Водород элемент. Свойства водорода

Химические свойства водорода

При обычных условиях молекулярный Водород сравнительно мало активен, непосредственно соединяясь лишь с наиболее активными из неметаллов (с фтором, а на свету и с хлором). Однако при нагревании он вступает в реакции со многими элементами.

Водород вступает в реакции с простыми и сложными веществами:

- Взаимодействие водорода с металлами приводит к образованию сложных веществ - гидридов, в химических формулах которых атом металла всегда стоит на первом месте:

При высокой температуре Водород непосредственно реагирует с некоторыми металлами (щелочными, щелочноземельными и другими), образуя белые кристаллические вещества - гидриды металлов (Li Н, Na Н, КН, СаН 2 и др.):

Н 2 + 2Li = 2LiH

Гидриды металлов легко разлагаются водой с образованием соответствующей щелочи и водорода:

СаH 2 + 2Н 2 О = Са(ОН) 2 + 2Н 2

- При взаимодействии водорода с неметаллами образуются летучие водородные соединения. В химической формуле летучего водородного соединения, атом водорода может стоять как на первом так и на втором месте, в зависимости от местонахождения в ПСХЭ (см. табличку в слайде):

1). С кислородом Водород образует воду:

Видео "Горение водорода"

2Н 2 + О 2 = 2Н 2 О + Q

При обычных температурах реакция протекает крайне медленно, выше 550°С - со взрывом (смесь 2 объемов Н 2 и 1 объема О 2 называется гремучим газом ) .

Видео "Взрыв гремучего газа"

Видео "Приготовление и взрыв гремучей смеси"

2). С галогенами Водород образует галогеноводороды, например:

Н 2 + Cl 2 = 2НСl

При этом с фтором Водород взрывается (даже в темноте и при - 252°С), с хлором и бромом реагирует лишь при освещении или нагревании, а с йодом только при нагревании.

3). С азотом Водород взаимодействует с образованием аммиака:

ЗН 2 + N 2 = 2NН 3

лишь на катализаторе и при повышенных температуpax и давлениях.

4). При нагревании Водород энергично реагирует с серой :

Н 2 + S = H 2 S (сероводород),

значительно труднее с селеном и теллуром.

5). С чистым углеродом Водород может реагировать без катализатора только при высоких температуpax:

2Н 2 + С (аморфный) = СН 4 (метан)


- Водород вступает в реакцию замещения с оксидами металлов , при этом образуются в продуктах вода и восстанавливается металл. Водород - проявляет свойства восстановителя:

Водород используется для восстановления многих металлов , так как отнимает кислород у их оксидов:

Fe 3 O 4 + 4H 2 = 3Fe + 4Н 2 О, и т. д.

Применение водорода

Видео "Применение водорода"

В настоящее время водород получают в огромных количествах. Очень большую часть его используют при синтезе аммиака, гидрогенизации жиров и при гидрировании угля, масел и углеводородов. Кроме того, водород применяют для синтеза соляной кислоты, метилового спирта, синильной кислоты, при сварке и ковке металлов, а также при изготовлении ламп накаливания и драгоценных камней. В продажу водород поступает в баллонах под давлением свыше 150 атм. Они окрашены в тёмно-зелёный цвет и снабжаются красной надписью "Водород".

Водород используется для превращения жидких жиров в твердые (гидрогенизация), производства жидкого топлива гидрогенизацией углей и мазута. В металлургии водород используют как восстановитель оксидов или хлоридов для получения металлов и неметаллов (германия, кремния, галлия, циркония, гафния, молибдена, вольфрама и др.).

Практическое применение водорода многообразно: им обычно заполняют шары-зонды, в химической промышленности он служит сырьём для получения многих весьма важных продуктов (аммиака и др.), в пищевой - для выработки из растительных масел твёрдых жиров и т. д. Высокая температура (до 2600 °С), получающаяся при горении водорода в кислороде, используется для плавления тугоплавких металлов, кварца и т. п. Жидкий водород является одним из наиболее эффективных реактивных топлив. Ежегодное мировое потребление водорода превышает 1 млн. т.

ТРЕНАЖЕРЫ

№2. Водород

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

Задание №1
Составьте уравнения реакций взаимодействия водорода со следующими веществами: F 2 , Ca, Al 2 O 3 , оксидом ртути (II), оксидом вольфрама (VI). Назовите продукты реакции, укажите типы реакций.

Задание №2
Осуществите превращения по схеме:
H 2 O -> H 2 -> H 2 S -> SO 2

Задание №3.
Вычислите массу воды, которую можно получить при сжигании 8 г водорода?

Водород

ВОДОРО́Д -а; м. Химический элемент (H), лёгкий газ без цвета и запаха, образующий в соединении с кислородом воду.

Водоро́дный, -ая, -ое. В-ые соединения. В-ые бактерии. В-ая бомба (бомба огромной разрушительной силы, взрывное действие которой основано на термоядерной реакции). Водоро́дистый, -ая, -ое.

водоро́д

(лат. Hydrogenium), химический элемент VII группы периодической системы. В природе встречаются два стабильных изотопа (протий и дейтерий) и один радиоактивный (тритий). Молекула двухатомна (Н 2). Газ без цвета и запаха; плотность 0,0899 г/л, t кип - 252,76°C. Соединяется с многими элементами, с кислородом образует воду. Самый распространённый элемент космоса; составляет (в виде плазмы) более 70% массы Солнца и звёзд, основная часть газов межзвёздной среды и туманностей. Атом водорода входит в состав многих кислот и оснований, большинства органических соединений. Применяют в производстве аммиака, соляной кислоты, для гидрогенизации жиров и др., при сварке и резке металлов. Перспективен как горючее (см. Водородная энергетика).

