Виды линейных уравнений и их решения. Общий вид неравенства с одной переменной

Научиться решать уравнения — это одна из главных задач, которые ставит алгебра перед учениками. Начиная с простейшего, когда оно состоит из одной неизвестной, и переходя ко все более сложным. Если не усвоены действия, которые нужно выполнить с уравнениями из первой группы, будет трудно разобраться с другими.

Для продолжения разговора нужно договориться об обозначениях.

Общий вид линейного уравнения с одной неизвестной и принцип его решения

Любое уравнение, которое можно привести к записи такого вида:

а * х = в ,

называется линейным . Это общая формула. Но часто в заданиях линейные уравнения записаны в неявном виде. Тогда требуется выполнить тождественные преобразования, чтобы получить общепринятую запись. К этим действиям относятся:

  • раскрытие скобок;
  • перемещение всех слагаемых с переменной величиной в левую часть равенства, а остальных — в правую;
  • приведение подобных слагаемых.

В случае когда неизвестная величина стоит в знаменателе дроби, нужно определить ее значения, при которых выражение не будет иметь смысла. Другими словами, полагается узнать область определения уравнения.

Принцип, по которому решаются все линейные уравнения, сводится к тому, чтобы разделить значение в правой части равенства на коэффициент перед переменной. То есть «х» будет равен в/а.

Частные случаи линейного уравнения и их решения

Во время рассуждений могут возникать такие моменты, когда линейные уравнения принимают один из особых видов. Каждый из них имеет конкретное решение.

В первой ситуации:

а * х = 0 , причем а ≠ 0.

Решением такого уравнения всегда будет х = 0.

Во втором случае «а» принимает значение равное нулю:

0 * х = 0 .

Ответом такого уравнения будет любое число. То есть у него бесконечное количество корней.

Третья ситуация выглядит так:

0 * х = в , где в ≠ 0.

Это уравнение не имеет смысла. Потому что корней, удовлетворяющих ему, не существует.

Общий вид линейного уравнения с двумя переменными

Из его названия становится ясно, что неизвестных величин в нем уже две. Линейные уравнения с двумя переменными выглядят так:

а * х + в * у = с .

Поскольку в записи встречаются две неизвестные, то ответ будет выглядеть как пара чисел. То есть недостаточно указать только одно значение. Это будет неполный ответ. Пара величин, при которых уравнение превращается в тождество, является решением уравнения. Причем в ответе всегда первой записывают ту переменную, которая идет раньше по алфавиту. Иногда говорят, что эти числа ему удовлетворяют. Причем таких пар может быть бесконечное количество.

Как решить линейное уравнение с двумя неизвестными?

Для этого нужно просто подобрать любую пару чисел, которая окажется верной. Для простоты можно принять одну из неизвестных равной какому-либо простому числу, а потом найти вторую.

При решении часто приходится выполнять действия для упрощения уравнения. Они называются тождественными преобразованиями. Причем для уравнений всегда справедливы такие свойства:

  • каждое слагаемое можно перенести в противоположную часть равенства, заменив у него знак на противоположный;
  • левую и правую части любого уравнения разрешено делить на одно и то же число, если оно не равно нулю.

Примеры заданий с линейными уравнениями

Первое задание. Решить линейные уравнения: 4х = 20, 8(х — 1) + 2х = 2(4 — 2х); (5х + 15) / (х + 4) = 4; (5х + 15) / (х + 3) = 4.

В уравнении, которое идет в этом списке первым, достаточно просто выполнить деление 20 на 4. Результат будет равен 5. Это и есть ответ: х=5.

Третье уравнение требует того, чтобы было выполнено тождественное преобразование. Оно будет заключаться в раскрытии скобок и приведении подобных слагаемых. После первого действия уравнение примет вид: 8х — 8 + 2х = 8 — 4х. Потом нужно перенести все неизвестные в левую часть равенства, а остальные — в правую. Уравнение станет выглядеть так: 8х + 2х + 4х = 8 + 8. После приведения подобных слагаемых: 14х = 16. Теперь оно выглядит так же, как и первое, и решение его находится легко. Ответом будет х=8/7. Но в математике полагается выделять целую часть из неправильной дроби. Тогда результат преобразится, и «х» будет равен одной целой и одной седьмой.

В остальных примерах переменные находятся в знаменателе. Это значит, что сначала нужно узнать, при каких значениях уравнения определены. Для этого нужно исключить числа, при которых знаменатели обращаются в ноль. В первом из примеров это «-4», во втором оно «-3». То есть эти значения нужно исключить из ответа. После этого нужно умножить обе части равенства на выражения в знаменателе.

Раскрыв скобки и приведя подобные слагаемые, в первом из этих уравнений получится: 5х + 15 = 4х + 16, а во втором 5х + 15 = 4х + 12. После преобразований решением первого уравнения будет х = -1. Второе оказывается равным «-3», это значит, что последнее решений не имеет.

Второе задание. Решить уравнение: -7х + 2у = 5.

Предположим, что первая неизвестная х = 1, тогда уравнение примет вид -7 * 1 + 2у = 5. Перенеся в правую часть равенства множитель «-7» и поменяв у него знак на плюс, получится, что 2у = 12. Значит, у=6. Ответ: одно из решений уравнения х = 1, у = 6.

Общий вид неравенства с одной переменной

Все возможные ситуации для неравенств представлены здесь:

  • а * х > в;
  • а * х < в;
  • а * х ≥в;
  • а * х ≤в.

В общем, оно выглядит как простейшее линейное уравнение, только знак равенства заменен на неравенство.

