ценившего классические представления о мире, вырос бунтарь, который отбросил существующие воззрения на время и пространство и предложил новые подходы к их пониманию.

Как же это получилось? - спросил Андрей.

Ещё будучи школьником, Вернер во время долгой болезни прочёл книгу Германа Вейля «Пространство. Время. Материя», и его впечатлила мощь описанных в ней математических методов. С этого момента Гейзенберг увлёкся математикой. Выдающиеся знания молодого человека отметили на выпускном экзамене в гимназии.

Юность Вернера пришлась на бурный революционный период в истории Германии. Весной 1918 года его вместе с другими 16-летними школьниками отправили работать на ферму - помогать воюющей Германии. Гейзенберг был не похож на своих сверстников. По вечерам он спешил уединиться и с увлечением читал философские труды Платона и Канта.

После Первой мировой войны в Германии наступил период политической нестабильности, общественного брожения и протестных выступлений. Вернер посещал собрания молодёжного движения, где слушал горячие выступления против общественных традиций и предрассудков. Но даже тогда главный интерес для него представляли не политика и философия, больше всего его увлекали физика и математика.

В 1920 году Гейзенберг поступил в Мюнхенский университет, стал учеником профессора Арнольда Зоммерфельда и окунулся в мир теоретической физики. Через три года он подготовил диссертацию по теоретической гидродинамике, но не учёл, что для получения учёной степени необходимо сдать устный экзамен и по экспериментальной физике. Вернер не смог ответить на вопросы дотошного профессора Вильгельма Вина и чуть не провалился. Только заступничество Арнольда Зоммерфельда спасло диссертанта от полного провала.

Получив степень, Гейзенберг занялся новой квантовой физикой. Вместе с Вольфгангом Паули он стал ассистентом Макса Борна - директора физического института Гёттингенского университета. Борн писал о Гейзенберге: «Он был похож на простого крестьянского парня, с короткими светлыми волосами, ясными живыми глазами и чарующим выражением лица. Он выполнял свои обязанности ассистента более серьёзно, чем Паули, и оказывал мне большую помощь. Его непостижимая быстрота и острота понимания всегда позволяли ему проделывать колоссальное количество работы без особых усилий».

Гейзенберг поработал и у Нильса Бора (см. «Наука и жизнь» № 1, 2016 г., статья ). Они познакомились в 1922 году во время так называемого Боровского фестиваля. Гейзенберг беседовал со знаменитым датчанином, и этот разговор во многом повлиял на его взгляды и подходы к решению научных проблем. «У Зоммерфельда я научился оптимизму, у гёттингенцев - математике, а у Бора - физике», - писал он.

В 1925 году, в возрасте 23 лет, Вернер создал новую квантовую механику на основе математических матриц. Она была независима от классической физики и стала вехой в квантовой научной революции.

А что такое матрицы?

Матрицами называют прямоугольные таблицы чисел. Гейзенберг предположил, что любой физической величине, которую можно наблюдать в эксперименте, соответствует своя матрица. Он сумел описать квантовые скачки в атоме Бора и любые изменения в состоянии квантомеханических систем с помощью математических операций над матрицами. Через полтора года Гейзенберг вывел квантовое соотношение неопределённостей, ставшее знаковым для современной науки. Соотношение гласило, что наш мир принципиально не точен: мы не можем знать одновременно с хорошей точностью импульс и положение любого объекта, например электрона. Если мы точно измерим импульс электрона, то утратим информацию о его положении, а если точно измерим его координаты, то потеряем возможность определить импульс или скорость.

Значит, учёные ничего не могут знать наверняка? - поразилась Галатея. - Как бы они ни старались, в их измерениях всегда будут ошибки?

Увы, это так. Неопределённость в координатах электрона, умноженная на ошибку в его импульсе, равна постоянной Планка (см. «Наука и жизнь» № 7, 2015 г., статья ), - и это соотношение неопределённостей Гейзенберга прекрасно дополнило концепцию де Бройля (см. «Наука и жизнь» № 2, 2016 г., статья ) о частицах как о волнах. Если мы попробуем захватить частицу в хитрую ловушку, то есть точно зафиксируем её местоположение, ошибка в определении импульса частицы станет бесконечно большой.