ВОДОРОД

ВОДОРО́Д (лат. Hydrogenium), H, химический элемент с атомным номером 1, атомная масса 1,00794. Химический символ водорода Н читается в нашей стране «аш», как произносится эта буква по-французски.
Природный водород состоит из смеси двух стабильных нуклидов (см. НУКЛИД) с массовыми числами 1,007825 (99,985 % в смеси) и 2,0140 (0,015 %). Кроме того, в природном водороде всегда присутствуют ничтожные количества радиоактивного нуклида - трития (см. ТРИТИЙ) 3 Н (период полураспада Т 1/2 12,43 года). Так как в ядре атома водорода содержится только 1 протон (меньше в ядре атома элемента протонов быть не может), то иногда говорят, что водород образует естественную нижнюю границу периодической системы элементов Д. И. Менделеева (хотя сам элемент водород расположен в самой верхней части таблицы). Элемент водород расположен в первом периоде таблицы Менделеева. Его относят и к 1-й группе (группе IА щелочных металлов (см. ЩЕЛОЧНЫЕ МЕТАЛЛЫ) ), и к 7-й группе (группе VIIA галогенов (см. ГАЛОГЕНЫ) ).
Массы атомов у изотопов водорода различаются между собой очень сильно (в разы). Это приводит к заметным различиям в их поведении в физических процессах (дистилляция, электролиз и др.) и к определенным химическим различиям (различия в поведении изотопов одного элемента называют изотопными эффектами, для водорода изотопные эффекты наиболее существенны). Поэтому в отличие от изотопов всех остальных элементов изотопы водорода имеют специальные символы и названия. Водород с массовым числом 1 называют легким водородом, или протием (лат. Protium, от греческого protos - первый), обозначают символом Н, а его ядро называют протоном (см. ПРОТОН (элементарная частица)) , символ р. Водород с массовым числом 2 называют тяжелым водородом, дейтерием (см. ДЕЙТЕРИЙ) (лат Deuterium, от греческого deuteros - второй), для его обозначения используют символs 2 Н, или D (читается «де»), ядро d - дейтрон. Радиоактивный изотоп с массовым числом 3 называют сверхтяжелым водородом, или тритием (лат. Tritum, от греческого tritos - третий), символ 2 Н или Т (читается «те»), ядро t - тритон.
Конфигурация единственного электронного слоя нейтрального невозбужденного атома водорода 1s 1 . В соединениях проявляет степени окисления +1 и, реже, –1 (валентность I). Радиус нейтрального атома водорода 0,024 нм. Энергия ионизации атома 13,595 эВ, сродство к электрону 0,75 эВ. По шкале Полинга электроотрицательность водорода 2,20. Водород принадлежит к числу неметаллов.
В свободном виде - легкий горючий газ без цвета, запаха и вкуса.
История открытия
Выделение горючего газа при взаимодействии кислот и металлов наблюдали в 16 и 17 веках на заре становления химии как науки. Знаменитый английский физик и химик Г. Кавендиш (см. КАВЕНДИШ Генри) в 1766 исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона (см. ФЛОГИСТОН) помешала ему сделать правильные выводы. Французский химик А. Лавуазье (см. ЛАВУАЗЬЕ Антуан Лоран) совместно с инженером Ж. Менье (см. МЕНЬЕ Жан Батист Мари Шарль) , используя специальные газометры, в 1783 осуществил синтез воды, а затем и ее анализ, разложив водяной пар раскаленным железом. Таким образом он установил, что «горючий воздух» входит в состав воды и может быть из нее получен. В 1787 Лавуазье пришел к выводу, что «горючий воздух» представляет собой простое вещество, и, следовательно, относится к числу химических элементов. Он дал ему название hydrogene (от греческого hydor - вода и gennao - рождаю) - «рождающий воду». Установление состава воды положило конец «теории флогистона». Русское наименование «водород» предложил химик М. Ф. Соловьев (см. СОЛОВЬЕВ Михаил Федорович) в 1824. На рубеже 18 и 19 веков было установлено, что атом водорода очень легкий (по сравнению с атомами других элементов), и вес (масса) атома водорода был принят за единицу сравнения атомных масс элементов. Массе атома водорода приписали значение, равное 1.
Нахождение в природе
На долю водорода приходится около 1% массы земной коры (10-е место среди всех элементов). В свободном виде водород на нашей планете практически не встречается (его следы имеются в верхних слоях атмосферы), но в составе воды распространен на Земле почти повсеместно. Элемент водород входит в состав органических и неорганических соединений живых организмов, природного газа, нефти, каменного угля. Он содержится, разумеется, в составе воды (около 11% по массе), в различных природных кристаллогидратах и минералах, в составе которых имеется одна или несколько гидроксогрупп ОН.
Водород как элемент доминирует во Вселенной. На его долю приходится около половины массы Солнца и других звезд, он присутствует в атмосфере ряда планет.
Получение
Водород можно получить многими способами. В промышленности для этого используют природные газы, а также газы, получаемые при переработке нефти, коксовании и газификации угля и других топлив. При производстве водорода из природного газа (основной компонент - метан) проводят его каталитическое взаимодействие с водяным паром и неполное окисление кислородом:
CH 4 + H 2 O = CO + 3H 2 и CH 4 + 1/2 O 2 = CO 2 + 2H 2
Выделение водорода из коксового газа и газов нефтепереработки основано на их сжижении при глубоком охлаждении и удалении из смеси газов, сжижаемых легче, чем водород. При наличии дешевой электроэнергии водород получают электролизом воды, пропуская ток через растворы щелочей. В лабораторных условиях водород легко получить взаимодействием металлов с кислотами, например, цинка с соляной кислотой.
Физические и химические свойства
При обычных условиях водород - легкий (плотность при нормальных условиях 0,0899 кг/м 3) бесцветный газ. Температура плавления –259,15 °C, температура кипения –252,7 °C. Жидкий водород (при температуре кипения) обладает плотностью 70,8 кг/м 3 и является самой легкой жидкостью. Стандартный электродный потенциал Н 2 /Н - в водном растворе принимают равным 0. Водород плохо растворим в воде: при 0 °C растворимость составляет менее 0,02 см 3 /мл, но хорошо растворим в некоторых металлах (губчатое железо и других), особенно хорошо - в металлическом палладии (около 850 объемов водорода в 1 объеме металла). Теплота сгорания водорода равна 143,06 МДж/кг.
Существует в виде двухатомных молекул Н 2 . Константа диссоциации Н 2 на атомы при 300 К 2,56·10 -34 . Энергия диссоциации молекулы Н 2 на атомы 436 кДж/моль. Межъядерное расстояние в молекуле Н 2 0,07414 нм.
Так как ядро каждого атома Н, входящего в состав молекулы, имеет свой спин (см. СПИН) , то молекулярный водород может находиться в двух формах: в форме ортоводорода (о-Н 2) (оба спина имеют одинаковую ориентацию) и в форме параводорода (п-Н 2) (спины имеют разную ориентацию). При обычных условиях нормальный водород представляет собой смесь 75% о-Н 2 и 25% п-Н 2 . Физические свойства п- и о-Н 2 немного различаются между собой. Так, если температура кипения чистого о-Н 2 20,45 К, то чистого п-Н 2 - 20,26 К. Превращение о-Н 2 в п-Н 2 сопровождается выделением 1418 Дж/моль теплоты.
В научной литературе неоднократно высказывались соображения о том, что при высоких давлениях (выше 10 ГПа) и при низких температурах (около 10 К и ниже) твердый водород, обычно кристаллизующийся в гексагональной решетке молекулярного типа, может переходить в вещество с металлическими свойствами, возможно, даже сверхпроводник. Однако пока однозначных данных о возможности такого перехода нет.