Правила тождественных преобразований неравенства

Так же как линейные уравнения, и неравенства можно видоизменять по определенным законам. Они сводятся к следующему:

  1. к левой и правой частям неравенства можно прибавить любое буквенное или числовое выражение, причем знак неравенства останется прежним;
  2. также можно и умножить или разделить на одно и то же положительное число, от этого опять знак не изменяется;
  3. при умножении или делении на одно и то же отрицательное число равенство останется верным при условии смены знака неравенства на противоположный.

Общий вид двойных неравенств

В задачах могут быть представлены такие варианты неравенств:

  • в < а * х < с;
  • в ≤ а * х < с;
  • в < а * х ≤ с;
  • в ≤ а * х ≤ с.

Двойными оно называется, потому что ограничено знаками неравенства с двух сторон. Оно решается с помощью тех же правил, что и обычные неравенства. И нахождение ответа сводится к ряду тождественных преобразований. Пока не будет получено простейшее.

Особенности решения двойных неравенств

Первой из них является его изображение на координатной оси. Использовать этот способ для простых неравенств нет необходимости. А вот в сложных случаях он может быть просто необходимым.

Для изображения неравенства нужно отметить на оси все точки, которые получились во время рассуждений. Это и недопустимые значения, которые обозначаются выколотыми точками, и значения из неравенств, получившиеся после преобразований. Здесь тоже важно правильно нарисовать точки. Если неравенство строгое, то есть < или >, то эти значения выколотые. В нестрогих неравенствах точки нужно закрашивать.

Потом полагается обозначить смысл неравенств. Это можно сделать с помощью штриховки или дуг. Их пересечение укажет ответ.

Вторая особенность связана с его записью. Здесь предлагается два варианта. Первый — это окончательное неравенство. Второй — в виде промежутков. Вот с ним бывает, что возникают трудности. Ответ промежутками всегда выглядит как переменная со знаком принадлежности и скобок с числами. Иногда промежутков получается несколько, тогда между скобками нужно написать символ «и». Эти знаки выглядят так: ∈ и ∩. Скобки промежутков тоже играют свою роль. Круглая ставится тогда, когда точка исключена из ответа, а прямоугольная включает это значение. Знак бесконечности всегда стоит в круглой скобке.

Примеры решения неравенств

1. Решить неравенство 7 - 5х ≥ 37.

После несложных преобразований получается: -5х ≥ 30. Разделив на «-5» можно получить такое выражение: х ≤ -6. Это уже ответ, но его можно записать и по-другому: х ∈ (-∞; -6].

2. Решите двойное неравенство -4 < 2x + 6 ≤ 8.

Сначала нужно везде вычесть 6. Получится: -10 < 2x ≤ 2. Теперь нужно разделить на 2. Неравенство примет вид: -5 < x ≤ 1. Изобразив ответ на числовой оси, сразу можно понять, что результатом будет промежуток от -5 до 1. Причем первая точка исключена, а вторая включена. То есть ответ у неравенства такой: х ∈ (-5; 1].

И т.п., логично познакомиться с уравнениями и других видов. Следующими по очереди идут линейные уравнения , целенаправленное изучение которых начинается на уроках алгебры в 7 классе.

Понятно, что сначала надо объяснить, что такое линейное уравнение, дать определение линейного уравнения, его коэффициентов, показать его общий вид. Дальше можно разбираться, сколько решений имеет линейное уравнение в зависимости от значений коэффициентов, и как находятся корни. Это позволит перейти к решению примеров, и тем самым закрепить изученную теорию. В этой статье мы это сделаем: детально остановимся на всех теоретических и практических моментах, касающихся линейных уравнений и их решения.

Сразу скажем, что здесь мы будем рассматривать только линейные уравнения с одной переменной, а уже в отдельной статье будем изучать принципы решения линейных уравнений с двумя переменными .

Навигация по странице.

Что такое линейное уравнение?

Определение линейного уравнения дается по виду его записи. Причем в разных учебниках математики и алгебры формулировки определений линейных уравнений имеют некоторые различия, не влияющие на суть вопроса.

Например, в учебнике алгебры для 7 класса Ю. Н. Макарычева и др. линейное уравнение определяется следующим образом:

Определение.

Уравнение вида a·x=b , где x – переменная, a и b – некоторые числа, называется линейным уравнением с одной переменной .

Приведем примеры линейных уравнений, отвечающие озвученному определению. Например, 5·x=10 – это линейное уравнение с одной переменной x , здесь коэффициент a равен 5 , а число b есть 10 . Другой пример: −2,3·y=0 – это тоже линейное уравнение, но с переменной y , в котором a=−2,3 и b=0 . А в линейных уравнениях x=−2 и −x=3,33 a не присутствуют в явном виде и равны 1 и −1 соответственно, при этом в первом уравнении b=−2 , а во втором - b=3,33 .

А годом ранее в учебнике математики Виленкина Н. Я. линейными уравнениями с одним неизвестным помимо уравнений вида a·x=b считали и уравнения, которые можно привести к такому виду с помощью переноса слагаемых из одной части уравнения в другую с противоположным знаком, а также с помощью приведения подобных слагаемых. Согласно этому определению, уравнения вида 5·x=2·x+6 , и т.п. тоже линейные.

В свою очередь в учебнике алгебры для 7 классов А. Г. Мордковича дается такое определение:

Определение.

Линейное уравнение с одной переменной x – это уравнение вида a·x+b=0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

К примеру, линейными уравнениями такого вида являются 2·x−12=0 , здесь коэффициент a равен 2 , а b – равен −12 , и 0,2·y+4,6=0 с коэффициентами a=0,2 и b=4,6 . Но в тоже время там приводятся примеры линейных уравнений, имеющие вид не a·x+b=0 , а a·x=b , например, 3·x=12 .