Информация уходит сквозь пальцы как волна, - усмехнулась Галатея.

Очень похоже, - вмешался Андрей, - что Галатея тоже подчиняется этому соотношению неопределённостей: её никогда не бывает в нужном месте в нужное время!

Дзинтара улыбнулась, глядя на возмущённую дочь, и продолжила:

Соотношение неопределённостей Гейзенберга трактуют и так: для измерения параметров квантовой системы требуется инструментальное вмешательство, и это вмешательство настолько сильно искажает её характеристики, что система «забывает» своё первоначальное состояние, и мы утрачиваем возможность узнать, каким оно было.

Галатея, делая вид, что не замечает брата, обратилась к матери:

Мама, судя по историям, которые ты нам рассказала, теоретики делают открытия в очень молодом возрасте. Но ведь с годами опыт и знания растут и открытий должно быть больше.

Давно замечено, что самый плодотворный возраст для теоретических открытий - первые несколько лет после окончания университета, ведь важны не только опыт и знания, но и свежий взгляд и смелость молодости. В пожилом возрасте учёный с трудом соглашается с попранием истин, с которыми он долго жил.

Успехи Вернера Гейзенберга не остались незамеченными. Университеты наперебой приглашали его занять профессорскую должность. В возрасте 25 лет Вернер стал профессором теоретической физики в Лейпцигском университете.

Теперь его никто не мог упрекнуть в незнании физики! - удовлетворённо отметила Галатея.

Все, кто с ним работал, вспоминали, что Гейзенберг был демократичным и весёлым человеком. После научных занятий он, например, с азартом играл в настольный теннис. Биографы - его ученики Невилл Мотт, лауреат Нобелевской премии по физике за 1977 год, и Рудольф Пайерлс - в книге, посвящённой великому учёному, писали о том периоде жизни Гейзенберга, когда он создал квантовую механику и стал молодым профессором: «Никто не осудил бы его, если бы он начал воспринимать себя серьёзно и стал слегка напыщенным после того, как предпринял по крайней мере два решающих шага, изменивших лицо физики, и после получения в столь юном возрасте статуса профессора, что заставляло и многих более старых и менее значительных людей чувствовать себя важными, но он остался таким, каким и был, - неофициальным и весёлым в обращении, почти мальчишеским и обладающим скромностью, граничащей с застенчивостью».

Нобелевскую премию по физике «За создание квантовой механики» Гейзенберг получил в неполных 32 года. Он, безусловно, был рад, но, будучи скромным и справедливым, выразил удивление, что его коллеги по созданию квантовой механики Эрвин Шрёдингер и Поль Дирак получили одну Нобелевскую премию на двоих, а Макс Борн вообще ею обойдён.

Гейзенберг так много работал, но была ли у него девушка или семья? - спросила Галатея. - Или он занимался одной наукой?

В 35 лет Вернер женился на Элизабет Шумахер, дочери берлинского профессора-экономиста. Они жили долго и счастливо и у них было семеро детей. Дочери Гейзенберга Анна-Мария и Верена стали физиологами, сын Мартин - генетиком, а Йохен пошёл по стопам отца, он был физиком-ядерщиком.

Гейзенберг умер в 1976 году. Юджин Вигнер, лауреат Нобелевской премии по физике за 1963 год, написал тогда: «Нет такого живущего физика-теоретика, который сделал больший вклад в нашу науку, чем он. В то же время он был доброжелателен со всеми, лишён высокомерия и составлял приятную компанию». А его первый ученик Феликс Блох, ставший лауреатом Нобелевской премии по физике в 1952 году, вспоминал: «Если я должен выбрать единственное из его великих качеств как учителя, то это было бы его необычайно позитивное отношение к любому прогрессу… Одной из наиболее удивительных особенностей Гейзенберга была почти безошибочная интуиция, которую он проявлял в своём подходе к физической проблеме, и феноменальный способ, с помощью которого решения как будто падали с неба».