Высокая прочность химической связи между атомами в молекуле Н 2 (что, например, используя метод молекулярных орбиталей, можно объяснить тем, что в этой молекуле электронная пара находится на связывающей орбитали, а разрыхляющая орбиталь электронами не заселена) приводит к тому, что при комнатной температуре газообразный водород химически малоактивен. Так, без нагревания, при простом смешивании водород реагирует (со взрывом) только с газообразным фтором:
H 2 + F 2 = 2HF + Q.
Если смесь водорода и хлора при комнатной температуре облучить ультрафиолетовым светом, то наблюдается немедленное образование хлороводорода НСl. Реакция водорода с кислородом происходит со взрывом, если в смесь этих газов внести катализатор - металлический палладий (или платину). При поджигании смесь водорода и кислорода (так называемый гремучий газ (см. ГРЕМУЧИЙ ГАЗ) ) взрывается, при этом взрыв может произойти в смесях, в которых содержание водорода составляет от 5 до 95 объемных процентов. Чистый водород на воздухе или в чистом кислороде спокойно горит с выделением большого количества теплоты:
H 2 + 1/2O 2 = Н 2 О + 285,75 кДж/моль
С остальными неметаллами и металлами водород если и взаимодействует, то только при определенных условиях (нагревание, повышенное давление, присутствие катализатора). Так, с азотом водород обратимо реагирует при повышенном давлении (20-30 МПа и больше) и при температуре 300-400 °C в присутствии катализатора - железа:
3H 2 + N 2 = 2NH 3 + Q.
Также только при нагревании водород реагирует с серой с образованием сероводорода H 2 S, с бромом - с образованием бромоводорода НBr, с иодом - с образованием иодоводорода НI. С углем (графитом) водород реагирует с образованием смеси углеводородов различного состава. С бором, кремнием, фосфором водород непосредственно не взаимодействует, соединения этих элементов с водородом получают косвенными путями.
При нагревании водород способен вступать в реакции с щелочными, щелочноземельными металлами и магнием с образованием соединений с ионным характером связи, в составе которых содержится водород в степени окисления –1. Так, при нагревании кальция в атмосфере водорода образуется солеобразный гидрид состава СаН 2 . Полимерный гидрид алюминия (AlH 3) x - один из самых сильных восстановителей - получают косвенными путями (например, с помощью алюминийорганических соединений). Со многими переходными металлами (например, цирконием, гафнием и др.) водород образует соединения переменного состава (твердые растворы).
Водород способен реагировать не только со многими простыми, но и со сложными веществами. Прежде всего надо отметить способность водорода восстанавливать многие металлы из их оксидов (такие, как железо, никель, свинец, вольфрам, медь и др.). Так, при нагревании до температуры 400-450 °C и выше происходит восстановление железа водородом из его любого оксида, например:
Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O.
Следует отметить, что восстановить водородом из оксидов можно только металлы, расположенные в ряду стандартных потенциалов за марганцем. Более активные металлы (в том числе и марганец) до металла из оксидов не восстанавливаются.
Водород способен присоединяться по двойной или тройной связи ко многим органическим соединениям (это - так называемые реакции гидрирования). Например, в присутствии никелевого катализатора можно осуществить гидрирование этилена С 2 Н 4 , причем образуется этан С 2 Н 6:
С 2 Н 4 + Н 2 = С 2 Н 6 .
Взаимодействием оксида углерода(II) и водорода в промышленности получают метанол:
2Н 2 + СО = СН 3 ОН.
В соединениях, в которых атом водорода соединен с атомом более электроотрицательного элемента Э (Э = F, Cl, O, N), между молекулами образуются водородные связи (см. ВОДОРОДНАЯ СВЯЗЬ) (два атома Э одного и того же или двух разных элементов связаны между собой через атом Н: Э"... Н... Э"", причем все три атома расположены на одной прямой). Такие связи существуют между молекулами воды, аммиака, метанола и др. и приводят к заметному возрастанию температур кипения этих веществ, увеличению теплоты испарения и т. д.
Применение
Водород используют при синтезе аммиака NH 3 , хлороводорода HCl, метанола СН 3 ОН, при гидрокрекинге (крекинге в атмосфере водорода) природных углеводородов, как восстановитель при получении некоторых металлов. Гидрированием (см. ГИДРИРОВАНИЕ) природных растительных масел получают твердый жир - маргарин. Жидкий водород находит применение как ракетное топливо, а также как хладагент. Смесь кислорода с водородом используют при сварке.
Одно время высказывалось предположение, что в недалеком будущем основным источником получения энергии станет реакция горения водорода, и водородная энергетика вытеснит традиционные источники получения энергии (уголь, нефть и др.). При этом предполагалось, что для получения водорода в больших масштабах можно будет использовать электролиз воды. Электролиз воды - довольно энергоемкий процесс, и в настоящее время получать водород электролизом в промышленных масштабах невыгодно. Но ожидалось, что электролиз будет основан на использовании среднетемпературной (500-600 °C) теплоты, которая в больших количествах возникает при работе атомных электростанций. Эта теплота имеет ограниченное применение, и возможности получения с ее помощью водорода позволили бы решить как проблему экологии (при сгорании водорода на воздухе количество образующихся экологически вредных веществ минимально), так и проблему утилизации среднетемпературной теплоты. Однако после Чернобыльской катастрофы развитие атомной энергетики повсеместно свертывается, так что указанный источник энергии становится недоступным. Поэтому перспективы широкого использования водорода как источника энергии пока сдвигаются по меньшей мере до середины 21-го века.
Особенности обращения
Водород не ядовит, но при обращении с ним нужно постоянно учитывать его высокую пожаро- и взрывоопасность, причем взрывоопасность водорода повышена из-за высокой способности газа к диффузии даже через некоторые твердые материалы. Перед началом любых операций по нагреванию в атмосфере водорода следует убедиться в его чистоте (при поджигании водорода в перевернутой вверх дном пробирке звук должен быть глухой, а не лающий).
Биологическая роль
Биологическое значение водорода определяется тем, что он входит в состав молекул воды и всех важнейших групп природных соединений, в том числе белков, нуклеиновых кислот, липидов, углеводов. Примерно 10 % массы живых организмов приходится на водород. Способность водорода образовывать водородную связь играет решающую роль в поддержании пространственной четвертичной структуры белков, а также в осуществлении принципа комплементарности (см. КОМПЛЕМЕНТАРНОСТЬ) в построении и функциях нуклеиновых кислот (то есть в хранении и реализации генетической информации), вообще в осуществлении «узнавания» на молекулярном уровне. Водород (ион Н +) принимает участие в важнейших динамических процессах и реакциях в организме - в биологическом окислении, обеспечивающим живые клетки энергией, в фотосинтезе у растений, в реакциях биосинтеза, в азотфиксации и бактериальном фотосинтезе, в поддержании кислотно-щелочного равновесия и гомеостаза (см. ГОМЕОСТАЗ) , в процессах мембранного транспорта. Таким образом, наряду с кислородом и углеродом водород образует структурную и функциональную основы явлений жизни.