Давайте, чтобы у нас в дальнейшем не было разночтений, под линейным уравнениями с одной переменной x и коэффициентами a и b будем понимать уравнение вида a·x+b=0 . Такой вид линейного уравнения представляется наиболее оправданным, так как линейные уравнения – это алгебраические уравнения первой степени. А все остальные указанные выше уравнения, а также уравнения, которые с помощью равносильных преобразований приводятся к виду a·x+b=0 , будем называть уравнениями, сводящимися к линейным уравнениям . При таком подходе уравнение 2·x+6=0 – это линейное уравнение, а 2·x=−6 , 4+25·y=6+24·y , 4·(x+5)=12 и т.п. – это уравнения, сводящиеся к линейным.

Как решать линейные уравнения?

Теперь пришло время разобраться, как решаются линейные уравнения a·x+b=0 . Другими словами, пора узнать, имеет ли линейное уравнение корни, и если имеет, то сколько их и как их найти.

Наличие корней линейного уравнения зависит от значений коэффициентов a и b . При этом линейное уравнение a·x+b=0 имеет

  • единственный корень при a≠0 ,
  • не имеет корней при a=0 и b≠0 ,
  • имеет бесконечно много корней при a=0 и b=0 , в этом случае любое число является корнем линейного уравнения.

Поясним, как были получены эти результаты.

Мы знаем, что для решения уравнений можно переходить от исходного уравнения к равносильным уравнениям , то есть, к уравнениям с теми же корнями или также как и исходное, не имеющим корней. Для этого можно использовать следующие равносильные преобразования:

  • перенос слагаемого из одной части уравнения в другую с противоположным знаком,
  • а также умножение или деление обе частей уравнения на одно и то же отличное от нуля число.

Итак, в линейном уравнении с одной переменной вида a·x+b=0 мы можем перенести слагаемое b из левой части в правую часть с противоположным знаком. При этом уравнение примет вид a·x=−b .

А дальше напрашивается деление обеих частей уравнения на число a. Но есть одно но: число a может быть равно нулю, в этом случае такое деление невозможно. Чтобы справиться с этой проблемой, сначала будем считать, что число a отлично от нуля, а случай равного нулю a рассмотрим отдельно чуть позже.

Итак, когда a не равно нулю, то мы можем обе части уравнения a·x=−b разделить на a , после этого оно преобразуется к виду x=(−b):a , этот результат можно записать с использованием дробной черты как .

Таким образом, при a≠0 линейное уравнение a·x+b=0 равносильно уравнению , откуда виден его корень .

Несложно показать, что этот корень единственный, то есть, линейное уравнение не имеет других корней. Это позволяет сделать метод от противного.

Обозначим корень как x 1 . Предположим, что существует еще один корень линейного уравнения, который обозначим x 2 , причем x 2 ≠x 1 , что в силу определения равных чисел через разность эквивалентно условию x 1 −x 2 ≠0 . Так как x 1 и x 2 корни линейного уравнения a·x+b=0 , то имеют место числовые равенства a·x 1 +b=0 и a·x 2 +b=0 . Мы можем выполнить вычитание соответствующих частей этих равенств, что нам позволяют сделать свойства числовых равенств , имеем a·x 1 +b−(a·x 2 +b)=0−0 , откуда a·(x 1 −x 2)+(b−b)=0 и дальше a·(x 1 −x 2)=0 . А это равенство невозможно, так как и a≠0 и x 1 −x 2 ≠0 . Так мы пришли к противоречию, что доказывает единственность корня линейного уравнения a·x+b=0 при a≠0 .

Так мы решили линейное уравнение a·x+b=0 при a≠0 . Первый результат, приведенный в начале этого пункта, обоснован. Остались еще два, отвечающие условию a=0 .

При a=0 линейное уравнение a·x+b=0 принимает вид 0·x+b=0 . Из этого уравнения и свойства умножения чисел на нуль следует, что какое бы число мы не взяли в качестве x , при его подстановке в уравнение 0·x+b=0 получится числовое равенство b=0 . Это равенство верное, когда b=0 , а в остальных случаях при b≠0 это равенство неверное.

Следовательно, при a=0 и b=0 любое число является корнем линейного уравнения a·x+b=0 , так как при этих условиях подстановка вместо x любого числа дает верное числовое равенство 0=0 . А при a=0 и b≠0 линейное уравнение a·x+b=0 не имеет корней, так как при этих условиях подстановка вместо x любого числа приводит к неверному числовому равенству b=0 .

Приведенные обоснования позволяют сформировать последовательность действий, позволяющую решить любое линейное уравнение. Итак, алгоритм решения линейного уравнения таков:

  • Сначала по записи линейного уравнения находим значения коэффициентов a и b .
  • Если a=0 и b=0 , то это уравнение имеет бесконечно много корней, а именно, любое число является корнем этого линейного уравнения.
  • Если же a отлично от нуля, то
    • коэффициент b переносится в правую часть с противоположным знаком, при этом линейное уравнение преобразуется к виду a·x=−b ,
    • после чего обе части полученного уравнения делятся на отличное от нуля число a , что и дает искомый корень исходного линейного уравнения .

Записанный алгоритм является исчерпывающим ответом на вопрос, как решать линейные уравнения.

В заключение этого пункта стоит сказать, что похожий алгоритм применяется для решения уравнений вида a·x=b . Его отличие состоит в том, что при a≠0 сразу выполняется деление обеих частей уравнения на это число, здесь b уже находится в нужной части уравнения и не нужно осуществлять его перенос.