Вернер Карл Гейзенберг (1901-1976) - немецкий физик-теоретик, один из основателей квантовой механики. Лауреат Нобелевской премии по физике 1932 года.

Герман Вейль (1885-1955) - немецкий математик и физик-теоретик. Автор знаменитой книги «Пространство. Время. Материя» - одного из первых изложений общей теории относительности Эйнштейна.

Арнольд Иоганнес Вильгельм Зоммерфельд (1868-1951) - немецкий физик-теоретик и математик. Учитель и научный руководитель Вернера Гейзенберга.

Макс Борн (1882-1970) - немецкий и британский физик-теоретик, один из создателей квантовой механики. Лауреат Нобелевской премии по физике 1954 года.

Феликс Блох (1905-1983) - швейцарский физик, ученик Вернера Гейзенберга. Лауреат Нобелевской премии по физике 1952 года.

Невилл Франсис Мотт (1905-1996) - английский физик. Лауреат Нобелевской премии по физике 1977 года, которую он получил вместе с Филипом Андерсоном и Джоном ван Флеком.

ВЕРНЕР ГЕЙЗЕНБЕРГ — ЛАУРЕАТ НОБЕЛЕВСКОЙ ПРЕМИИ ПО ФИЗИКЕ

Нобелевская премия: Вернер Гейзенберг (1901-1976) был удостоен Нобелевской премии по физике в 1932 г. «за создание квантовой механики, применение которой привело, помимо прочего, к открытию аллотропических форм водорода «. В 1927 году Гейзенберг сформулировал знаменитый принцип неопределенности, названный его именем.

Гражданство: Германия.

Образование: доктор философии (физика), Мюнхенский университет, Германия, 1923 г.; доктор философии, Геттингенский университет, Германия, 1924 г.

Профессиональная деятельность: профессор физики в университетах Копенгагена (Дания), Лейпцига, Берлина, Геттингена и Мюнхена.

1. «Первый глоток из кубка естествознания порождает атеизм, но на дне сосуда нас ожидает Бог». [«Der erste Trunk aus dem Becher der Naturwissenschaft macht atheistisch, aber auf dem Grund des Bechers wartet Gott.»] (Цит. по: Hildebrand 1988, 10).

2. Генри Маргенау (почетный профессор физики и естественных наук в Йельском университете) в автобиографической статье, опубликованной в журнале «Истина» (Truth), писал: «Хотя я ничего не сказал о годах с 1936-го по 1950-й, они были отмечены несколькими незабываемыми для меня событиями. Одним из них была первая встреча с Гейзенбергом, приехавшим в Америку вскоре после окончания Второй мировой войны. В личной беседе с ним я был поражен глубиной его религиозных убеждений. Он был истинным христианином в полном смысле этого слова». (Margenau 1985, Vol. 1).

3. В статье «Естественнонаучная и религиозная истина» (1973) Гейзенберг писал:

«В ходе развития естествознания, начиная со знаменитого процесса против Галилея, снова и снова высказывалось мнение, что естественнонаучная истина не может быть приведена в согласие с религиозным истолкованием мира. Но должен сказать, что, хотя я убежден в неоспоримости естественнонаучной истины в своей сфере, мне все же никогда не представлялось возможным отбросить содержание религиозной мысли просто как часть преодоленной ступени сознания человечества — часть, от которой в будущем все равно придется отказаться. Так что на протяжении моей жизни мне постоянно приходилось задумываться о соотношении этих двух духовных миров, ибо у меня никогда не возникало сомнения в реальности того, на что они указывают». (Гейзенберг В. Шаги за горизонт. М., 1987. — С. 328).

4. «Где нет уже никаких путеводных ориентиров, там вместе с ценностной шкалой пропадает и смысл наших действий и нашего страдания, и в конечном счете остаются лишь отрицание и отчаяние. Религия есть, таким образом, фундамент этики, а этика — предпосылка нашей жизни». (Гейзенберг, 1987. — С. 333).

5. Эйнштейн до конца своей жизни верил в строгую причинность. В последнем дошедшем до нас письме к Эйнштейну Гейзенберг писал, что хотя в новой квантовой механике излюбленный Эйнштейном принцип причинности не подтверждается, «мы можем утешаться тем, что благому Господу Богу, должно быть, известно положение частиц, так что принцип причинности все равно, наверное, остается в силе». (Цит. по: Holton 2000, vol. 53).