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "водород" в других словарях:

    Таблица нуклидов Общие сведения Название, символ Водород 4, 4H Нейтронов 3 Протонов 1 Свойства нуклида Атомная масса 4,027810(110) … Википедия

    Таблица нуклидов Общие сведения Название, символ Водород 5, 5H Нейтронов 4 Протонов 1 Свойства нуклида Атомная масса 5,035310(110) … Википедия

    Таблица нуклидов Общие сведения Название, символ Водород 6, 6H Нейтронов 5 Протонов 1 Свойства нуклида Атомная масса 6,044940(280) … Википедия

    Таблица нуклидов Общие сведения Название, символ Водород 7, 7H Нейтронов 6 Протонов 1 Свойства нуклида Атомная масса 7,052750(1080) … Википедия

ОПРЕДЕЛЕНИЕ

Водород – первый элемент Периодической системы химических элементов Д.И. Менделеева. Символ – Н.

Атомная масса – 1 а.е.м. Молекула водорода двухатомна – Н 2 .

Электронная конфигурация атома водорода – 1s 1 . Водород относится к семейству s-элементов. В своих соединениях проявляет степени окисления -1, 0, +1. Природный водород состоит из двух стабильных изотопов – протия 1 Н (99,98%) и дейтерия 2 Н (D) (0,015%) – и радиоактивного изотопа трития 3 Н (Т) (следовые количества, период полураспада – 12,5 лет).

Химические свойства водорода

При обычных условиях молекулярный водород проявляет сравнительно низкую реакционную способность, что объясняется высокой прочностью связей в молекуле. При нагревании вступает во взаимодействие практически со всеми простыми веществами, образованными элементами главных подгрупп (кроме благородных газов, B, Si, P, Al). В химических реакциях может выступать как в роли восстановителя (чаще), так и окислителя (реже).

Водород проявляет свойства восстановителя (Н 2 0 -2е → 2Н +) в следующих реакциях:

1. Реакции взаимодействия с простыми веществами – неметаллами. Водород реагирует с галогенами , причем, реакция взаимодействия со фтором при обычных условиях, в темноте, со взрывом, с хлором – при освещении (или УФ-облучении) по цепному механизму, с бромом и йодом только при нагревании; кислородом (смесь кислорода и водорода в объемном отношении 2:1 называют «гремучим газом»), серой , азотом и углеродом :

H 2 + Hal 2 = 2HHal;

2H 2 + O 2 = 2H 2 O + Q (t);

H 2 + S = H 2 S (t = 150 – 300C);

3H 2 + N 2 ↔ 2NH 3 (t = 500C, p, kat = Fe, Pt);

2H 2 + C ↔ CH 4 (t, p, kat).

2. Реакции взаимодействия со сложными веществами. Водород реагирует с оксидами малоактивных металлов , причем он способен восстанавливать только металлы, стоящие в ряду активности правее цинка:

CuO + H 2 = Cu + H 2 O (t);

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O (t);

WO 3 + 3H 2 = W + 3H 2 O (t).

Водород реагирует с оксидами неметаллов :

H 2 + CO 2 ↔ CO + H 2 O (t);

2H 2 + CO ↔ CH 3 OH (t = 300C, p = 250 – 300 атм., kat = ZnO, Cr 2 O 3).

Водород вступает в реакции гидрирования с органическими соединениями класса циклоалканов, алкенов, аренов, альдегидов и кетонов и др. Все эти реакции проводят при нагревании, под давлением, в качестве катализаторов используют платину или никель:

CH 2 = CH 2 + H 2 ↔ CH 3 -CH 3 ;

C 6 H 6 + 3H 2 ↔ C 6 H 12 ;

C 3 H 6 + H 2 ↔ C 3 H 8 ;

CH 3 CHO + H 2 ↔ CH 3 -CH 2 -OH;

CH 3 -CO-CH 3 + H 2 ↔ CH 3 -CH(OH)-CH 3 .

Водород в качестве окислителя (Н 2 +2е → 2Н —) выступает в реакциях взаимодействия со щелочными и щелочноземельными металлами. При этом образуются гидриды – кристаллические ионные соединения, в которых водород проявляет степень окисления -1.

2Na +H 2 ↔ 2NaH (t, p).

Ca + H 2 ↔ CaH 2 (t, p).

Физические свойства водорода

Водород – легкий бесцветный газ, без запаха, плотность при н.у. – 0,09 г/л, в 14,5 раз легче воздуха, t кип = -252,8С, t пл = — 259,2С. Водород плохо растворим в воде и органически растворителях, хорошо растворим в некоторых металлах: никеле, палладии, платине.

По данным современной космохимии водород является самым распространенным элементом Вселенной. Основная форма существования водорода в космическом пространстве – отдельные атомы. По распространенности на Земле водород занимает 9 место среди всех элементов. Основное количество водорода на Земле находится в связанном состоянии – в составе воды, нефти, природного газа, каменного угля и т.д. В виде простого вещества водород встречается редко – в составе вулканических газов.