Для решения уравнений вида a·x=b применяется такой алгоритм:

  • Если a=0 и b=0 , то уравнение имеет бесконечно много корней, которыми являются любые числа.
  • Если a=0 и b≠0 , то исходное уравнение не имеет корней.
  • Если же a отлично от нуля, то обе части уравнения делятся на отличное от нуля число a , откуда находится единственный корень уравнения, равный b/a .

Примеры решения линейных уравнений

Переходим к практике. Разберем, как применяется алгоритм решения линейных уравнений. Приведем решения характерных примеров, соответствующих различным значениям коэффициентов линейных уравнений.

Пример.

Решите линейное уравнение 0·x−0=0 .

Решение.

В этом линейном уравнении a=0 и b=−0 , что то же самое, b=0 . Следовательно, это уравнение имеет бесконечно много корней, любое число является корнем этого уравнения.

Ответ:

x – любое число.

Пример.

Имеет ли решения линейное уравнение 0·x+2,7=0 ?

Решение.

В данном случае коэффициент a равен нулю, а коэффициент b этого линейного уравнения равен 2,7 , то есть, отличен от нуля. Поэтому, линейное уравнение не имеет корней.

Линейные уравнения – довольно безобидная и понятная тема школьной математики. Но, как это ни странно, количество ошибок на ровном месте при решении линейных уравнений лишь немногим меньше, чем в других темах – квадратных уравнениях, логарифмах, тригонометрии и прочих. Причины большинства ошибок – банальные тождественные преобразования уравнений. В первую очередь, это путаница в знаках при переносе слагаемых из одной части уравнения в другую, а также ошибки при работе с дробями и дробными коэффициентами. Да-да! Дроби в линейных уравнениях тоже встречаются! Сплошь и рядом. Чуть ниже такие злые уравнения мы с вами тоже обязательно разберём.)

Ну что, не будем тянуть кота за хвост и начнём разбираться, пожалуй? Тогда читаем и вникаем.)

Что такое линейное уравнение? Примеры.

Обычно линейное уравнение имеет следующий вид:

ax + b = 0,

Где a и b – любые числа. Какие угодно: целые, дробные, отрицательные, иррациональные – всякие могут быть!

Например:

7х + 1 = 0 (здесь a = 7, b = 1)

x – 3 = 0 (здесь a = 1, b = -3)

x/2 – 1,1 = 0 (здесь a = 1/2, b = -1,1)

В общем, вы поняли, я надеюсь.) Всё просто, как в сказке. До поры до времени… А если присмотреться к общей записи ax+b=0 более пристально, да немного призадуматься? Ведь a и b – любые числа ! А если у нас, скажем, a = 0 и b = 0 (любые же числа можно брать!), то что у нас тогда получится?

0 = 0

Но и это ещё не все приколы! А если, допустим, a = 0, b = -10? Тогда уже совсем какая-то ахинея получается:

0 = 10.

Что весьма и весьма напрягает и подрывает завоёвываемое потом и кровью доверие к математике… Особенно на контрольных и экзаменах. А ведь из этих непонятных и странных равенств ещё и икс найти нужно! Которого нету вообще! И вот тут даже хорошо подготовленные ученики, порой, могут впасть, что называется, в ступор… Но не переживайте! В данном уроке все такие сюрпризы мы тоже рассмотрим. И икс из таких равенств тоже обязательно отыщем.) Причём этот самый икс ищется очень и очень просто. Да-да! Удивительно, но факт.)

Ну хорошо, это понятно. Но как же можно узнать по внешнему виду задания, что перед нами именно линейное уравнение, а не какое-либо ещё? К сожалению, только по внешнему виду распознать тип уравнения возможно далеко не всегда. Дело всё в том, что линейными называются не только уравнения вида ax+b=0, но и любые другие уравнения, которые тождественными преобразованиями, так или иначе, сводятся к такому виду. А как тут узнаешь, сводится оно или нет? Пока пример почти не решишь – почти никак. Это огорчает. Но для некоторых типов уравнений можно при одном беглом взгляде сразу с уверенностью сказать, линейное оно или нет.

Для этого ещё разок обратимся к общей структуре любого линейного уравнения:

ax + b = 0

Обратите внимание: в линейном уравнении всегда присутствует только переменная икс в первой степени и какие-то числа! И всё! Больше ничего. При этом нету иксов в квадрате, в кубе, под корнем, под логарифмом и прочей экзотики. И (что особенно важно!) нет дробей с иксом в знаменателях! А вот дроби с числами в знаменателях или деление на число – запросто!

Например:

Это линейное уравнение. В уравнении присутствуют только иксы в первой степени да числа. И нету иксов в более высоких степенях – в квадрате, в кубе и так далее. Да, здесь есть дроби, но при этом в знаменателях дробей сидят только числа. А именно - двойка и тройка. Иными словами, в уравнении нету деления на икс .

А вот уравнение

Уже нельзя назвать линейным, хотя здесь тоже присутствуют только числа и иксы в первой степени. Ибо, помимо всего прочего, здесь есть ещё и дроби с иксами в знаменателях . И после упрощений и преобразований такое уравнение может стать каким угодно: и линейным, и квадратным – всяким.

Как решать линейные уравнения? Примеры.

Так как же решать линейные уравнения? Читайте дальше и удивляйтесь.) Всё решение линейных уравнений базируется всего на двух основных вещах. Перечислим их.

1) Набор элементарных действий и правил математики.