См. также следующие публикации Гейзенберга:

— Heisenberg, Werner. 1970. «Erste Gesprache uber das Verhaltnis von Naturwissenschaft und Religion (1927).» Werner Trutwin, ed. Religion-Wissenschaft-Weltbild. Dusseldorf: Patmos-Verlag, pp. 23-31. (Theologisches Forum. Texte fur den Religionsunterricht 4.)

— Heisenberg, Werner. 1973. «Naturwissenschaftliche und religiose Wahrheit.» Frankfurter Allgemeine Zeitung, 24 Marz, pp. 7-8. (Speech before the Catholic Academy of Bavaria, on acceptance of the Guardini Prize, 23 March 1973.)

— Heisenberg, Werner. 1968. «Religion und Naturwissenschaft.» Bayer, Leverkusen. Sofort-Kongress-Dienst 24, 1-2.

— Heisenberg, Werner. 1969. «Kein Chaos, aus dem nicht wieder Ordnung wurde. Drei Atomphysiker diskutieren uber Positivismus, Metaphysik und Religion.» Die Zeit 24, No. 34, 29-30.

Post Views: 2 893

Вернер Карл Гейзенберг (нем. Werner Heisenberg, 5 декабря 1901, Вюрцбург — 1 февраля 1976, Мюнхен) — немецкий физик, создатель «матричной квантовой механики Гейзенберга», лауреат нобелевской премии по физике (1932).

Немецкий физик Вернер Карл Гейзенберг родился в Дуйсбурге в семье Августа Гейзенберга, профессора древнегреческого языка Мюнхенского университета, и урожденной Анни Веклейн. Детские годы прошли в Дуйсбурге, где он учился в гимназии Максимилиана.

В 1920 поступил в Мюнхенский университет, где изучал физику под руководством знаменитого Арнольда Зоммерфельда. Гейзенберг был выдающимся студентом и уже в 1923 защитил докторскую диссертацию. Она была посвящена некоторым аспектам квантовой теории. Следующий год он провел в Геттингенском университете ассистентом у Макса Борна, а затем, получив стипендию Рокфеллеровского фонда, отправился к Нильсу Бору в Копенгаген, где пробыл до 1927, если не считать продолжительных визитов в Геттинген.

В 1933 Гейзенбергу была вручена Нобелевская премия по физике 1932 «за создание квантовой механики, применение которой привело помимо прочего к открытию аллотропических форм водорода».

Гейзенберг был награжден золотой медалью Барнарда «За выдающиеся научные заслуги» Колумбийского университета (1929), золотой медалью Маттеуччи Национальной академии наук Италии (1929), медалью Макса Планка Германского физического общества (1933), бронзовой медалью Национальной академии наук США (1964), международной золотой медалью Нильса Бора Датского общества инженеров-строителей, электриков и механиков (1970).

Он был удостоен почетных степеней университетов Брюсселя, Будапешта, Копенгагена, Загреба и Технического университета в Карлсруэ, состоял членом академий наук Норвегии, Геттингена, Испании, Германии и Румынии, а также Лондонского королевского общества. Американского философского общества, Нью-Йоркской академии наук. Королевской ирландской академии и Японской академии.

Книги (7)

Введение в единую полевую теорию элементарных частиц

Выдающийся современный физик-теоретик Вернер Гейзенберг последние годы много работал над построением единой теории элементарных частиц — главной, принципиально важной проблемой современной теоретической физики. Хотя путь, предложенный Гейзенбергом, не единственный (параллельно разрабатываются и имеют определенные успехи другие направления), вклад автора в решение этой сложнейшей проблемы весьма значителен. В настоящей книге систематически изложены результаты его исследований.

Книга Гейзенберга является первой в мировой научной литературе монографией по единой спинорной нелинейной теории материи.