Получение водорода

Различают лабораторные и промышленные способы получения водорода. К лабораторным способам относят взаимодействие металлов с кислотами (1), а также взаимодействие алюминия с водными растворами щелочей (2). Среди промышленных способов получения водорода большую роль играют электролиз водных растворов щелочей и солей (3) и конверсия метана (4):

Zn + 2HCl = ZnCl 2 + H 2 (1);

2Al + 2NaOH + 6H 2 O = 2Na +3 H 2 (2);

2NaCl + 2H 2 O = H 2 + Cl 2 + 2NaOH (3);

CH 4 + H 2 O ↔ CO + H 2 (4).

Примеры решения задач

ПРИМЕР 1

Задание При взаимодействии 23,8 г металлического олова с избытком соляной кислоты выделился водород, в количестве, достаточном, чтобы получить 12,8 г металлической меди Определите степень окисления олова в полученном соединении.
Решение Исходя из электронного строения атома олова (…5s 2 5p 2) можно сделать вывод, что для олова характерны две степени окисления — +2, +4. На основании этого составим уравнения возможных реакций:

Sn + 2HCl = H 2 + SnCl 2 (1);

Sn + 4HCl = 2H 2 + SnCl 4 (2);

CuO + H 2 = Cu + H 2 O (3).

Найдем количество вещества меди:

v(Cu) = m(Cu)/M(Cu) = 12,8/64 = 0,2 моль.

Согласно уравнению 3, количество вещества водорода:

v(H 2) = v(Cu) = 0,2 моль.

Зная массу олова, найдем его количество вещества:

v(Sn) = m(Sn)/M(Sn) = 23,8/119 = 0,2 моль.

Сравним количества вещества олова и водорода по уравнения 1 и 2 и по условию задачи:

v 1 (Sn): v 1 (H 2) = 1:1 (уравнение 1);

v 2 (Sn): v 2 (H 2) = 1:2 (уравнение 2);

v(Sn): v(H 2) = 0,2:0,2 = 1:1 (условие задачи).

Следовательно, олово взаимодействует с соляной кислотой по уравнению 1 и степень окисления олова равна +2.

Ответ Степень окисления олова равна +2.

ПРИМЕР 2

Задание Газ, выделившийся при действии 2,0 г цинка на 18,7 мл 14,6%-ной соляной кислоты (плотность раствора 1,07 г/мл), пропустили при нагревании над 4,0 г оксида меди (II). Чему равна масса полученной твердой смеси?
Решение При действии цинка на соляную кислоту выделяется водород:

Zn + 2НСl = ZnСl 2 + Н 2 (1),

который при нагревании восстанавливает оксид меди (II) до меди (2):

СuО + Н 2 = Cu + Н 2 О.

Найдем количества веществ в первой реакции:

m(р-ра НСl) = 18,7 . 1,07 = 20,0 г;

m(НСl) = 20,0 . 0,146 = 2,92 г;

v(НСl) = 2,92/36,5 = 0,08 моль;

v(Zn) = 2,0/65 = 0,031 моль.

Цинк находится в недостатке, поэтому количество выделившегося водорода равно:

v(Н 2) = v(Zn) = 0,031 моль.

Во второй реакции в недостатке находится водород, поскольку:

v(СuО) = 4,0/80 = 0,05 моль.

В результате реакции 0,031 моль СuО превратится в 0,031 моль Сu, и потеря массы составит:

m(СuО) — m(Сu) = 0,031×80 — 0,031×64 = 0,50 г.

Масса твердой смеси СuО с Сu после пропускания водорода составит:

4,0-0,5 = 3,5 г.

Ответ Масса твердой смеси СuО с Сu равна 3,5 г.

Водород

Водород – первый элемент и один из двух представителей I периода Периодической системы. Атом водорода состоит из двух частиц – протона и электрона, между которыми существуют лишь силы притяжения. Водород и металлы IА-группы проявляют степень окисления +1, являются восстановителями и имеют сходство оптических спектров. Однако в состоянии однозарядного катиона Н + (протона) водород не имеет аналогов. Кроме того, энергия ионизации атома водорода намного больше энергии ионизации атомов щелочных металлов.

С другой стороны, как у водорода, так и у галогенов не хватает одного электрона до завершения внешнего электронного слоя. Подобно галогенам, водород проявляет степень окисления –1 и окислительные свойства. Сходен водород с галогенами и по агрегатному состоянию, и по составу молекул Э 2 . Но молекулярная орбиталь (МО) Н 2 не имеет ничего общего с таковыми молекул галогенов, в то же время МО Н 2 имеет определенное сходство с МО двухатомных молекул щелочных металлов, существующих в парообразном состоянии.

Водород – самый распространенный элемент Вселенной, составляет основную массу Солнца, звезд и других космических тел. На Земле по распространенности занимает 9-е место; в свободном состоянии встречается редко, и основная часть его входит в состав воды, глин, каменного и бурого угля, нефти и т. д., а также сложных веществ живых организмов.

Природный водород представляет собой смесь стабильных изотопов протия 1 Н (99,985%) и дейтерия 2 H (2 D), радиоактивного трития 3 Н (3 Т).

Простые вещества. Возможны молекулы легкого водорода – Н 2 (дипротий), тяжелого водорода – D 2 ­ (дидейтерий), Т 2 (дитритий), HD (протодейтерий), НТ (прототритий), DТ (дейтеротритий).

Н 2 (диводород, дипротий) – бесцветный трудносжижаемый газ, очень мало растворяется в воде, лучше – в органических растворителях, хемосорбируется металлами (Fe, Ni, Pt, Pd). В обычных условиях сравнительно мало активен и непосредственно взаимодей­ствует лишь со фтором; при повышенных температурах реагирует с металлами, неметаллами, оксидами металлов. Особенно высока восстановительная способность у атомарного водорода Н 0 , образующегося при термическом разложении молекулярного водорода или в результате реакций непосредственно в зоне проведения восстановительного процесса.