Это использование скобок, раскрытие скобок, работа с дробями, работа с отрицательными числами, таблица умножения и так далее. Эти знания и умения необходимы не только для решения линейных уравнений, а для всей математики вообще. И, если с этим проблемы, вспоминайте младшие классы. Иначе несладко вам придётся…

2)

Их всего два. Да-да! Более того, эти самые базовые тождественные преобразования лежат в основе решения не только линейных, а вообще любых уравнений математики! Одним словом, решение любого другого уравнения – квадратного, логарифмического, тригонометрического, иррационального и т.д. – как правило, начинается с этих самых базовых преобразований. А вот решение именно линейных уравнений, собственно, на них же (преобразованиях) и заканчивается. Готовым ответом.) Так что не поленитесь и прогуляетесь по ссылке.) Тем более, что там линейные уравнения тоже детально разбираются.

Что ж, я думаю, пора приступать к разбору примеров.

Для начала, в качестве разминки, рассмотрим какую-нибудь элементарщину. Безо всяких дробей и прочих наворотов. Например, такое уравнение:

х – 2 = 4 – 5х

Это классическое линейное уравнение. Все иксы максимум в первой степени и деления на икс нигде нету. Схема решения в таких уравнениях всегда едина и проста до ужаса: все члены с иксами надо собрать слева, а все члены без иксов (т.е. числа) собрать справа. Вот и приступаем к сбору.

Для этого запускаем в ход первое тождественное преобразование. Нам нужно перенести -5х влево, а -2 перенести вправо. Со сменой знака, ясное дело.) Вот и переносим:

х + 5х = 4 + 2

Ну вот. Полдела сделано: иксы собрали в кучку, числа – тоже. Теперь слева приводим подобные, а справа – считаем. Получаем:

6х = 6

Чего теперь нам не хватает для полного счастья? Да чтобы слева чистый икс остался! А шестёрка – мешает. Как от неё избавиться? Запускаем теперь второе тождественное преобразование – делим обе части уравнения на 6. И – вуаля! Ответ готов.)

х = 1

Разумеется, пример совсем примитивный. Чтобы общую идею уловить. Что ж, решим что-нибудь посущественнее. Например, разберём вот такое уравнение:

Детально разберём.) Это тоже линейное уравнение, хотя, казалось бы, тут есть дроби. Но в дробях есть деление на двойку и есть деление на тройку, а вот деления на выражение с иксом – нету! Так что – решаем. Используя всё те же тождественные преобразования, да.)

Что вначале делать будем? С иксами - влево, без иксов – вправо? В принципе, можно и так. Лететь в Сочи через Владивосток.) А можно пойти по кратчайшему пути, сразу воспользовавшись универсальным и мощным способом. Если знать тождественные преобразования, разумеется.)

Для начала задаю ключевой вопрос: что вам сильнее всего бросается в глаза и больше всего не нравится в этом уравнении? 99 человек из 100 скажут: дроби! И будут правы.) Вот и избавимся сначала от них. Безопасно для самого уравнения.) Поэтому начнём сразу со второго тождественного преобразования – с домножения. На что надо помножить левую часть, чтобы знаменатель благополучно сократился? Правильно, на двойку. А правую часть? На тройку! Но… Математика – дама капризная. Она, понимаешь, требует умножать обе части только на одно и то же число! Каждую часть помножать на своё число – не катит… Что делать будем? Что-что… Искать компромисс. Чтобы и наши хотелки удовлетворить (избавиться от дробей) и математику не обидеть.) А помножим-ка обе части на шестёрку!) То есть, на общий знаменатель всех дробей, входящих в уравнение. Тогда одним махом и двойка сократится, и тройка!)

Вот и домножаем. Всю левую часть и всю правую часть целиком! Посему используем скобочки. Вот так выглядит сама процедура:

Теперь раскрываем эти самые скобочки:

Теперь, представив 6 как 6/1, помножим шестёрку на каждую из дробей слева и справа. Это обычное умножение дробей, но, так уж и быть, распишу детально:

А вот здесь – внимание! Числитель (х-3) я взял в скобки! Это всё потому, что при умножении дробей числитель умножается весь, целиком и полностью! И с выражением х-3 надо работать как с одной цельной конструкцией. А вот если вы запишете числитель вот так:

6х – 3 ,

Но у нас всё правильно и надо дорешивать. Что дальше делать? Раскрывать скобки в числителе слева? Ни в коем случае! Мы с вами домножали обе части на 6, чтобы от дробей избавиться, а не для того чтобы париться с раскрытием скобок. На данном этапе нам надо сократить наши дроби. С чувством глубокого удовлетворения сокращаем все знаменатели и получаем уравнение безо всяких дробей, в линеечку:

3(х-3) + 6х = 30 – 4х

А вот теперь и оставшиеся скобки можно раскрыть:

3х – 9 + 6х = 30 – 4х

Уравнение становится всё лучше и лучше! Вот теперь вновь вспоминаем про первое тождественное преобразование. С каменным лицом повторяем заклинание из младших классов: с иксами – влево, без иксов – вправо . И применяем это преобразование:

3х + 6х + 4х = 30 + 9

Приводим подобные слева и считаем справа:

13х = 39

Осталось поделить обе части на 13. То есть, вновь применить второе преобразование. Делим и получаем ответ:

х = 3

Готово дело. Как вы видите, в данном уравнении нам пришлось один раз применить первое преобразование (перенос слагаемых) и дважды – второе: в начале решения мы использовали домножение (на 6) с целью избавиться от дробей, а в конце решения использовали деление (на 13), чтобы избавиться от коэффициента перед иксом. И решение любого (да-да, любого!) линейного уравнения состоит из комбинации этих самых преобразований в той или иной последовательности. С чего именно начинать – от конкретного уравнения зависит. Где-то выгоднее начинать с переноса, а где-то (как в этом примере) – с домножения (или деления).

Работаем от простого – к сложному. Рассмотрим теперь откровенную жесть. С кучей дробей и скобок. А я уж подскажу, как не надорваться.)