Избранные труды

Предлагаемое вниманию читателей собрание избранных научных трудов выдающегося физика-теоретика, одного из создателей новой физики Вернера Гейзенберга (1901-1976) с запозданием завершает многолетнюю работу по собиранию, отбору, переводу и редактированию его трудов.

Гидродинамическая устойчивость и турбулентность, строение атома и молекул, квантовая механика и ее приложения, квантовая теория поля, теория дырок Дирака, космические лучи, матрица рассеяния, ферромагнетизм и попытка создания нелинейной единой теории поля таков далеко не полный перечень научных проблем, в постановку и во многих случаях решение которых Гейзенберг внес решающий вклад. Его физическая интуиция и научная дерзость поражали даже тех, кто в разные периоды его жизни работали с ним.

Гейзенбергу, более полувека принимавшему активное участие в создании новой физики, принадлежат и многочисленные попытки ее философского осмысления. Из под его пера вышли такие замечательные книги, как «Физика и философия», «Революция в современной физике», «Физика и за ее пределами: встречи и беседы», «Традиция в науке», и духовная автобиография «Часть и целое».

В настоящее издание включены работы Гейзенберга по квантовой механике, квантовой теории поля, теории феррмагнетизма, теории турбулентности, теории ядра и теории космических ливней. Несмотря на заведомую неполноту, они позволяют составить представление о масштабах научной деятельности выдающегося теоретика.

Принцип неопределенности

Существует ли мир, если на него никто не смотрит?

В течение многих лет Вернер Гейзенберг считался одним из самых демонических представителей западной науки. И это неудивительно, ведь именно он стоял во главе нацистской ядерной программы, к счастью, безуспешной. И все же сотрудничество ученого с преступным режимом не заслонило его огромный вклад в науку.

В 1925 году Гейзенберг обобщил беспорядочное на первый взгляд скопление наблюдений в сфере квантовой физики за предыдущие десятилетия, а через два года вывел свой знаменитый принцип неопределенности. Ученый заявил, что наблюдатель влияет на созерцаемую им реальность.

Это принцип и выводы, из него следующие, заставили недоумевать многих ученых, в том числе и Эйнштейна, который, протестуя, писал: «Мне бы хотелось думать, что Луна существует, даже если я на нее не смотрю».

Физика и философия

В различных университетах Шотландии ежегодно читаются так называемые гиффордовские лекции. Эти лекции, по завещанию основателя, имеют своим предметом естественную теологию.

С естественной теологией связана такая точка зрения на вопросы бытия, которая является результатом отказа от какой-либо частной религии или мировоззрения.

Физика и философия. Часть и целое

Книга содержит два произведения выдающегося физика-теоретика, одного из создателей квантовой механики и теории поля, лауреата Нобелевской премии Вернера Гейзенберга.

В цикле лекций «Физика и философия» рассказывается о философских проблемах перехода от ньютоновского представления об основных элементах мироздания к современным теориям, о прошлом и будущем естествознания, о значении науки.

Сочинение «Часть и целое» представляет собой творческую автобиографию ученого, мыслителя и человека, живое свидетельство эпохи становления квантовой механики и первых шагов атомной техники. В качестве приложения в книге содержится статья А. В. Ахутина «Вернер Гейзенберг и философия».

Философские проблемы атомной физики

Книга выдающегося немецкого физика, лауреата Нобелевской премии Вернера Гейзенберга освещает широкий круг принципиальных вопросов физической науки.

В ней затрагиваются философские основы физики, рассматриваются ее пути развития, важнейшие проблемы и задачи, делается попытка проанализировать социальную роль науки. Автор привлекает разнообразный материал, относящийся к различным этапам истории естествознания, в ряде случаев апеллируя к своему собственному опыту и жизненным наблюдениям.

Шаги за горизонт

Вернер Гейзенбер — один из пионеров современной теоретической физики, который закладывал основы атомной физики. С не меньшей смелостью и глубиной ставил и решал он связанные с нею философские, логические и гуманитарные проблемы.

Сборник составлен на основе двух книг В. Гейзенберга: «Шаги за горизонт» (1973) и «Традиция в науке» (1977). В нем дается теоретико-познавательное, гносеологическое осмысление новейших научных достижений, путей развития теоретической физики.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...