Восстановительные свойства водород проявляет при взаимодействии с неметаллами, оксидами металлов, галогенидами:

Н 2 0 + Cl 2 = 2Н +1 Cl; 2Н 2 + О 2 = 2Н 2 О; СuО + Н 2 = Сu + Н 2 О

В качестве окислителя водород взаимодействует с активными ме­таллами:

2Nа + Н 2 0 = 2NаН –1

Получение и применение водорода. В промышленности водород получают главным образом из природ­ных и попутных газов, продуктов газификации топлива и коксового газа. Производство водорода осно­вано на каталитических реакциях взаимодействия с водяным паром (конверсии) соответственно углеводородов (главным образом метана) и оксида углерода (II):

СН 4 + Н 2 О = СО + 3Н 2 (кат. Ni, 800°С)

СО + Н 2 О = СО 2 + Н 2 (кат. Fe, 550°С)

Важным способом получения водорода является выделение его из коксового газа и газов нефтепереработки путем глубокого охлаждения. Электролиз воды (электролитом обычно служит водный раствор щелочи) обеспечивает получение наиболее чистого водорода.

В лабораторных условиях водород обычно получают действием цинка на растворы серной или хлороводородной кислоты:

Zn + Н 2 SO 4 = ZnSO 4 + Н 2

Водород используется в химической промышленности для синтеза аммиака, метанола, хлороводорода, для гидрогенизации твердого и жидкого топлива, жиров и т. д. В виде водяного газа (в смеси с СО) применяется как топливо. При горении водорода в кислороде возникает высокая температура (до 2600°С), позволяющая сваривать и разрезать тугоплавкие металлы, кварц и пр. Жидкий водород используют как одно из наиболее эффективных реактивных топлив.

Соединения водорода (–I). Соединения водорода с менее электроотрицательными элементами, в которых он отрицательно поляризован относятся к гидридам , т.е. в основном его соединения с металлами.

В простых солеобразных гидридах существует анион Н – . Наиболее полярная связь наблюдается в гидридах активных металлов – щелочных и щелочно-земельных (например, КН, СаН 2). В химическом отно­шении ионные гидриды ведут себя как оснóвные соединения.

LiН + Н 2 О = LiОН + Н 2­­

К ковалентным относятся гидриды менее электроотрицательных, чем сам водород, неметаллических элементов (например, гидриды состава SiH 4 и ВН 3). По химической природе гидриды неметаллов являются кислотными соединениями.

SiH 4 + 3Н 2 О = Н 2 SiO 3 + 4Н 2

При гидролизе оснóвные гидриды образуют щелочь, а кислотные – кислоту.

Многие переходные металлы образуют гидриды с преимущественно металлическим характером связи нестехиометрического состава. Идеализированный состав металлических гидридов чаще всего отвечает формулам: М +1 Н (VН, NbН, ТаН), М +2 Н 2 (TiН 2 , ZrH 2) и М +3 Н 3 (UН 3 , РаН 3).

Соединения водорода (I). Положительная поляризация атомов водорода наблюдается в его многочисленных соединениях с ковалентной связью. При обычных условиях – это газы (НCl, Н 2 S, Н 3 N), жид­кости (Н 2 О, НF, НNO 3), твердые вещества (Н 3 РO 4 , Н 2 SiO 3). Свойства этих соединений сильно зависят от природы электроотрицательного элемента.

Литий

Литий достаточно широко распространен в земной коре. Он входит в состав многих минералов, содержится в каменном угле, почвах, морской воде, а также в живых организмах. Наиболее ценны минералы – сподумен LiAl(SiО 3) 2 , амблигонит LiAl(PО 4)F и лепидолит Li 2 Al 2 (SiО 3) 3 (F,OH) 2 .

Простое вещество. Li (литий) серебристо-белый, мягкий, низкоплавкий щелочной металл самый легкий из металлов. Реакционноспособный; на воздухе покрывается оксидно-нитридной пленкой (Li 2 О, Li 3 N). Воспламенятся при умеренном нагревании (выше 200°С); окрашивает пламя газовой горелки в темно-красный цвет. Сильный восстановитель. По сравнению с натрием и собственно щелочными металлами (подгруппа калия) литий является химически менее активным металлом. В обычных условиях бурно реагирует со всеми галогенами. При нагревании непосредственно соединяется с серой, углем, водородом и другими неметаллами. Будучи накален, горит в СО 2 . С металлами литий образует интерметаллические соединения. Кроме того, образует твердые растворы с Na, Al, Zn и с некоторыми другими металлами. Литий энергично разлагает воду, выделяя из нее водород, еще легче взаимодействует с кислотами.



2Li + Н 2 О = 2LiОН + Н 2

2Li + 2НCl = 2LiСl + Н 2

3Li + 4НNO 3 (разб.) = 2LiNO 3 + NO + 2Н 2 O

Литий хранят под слоем вазелина или парафина в запаянных сосудах.

Получение и применение. Литий получают при вакуум-термическом восстановлении сподумена или оксида лития в качестве восстановителя применяют кремний или алюминий.

2Li 2 О + Si = 4Li + SiО 2

3Li 2 О + 2Al = 6Li + A1 2 О 3

При электролитическом восстановлении используют расплав эвтектической смеси LiCl-KCl.

Литий придает сплавам ряд ценных физико-химических свойств. Так, у сплавов алюминия с содержанием до 1% Li повышается механическая прочность и коррозионная стойкость, введение 2% Li в техническую медь значительно увеличивает ее электрическую проводимость и т. д. Важнейшей областью применения лития является атомная энергетика (в качестве теплоносителя в атомных реакторах). Его используют как источник получения трития (3 Н).

Соединения лития (I). Бинарные соединения лития – бесцветные кристаллические вещества; являются солями или солеподобными соединениями. По химической природе, растворимости и характеру гидролиза они напоминают производные кальция и магния. Плохо растворимы LiF, Li 2 CО 3 , Li 3 PО 4 и др.

Пероксидные соединения для лития малохарактерны. Однако для него известны пероксид Li 2 О 2 , персульфид Li 2 S 2 и перкарбид Li 2 C 2 .

Оксид лития Li 2 О – оснóвный оксид, получается взаимодействием простых веществ. Активно реагирует с водой, кислотами, кислотными и амфотерными оксидами.

Li 2 О + Н 2 О = 2LiOH

Li 2 О + 2НCl(разб.) = 2LiCl + H 2 О

Li 2 О + CО 2 = Li 2 CО 3

Гидроксид лития LiOH – сильное основание, но по растворимости и силе уступает гидроксидам остальных щелочных металлов, и в отличие от них, при накаливании LiOH разлагается:

2LiOH ↔ Li 2 О + Н 2 О (800-1000°С, в атмосфере Н 2)

LiOH получают электролизом водных растворов LiCl. Применяется как электролит в аккумуляторах.