Например, вот такое уравнение:

Минуту смотрим на уравнение, ужасаемся, но всё-таки берём себя в руки! Основная проблема – с чего начинать? Можно сложить дроби в правой части. Можно выполнить вычитание дробей в скобках. Можно обе части на что-нибудь домножить. Или поделить… Так что же всё-таки можно? Ответ: всё можно! Ни одно из перечисленных действий математика не запрещает. И какую бы последовательность действий и преобразований вы бы ни выбрали, ответ получится всегда один – правильный. Если, конечно, на каком-то шаге не нарушить тождественность ваших преобразований и, тем самым, не наляпать ошибок…

А, чтобы не наляпать ошибок, в таких навороченных примерах, как этот, всегда полезнее всего оценить его внешний вид и в уме прикинуть: что можно такое сделать в примере, чтобы максимально упростить его за один шаг?

Вот и прикидываем. Слева стоят шестёрки в знаменателях. Лично мне они не нравятся, а убрать их очень легко. Домножу-ка я обе части уравнения на 6! Тогда шестёрки слева благополучно сократятся, дроби в скобках пока никуда не денутся. Ну и ничего страшного. С ними чуток позже расправимся.) А вот справа у нас сократятся знаменатели 2 и 3. Именно при этом действии (умножении на 6) у нас за один шаг достигаются максимальные упрощения!

После умножения всё наше злое уравнение станет вот таким:

Кто не понял, как именно получилось это уравнение, значит, вы плохо усвоили разбор предыдущего примера. А я старался, между прочим…

Итак, раскрываем:

Теперь самым логичным шагом было бы уединить дроби слева, а 5х отправить в правую часть. Заодно и подобные в правой части приведём. Получим:

Уже гораздо лучше. Теперь левая часть сама собой подготовилась к умножению. На что надо домножить левую часть, чтобы сразу и пятёрка сократилась, и четвёрка? На 20! Но ещё у нас присутствуют минусы в обеих частях уравнения. Поэтому удобнее всего будет умножать обе части уравнения не на 20, а на -20. Тогда одним махом и минусы исчезнут, и дроби.

Вот и умножаем:

Кому до сих пор непонятен этот шаг – значит, проблемы не в уравнениях. Проблемы – в основах! Вновь вспоминаем золотое правило раскрытия скобок:

Если число умножается на какое-то выражение в скобках, то это число надо последовательно умножить на каждое слагаемое этого самого выражения. При этом если число положительно, то знаки выражений после раскрытия сохраняются. Если отрицательно – меняются на противоположные:

a(b+c) = ab+ac

-a(b+c) = -ab-ac

Минусы у нас исчезли после домножения обеих частей на -20. И теперь скобки с дробями слева мы умножаем на вполне себе положительное число 20. Стало быть, при раскрытии этих скобок все знаки, что были внутри них, сохраняются. А вот откуда взялись скобки в числителях дробей, я уже подробно объяснял в предыдущем примере.

А вот теперь дроби и сократить можно:

4(3-5х)-5(3х-2) = 20

Раскрываем оставшиеся скобки. Опять же, правильно раскрываем. Первые скобки умножаются на положительное число 4 и, стало быть, все знаки при их раскрытии сохраняются. А вот вторые скобки умножаются на отрицательное число -5 и, поэтому, все знаки меняются на противоположные:

12 - 20х - 15х + 10 = 20

Остались сущие пустяки. С иксами влево, без иксов – вправо:

-20х – 15х = 20 – 10 – 12

-35х = -2

Вот почти и всё. Слева нужен чистый икс, а число -35 мешает. Вот и делим обе части на (-35). Напоминаю, что второе тождественное преобразование разрешает нам умножать и делить обе части на какое угодно число. В том числе и на отрицательное.) Лишь бы не на ноль! Смело делим и получаем ответ:

X = 2/35

На сей раз икс получился дробным. Ничего страшного. Такой уж пример.)

Как мы видим, принцип решения линейных уравнений (даже самых накрученных) довольно простой: берём исходное уравнение и тождественными преобразованиями последовательно упрощаем его прямо до получения ответа. С соблюдением основ, разумеется! Главные проблемы здесь именно в несоблюдении основ (скажем, перед скобками стоит минус, а знаки при раскрытии поменять забыли), а также в банальной арифметике. Так что не пренебрегайте основами! Они – фундамент всей остальной математики!

Некоторые приколы при решении линейных уравнений. Или особые случаи.

Всё бы ничего. Однако… Попадаются среди линейных уравнений и такие забавные перлы, которые в процессе их решения могут и в сильный ступор вогнать. Даже отличника.)

Например, вот такое безобидное с виду уравнение:

7х + 3 = 4х + 5 + 3х - 2

Широко позёвывая и слегка скучая, собираем все иксы слева, а все числа справа:

7х-4х-3х = 5-2-3

Приводим подобные, считаем и получаем:

0 = 0

Вот-те раз! Выдал примерчик фокус! Само по себе это равенство возражений не вызывает: ноль действительно равен нулю. Но икс-то пропал! Бесследно! А мы обязаны записать в ответе, чему равен икс . Иначе решение не считается, да.) Что же делать?

Без паники! В таких нестандартных случаях спасают самые общие понятия и принципы математики. Что такое уравнение? Как решать уравнения? Что значит решить уравнение?

Решить уравнение – это значит, найти все значения переменной икс, которые при подстановке в исходное уравнение дадут нам верное равенство (тождество)!

Но верное равенство у нас уже получилось ! 0=0, вернее некуда!) Остаётся догадаться, при каких именно иксах у нас получается это равенство. Какие же такие иксы можно подставлять в исходное уравнение, если при подстановке все они всё равно посокращаются в полный ноль? Неужели ещё не догадались?