При совместной кристаллизации или сплавлении солей лития с однотипными соединениями других щелочных металлов образуются эвтектические смеси (LiNО 3 –KNО 3 и др.); реже образуются двойные соединения, например M +1 LiSО 4 , Na 3 Li(SО 4) 2 ∙6H 2 О и твердые растворы.

Расплавы солей лития и их смесей являются неводными растворителями; в них растворяется большинство металлов. Эти растворы имеют интенсивную окраску и являются очень сильными восстановителями. Растворение металлов в расплавленных солях важно для многих электрометаллургических и металлотермических процессов, для рафинирования металлов, проведения различных синтезов.

Натрий

Натрий – один из наиболее распространенных элементов на Земле. Важнейшие минералы натрия: каменная соль или галит NaCl, мирабилит или глауберова соль Na 2 SO 4 ∙10H 2 О, криолит Na 3 AlF 6 , бура Na 2 B 4 O 7 ∙10H 2 О и др.; входит в состав многих природных силикатов и алюмосиликатов. Соединения натрия содержатся в гидросфере (около 1,5∙10 т), в живых организмах (так, в крови человека ионы Na + составляют 0,32%, в мышечной ткани – до 1,5%).

Простое вещество. Na (натрий) – серебристо-белый, легкий, очень мягкий, низкоплавкий щелочной металл. Весьма реакционноспособный; на воздухе покрывается оксидной пленкой (тускнеет), воспламеняется при умеренном нагревании. Устойчив в атмосфере аргона и азота (с азотом реагирует только при нагревании). Сильный восстановитель; энергично реагирует с водой, кислотами, неметаллами. С ртутью образует амальгаму (в отличие от чистого натрия, реакция с водой протекает спокойно). Окрашивает пламя газовой горелки в желтый цвет.

2Na + Н 2 О = 2NaOH + Н 2

2Na + 2НCl(разб.) = 2NaCl + Н 2

2Na + 2NaOH(ж) = 2Na 2 О + H 2

2Na + H 2 = 2NaH

2Na + Hal 2 = 2NaHal (комн., Hal = F, Cl; 150-200° C, Hal = Br, I)

2Na + NH 3 (г) = 2NaNH 2 + H 2

Co многими металлами натрий образует интерметаллические соединения. Так, с оловом дает ряд соединений: NaSn 6 , NaSn 4 , NaSn 3 , NaSn 2 , NaSn, Na 2 Sn, Na 3 Sn и др.; с некоторыми металлами дает твердые растворы.

Натрий хранят в запаянных сосудах или под слоем керосина.

Получение и применение натрия. Натрий получают электролизом расплавленного NaCl и реже NaOH. При электролитическом восстановлении NaCl используют эвтектическую смесь, например, NaCl-KCl (температура плавления почти на 300°С ниже, чем температура плавления NaCl).

2NaCl(ж) = 2Na + Cl 2 (эл. ток)

Натрий используется в металлотермии, органическом синтезе, ядерных энергетических установках (в качестве теплоносителя), клапанах авиационных двигателей, химических производствах, где требуется равномерный обогрев в пределах 450-650° С.

Соединения натрия (I). Наиболее характерны ионные соединения кристаллического строения, отличающиеся тугоплавкостью, хорошо растворяются в воде. Труднорастворимы некоторые производные со сложными анионами, как гексагидроксостибат (V) Na; мало растворим NaHCO 3 (в отличие от карбоната).

При взаимодействии с кислородом натрий (в отличие от лития) образует не оксид, а пероксид: 2Na + O 2 = Na 2 O 2

Оксид натрия Na 2 O получают восстановлением Na 2 O 2 металлическим натрием. Известны также малостойкие озонид NaO 3 и надпероксид натрия NaO 2 .

Из соединений натрия важное значение имеют его хлорид, гидроксид, карбонаты и многочисленные другие производные.

Хлорид натрия NaCl является основой для целого ряда важнейших производств, таких, как производство натрия, едкого натра, соды, хлора и др.

Гидроксид натрия (едкий натр, каустическая сода ) NaOH – очень сильное основание. Применяется в разнообразных отраслях промышленности, главные из которых – производство мыл, красок, целлюлозы и др. Получают NaOH электролизом водных растворов NaCl и хи­мическими методами. Так, распространен известковый способ – взаимодействие раствора карбоната натрия (соды) с гидроксидом кальция (гашеной известью):

Na 2 CO 3 + Са(ОН) 2 = 2NaOH + СаСO 3

Карбонаты натрия Na 2 CO 3 (кальцинированная сода ), Na 2 СО 3 ∙10Н 2 О (кристаллическая сода ), NaHCO 3 (питьевая сода ) используются в химической, мыловаренной, бумажной, текстильной, пищевой промышленности.

Подгруппа калия (калий, рубидий, цезий, франций)

Элементы подгруппы калия – наиболее типичные металлы. Для них наиболее характерны соединения с преимущественно ионным типом связи. Комплексообразование с неорганическими лигандами для К + , Rb + , Cs + нехарактерно.

Наиболее важными минералами калия являются: сильвин КCl, сильвинит NaCl∙KCl, карналлит KCl∙MgCl 2 ∙6H 2 О, каинит KCl∙MgSО 4 ∙3H 2 О. Калий (вместе с натрием) входит в состав живых организмов и всех силикатных пород. Рубидий и цезий содержатся в минералах калия. Франций радиоактивен, стабильных изотопов не имеет (наиболее долгоживущий изотоп Fr с периодом полураспада 22 мин.).

Простые вещества. К (калий) – серебристо-белый, мягкий, низкоплавкий щелочной металл. Чрезвычайно реакционноспособный, сильнейший восстановитель; реагирует с О 2 воздуха, водой (идет воспламенение выделяющегося Н 2), разбавленными кислотами, неметаллами, аммиаком, сероводородом, расплавом гидроксида калия. Практически не реагирует с азотом (в отличие от лития и натрия). Образует интерметаллиды с Na, Tl, Sn, Pb и Bi. Окрашивает пламя газовой горелки в фиолетовый цвет.

Rb (рубидий) белый, мягкий, весьма низкоплавкий щелочной металл. Чрезвычайно реакционноспособный; сильнейший восстановитель; энергично реагирует с О 2 воздуха, водой (идет воспламенение металла и выделяющегося Н 2), разбавленными кислотами, неметаллами, аммиаком, сероводородом. Не реагирует с азотом. Окрашивает пламя газовой горелки в фиолетовый цвет.