Ну, конечно же! Иксы можно подставлять любые !!! Совершенно любые. Какие хотите, такие и подставляйте. Хоть 1, хоть -23, хоть 2,7 – какие угодно! Они всё равно сократятся и в результате останется чистая правда. Попробуйте, поподставляйте и убедитесь лично.)

Вот вам и ответ:

х – любое число .

В научной записи это равенство пишется так:

Читается эта запись так: «Икс – любое действительное число.»

Или в другой форме, через промежутки:

Как вам больше нравится, так и оформляйте. Это верный и совершенно полноценный ответ!

А теперь я изменю в нашем исходном уравнении всего одно число. Вот такое уравнение теперь решим:

7х + 2 = 4х + 5 + 3х – 2

Опять переносим слагаемые, считаем и получаем:

7х – 4х – 3х = 5 – 2 – 2

0 = 1

И как вам этот прикол? Было обычное линейное уравнение, а стало непонятное равенство

0 = 1…

Говоря научным языком, мы получили неверное равенство. А по-русски неправда это. Бред сивой кобылы. Ахинея.) Ибо ноль никак не равен единице!

А теперь опять соображаем, какие же иксы при подстановке в исходное уравнение дадут нам верное равенство? Какие? А никакие! Какой икс ни подставляй, всё равно всё посокращается и останется лажа.)

Вот и ответ: решений нет .

В математической записи такой ответ оформляется вот так:

Читается: «Икс принадлежит пустому множеству.»

Такие ответы в математике тоже встречаются довольно часто: далеко не всегда у какого-либо уравнения имеются корни в принципе. Какие-то уравнения могут и вовсе не иметь корней. Совсем.

Вот такие вот два сюрприза. Надеюсь, что теперь внезапная пропажа иксов в уравнении не поставит вас навечно в тупик. Дело вполне знакомое.)

И тут слышу закономерный вопрос: а в ОГЭ или ЕГЭ они будут? На ЕГЭ сами по себе в качестве задания – нет. Слишком уж простенькие. А вот в ОГЭ или в текстовых задачках – запросто! Так что теперь – тренируемся и решаем:

Ответы (в беспорядке): -2; -1; любое число; 2; нет решений; 7/13.

Всё получилось? Отлично! У вас неплохие шансы на экзамене.

Что-то не сходится? Гм… Печалька, конечно. Значит, где-то пока есть пробелы. Либо в основах, либо в тождественных преобразованиях. Либо же дело в банальной невнимательности. Перечитайте урок ещё раз. Ибо не та это тема, без которой можно вот так легко обойтись в математике…

Удачи! Она вам обязательно улыбнётся, поверьте!)

Научиться решать уравнения — это одна из главных задач, которые ставит алгебра перед учениками. Начиная с простейшего, когда оно состоит из одной неизвестной, и переходя ко все более сложным. Если не усвоены действия, которые нужно выполнить с уравнениями из первой группы, будет трудно разобраться с другими.

Для продолжения разговора нужно договориться об обозначениях.

Общий вид линейного уравнения с одной неизвестной и принцип его решения

Любое уравнение, которое можно привести к записи такого вида:

а * х = в ,

называется линейным . Это общая формула. Но часто в заданиях линейные уравнения записаны в неявном виде. Тогда требуется выполнить тождественные преобразования, чтобы получить общепринятую запись. К этим действиям относятся:

  • раскрытие скобок;
  • перемещение всех слагаемых с переменной величиной в левую часть равенства, а остальных — в правую;
  • приведение подобных слагаемых.

В случае когда неизвестная величина стоит в знаменателе дроби, нужно определить ее значения, при которых выражение не будет иметь смысла. Другими словами, полагается узнать область определения уравнения.

Принцип, по которому решаются все линейные уравнения, сводится к тому, чтобы разделить значение в правой части равенства на коэффициент перед переменной. То есть «х» будет равен в/а.

Частные случаи линейного уравнения и их решения

Во время рассуждений могут возникать такие моменты, когда линейные уравнения принимают один из особых видов. Каждый из них имеет конкретное решение.

В первой ситуации:

а * х = 0 , причем а ≠ 0.

Решением такого уравнения всегда будет х = 0.

Во втором случае «а» принимает значение равное нулю:

0 * х = 0 .

Ответом такого уравнения будет любое число. То есть у него бесконечное количество корней.

Третья ситуация выглядит так:

0 * х = в , где в ≠ 0.

Это уравнение не имеет смысла. Потому что корней, удовлетворяющих ему, не существует.

Общий вид линейного уравнения с двумя переменными

Из его названия становится ясно, что неизвестных величин в нем уже две. Линейные уравнения с двумя переменными выглядят так:

а * х + в * у = с .

Поскольку в записи встречаются две неизвестные, то ответ будет выглядеть как пара чисел. То есть недостаточно указать только одно значение. Это будет неполный ответ. Пара величин, при которых уравнение превращается в тождество, является решением уравнения. Причем в ответе всегда первой записывают ту переменную, которая идет раньше по алфавиту. Иногда говорят, что эти числа ему удовлетворяют. Причем таких пар может быть бесконечное количество.

Как решить линейное уравнение с двумя неизвестными?

Для этого нужно просто подобрать любую пару чисел, которая окажется верной. Для простоты можно принять одну из неизвестных равной какому-либо простому числу, а потом найти вторую.

При решении часто приходится выполнять действия для упрощения уравнения. Они называются тождественными преобразованиями. Причем для уравнений всегда справедливы такие свойства:

  • каждое слагаемое можно перенести в противоположную часть равенства, заменив у него знак на противоположный;
  • левую и правую части любого уравнения разрешено делить на одно и то же число, если оно не равно нулю.

Примеры заданий с линейными уравнениями

Первое задание. Решить линейные уравнения: 4х = 20, 8(х — 1) + 2х = 2(4 — 2х); (5х + 15) / (х + 4) = 4; (5х + 15) / (х + 3) = 4.

В уравнении, которое идет в этом списке первым, достаточно просто выполнить деление 20 на 4. Результат будет равен 5. Это и есть ответ: х=5.

Третье уравнение требует того, чтобы было выполнено тождественное преобразование. Оно будет заключаться в раскрытии скобок и приведении подобных слагаемых. После первого действия уравнение примет вид: 8х — 8 + 2х = 8 — 4х. Потом нужно перенести все неизвестные в левую часть равенства, а остальные — в правую. Уравнение станет выглядеть так: 8х + 2х + 4х = 8 + 8. После приведения подобных слагаемых: 14х = 16. Теперь оно выглядит так же, как и первое, и решение его находится легко. Ответом будет х=8/7. Но в математике полагается выделять целую часть из неправильной дроби. Тогда результат преобразится, и «х» будет равен одной целой и одной седьмой.

В остальных примерах переменные находятся в знаменателе. Это значит, что сначала нужно узнать, при каких значениях уравнения определены. Для этого нужно исключить числа, при которых знаменатели обращаются в ноль. В первом из примеров это «-4», во втором оно «-3». То есть эти значения нужно исключить из ответа. После этого нужно умножить обе части равенства на выражения в знаменателе.

Раскрыв скобки и приведя подобные слагаемые, в первом из этих уравнений получится: 5х + 15 = 4х + 16, а во втором 5х + 15 = 4х + 12. После преобразований решением первого уравнения будет х = -1. Второе оказывается равным «-3», это значит, что последнее решений не имеет.

Второе задание. Решить уравнение: -7х + 2у = 5.

Предположим, что первая неизвестная х = 1, тогда уравнение примет вид -7 * 1 + 2у = 5. Перенеся в правую часть равенства множитель «-7» и поменяв у него знак на плюс, получится, что 2у = 12. Значит, у=6. Ответ: одно из решений уравнения х = 1, у = 6.

Общий вид неравенства с одной переменной

Все возможные ситуации для неравенств представлены здесь:

  • а * х > в;
  • а * х < в;
  • а * х ≥в;
  • а * х ≤в.

В общем, оно выглядит как простейшее линейное уравнение, только знак равенства заменен на неравенство.

Правила тождественных преобразований неравенства

Так же как линейные уравнения, и неравенства можно видоизменять по определенным законам. Они сводятся к следующему:

  1. к левой и правой частям неравенства можно прибавить любое буквенное или числовое выражение, причем знак неравенства останется прежним;
  2. также можно и умножить или разделить на одно и то же положительное число, от этого опять знак не изменяется;
  3. при умножении или делении на одно и то же отрицательное число равенство останется верным при условии смены знака неравенства на противоположный.

Общий вид двойных неравенств

В задачах могут быть представлены такие варианты неравенств:

  • в < а * х < с;
  • в ≤ а * х < с;
  • в < а * х ≤ с;
  • в ≤ а * х ≤ с.

Двойными оно называется, потому что ограничено знаками неравенства с двух сторон. Оно решается с помощью тех же правил, что и обычные неравенства. И нахождение ответа сводится к ряду тождественных преобразований. Пока не будет получено простейшее.

Особенности решения двойных неравенств

Первой из них является его изображение на координатной оси. Использовать этот способ для простых неравенств нет необходимости. А вот в сложных случаях он может быть просто необходимым.

Для изображения неравенства нужно отметить на оси все точки, которые получились во время рассуждений. Это и недопустимые значения, которые обозначаются выколотыми точками, и значения из неравенств, получившиеся после преобразований. Здесь тоже важно правильно нарисовать точки. Если неравенство строгое, то есть < или >, то эти значения выколотые. В нестрогих неравенствах точки нужно закрашивать.

Потом полагается обозначить смысл неравенств. Это можно сделать с помощью штриховки или дуг. Их пересечение укажет ответ.

Вторая особенность связана с его записью. Здесь предлагается два варианта. Первый — это окончательное неравенство. Второй — в виде промежутков. Вот с ним бывает, что возникают трудности. Ответ промежутками всегда выглядит как переменная со знаком принадлежности и скобок с числами. Иногда промежутков получается несколько, тогда между скобками нужно написать символ «и». Эти знаки выглядят так: ∈ и ∩. Скобки промежутков тоже играют свою роль. Круглая ставится тогда, когда точка исключена из ответа, а прямоугольная включает это значение. Знак бесконечности всегда стоит в круглой скобке.

Примеры решения неравенств

1. Решить неравенство 7 - 5х ≥ 37.

После несложных преобразований получается: -5х ≥ 30. Разделив на «-5» можно получить такое выражение: х ≤ -6. Это уже ответ, но его можно записать и по-другому: х ∈ (-∞; -6].

2. Решите двойное неравенство -4 < 2x + 6 ≤ 8.

Сначала нужно везде вычесть 6. Получится: -10 < 2x ≤ 2. Теперь нужно разделить на 2. Неравенство примет вид: -5 < x ≤ 1. Изобразив ответ на числовой оси, сразу можно понять, что результатом будет промежуток от -5 до 1. Причем первая точка исключена, а вторая включена. То есть ответ у неравенства такой: х ∈ (-5; 1].



Последние материалы раздела:

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...

Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию
Математические, статистические и инструментальные методы в экономике: Ключ к анализу и прогнозированию

В современном мире, где экономика становится все более сложной и взаимосвязанной, невозможно переоценить роль аналитических инструментов в...