Cs (цезий) белый (на срезе светло-желтый), мягкий, весьма низкоплавкий щелочной металл. Чрезвычайно реакционноспособный, сильнейший восстановитель; реагирует с О 2 воздуха, водой (идет воспламенение металла и выделяющегося Н 2), разбавленными кислотами, неметаллами, аммиаком, сероводородом. He реагирует с азотом. Окрашивает пламя газовой горелки в синий цвет.

Fr (франций) белый, весьма легкоплавкий щелочной металл. Радиоактивен. Самый реакционноспособный из всех металлов, по химическому поведению подобен цезию. На воздухе покрывается оксидной пленкой. Сильный восстановитель; энергично реагирует с водой и кислотами, выделяя Н 2 . Выделены соединения франция FrClО 4 и Fr 2 методом осаждения с соответствующими малорастворимыми солями Rb и Cs.

Калий и его аналоги хранят в запаянных сосудах, а также под слоем парафинового или вазелинового масла. Калий, кроме того, хорошо сохраняется под слоем керосина или бензина.

Получение и применение. Калий получают электролизом расплава КCl и натрийтермическим методом из расплавленного гидроксида или хлорида калия. Рубидий и цезий чаще получают вакуум-термическим восстановлением их хлоридов металлическим кальцием. Все щелочные металлы хорошо очищаются возгонкой в вакууме.

Металлы подгруппы калия при нагревании и освещении сравнительно легко теряют электроны, и эта способность делает их ценным материалом для изготовления фотоэлементов.

Соединения калия (I), рубидия (I), цезия (I). Производные калия и его аналогов являются преимущественно солями и солеподобными соединениями. По составу, кристаллическому строению, растворимости и характеру сольволиза их соединения проявляют большое сходство с однотипными соединениями натрия.

В соответствии с усилением химической активности в ряду K–Rb–Cs возрастает тенденция к образованию пероксидных соединений. Так, при сгорании они образуют надпероксиды ЭО 2 . Косвенным путем можно получить также пероксиды Э 2 О 2 и озониды ЭО 3 . Пероксиды, надпероксиды и озониды – сильные окислители, легко разлагаются водой и разбавленными кислотами:

2КО 2 + 2Н 2 О = 2КОН + Н 2 О 2 + О 2

2КО 2 + 2НCl = 2КCl + Н 2 О 2 + О 2

4КО 3 + 2Н 2 О = 4КОН + 5О 2

Гидроксиды ЭОН – самые сильные основания (щелочи); при накаливании, подобно NaOH, возгоняются без разложения. При растворении в воде выделяется значительное количество теплоты. Наибольшее значение в технике имеет КОН (едкое кали), получаемый электролизом водного раствора КCl.

В противоположность аналогичным соединениям Li + и Na + их оксохлораты (VII) ЭОCl 4 , хлороплатинаты (IV) Э 2 РlCl 6 , нитритокобальтаты (III) Э 3 [Со(NO 2) 6 ] и некоторые другие труднорастворимы.

Из производных подгруппы наибольшее значение имеют соединения калия. Около 90% солей калия потребляется в качестве удобрении. Его соединения применяются также в производстве стекла, мыла.

Подгруппа меди (медь, серебро, золото)

Для меди наиболее характерны соединения со степенями окисления +1 и +2, для золота +1 и +3, а для серебра +1. Все они обладают ярко выраженной склонностью к комплексообразованию.

Все элементы IB-группы относятся к сравнительно малораспространенным. Наибольшее значение из природных соединений меди имеют минералы: медный колчедан (халькопирит ) CuFeS 2 , медный блеск Cu 2 S, а также куприт Cu 2 О, малахит CuСО 3 ∙Cu(ОН) 2 и др. Серебро входит в состав сульфидных минералов других металлов (Pd, Zn, Cd и др.). Для Cu, Ag и Au довольно обычны также арсенидные, стибидные и сульфидарсенидные минералы. Медь, серебро и особенно золото встречаются в природе в самородном состоянии.

Все растворимые соединения меди, серебра и золота ядовиты.

Простые вещества. Си (медь) красный, мягкий, ковкий металл. Не изменяется на воздухе в отсутствии влаги и СO 2 , при нагревании тускнеет (образование оксидной пленки). Слабый восстановитель (благородный металл); не реагирует с водой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии O 2 , цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», кислородом, галогенами, халькогенами, оксидами металлов. Реагирует при нагревании с галогеноводородами.

Cu + H 2 SO 4 (конц., гор.) = CuSО 4 + SO 2 + H 2 O

Cu + 4НNO 3 (конц.) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O

ЗCu + 8НNO 3 (разб.) = 3Cu(NO 3) 2 + 2NO + 4Н 2 O

2Cu + 4НCl(разб.) + O 2 = 2CuCl 2 + 2Н 2 O

Cu + Cl 2 (влаж., комн.) = CuCl 2

2Cu + O 2 (нагр.) = 2CuО

Cu + 4KCN(конц.) + Н 2 O = 2K + 2KOH + H 2

4Cu + 2O 2 + 8NH 3 + 2Н 2 O = 4OH

2Cu + СO 2 + O 2 + Н 2 O = Cu 2 СO 3 (ОН) 2 ↓

Ag (серебро) белый, тяжелый, пластичный металл. Малоактивный (благородный металл); не реагирует с кислородом, водой, разбавленными хлороводородной и серной кислотами. Слабый восстановитель; реагирует с кислотами-окислителями. Чернеет в присутствии влажного H 2 S.

Ag + 2H 2 SO 4 (конц., гор.) = Ag 2 SO 4 ↓ + SO 2 + Н 2 O

3Ag + 4HNO 3 (paзб.) = 3AgNO 3 + NO + 2H 2 O

4Ag + H 2 S + О 2 (воздух) = 2Ag 2 S + 2H 2 O

2Ag + Наl 2 (нагр.) = 2AgHal

4Ag + 8KCN + 2H 2 O + O 2 = 4K + 4KOH

Аи (золото) желтый, ковкий, тяжелый, высокоплавкий металл. Устойчив в сухом и влажном воздухе. Благородный металл; не реагирует с водой, кислотами-неокислителями, концентрированной серной и азотной кислотами, щелочами, гидратом аммиака, кислородом, азотом, углеродом, серой. В растворе простых катионов не образует. Переводится в раствор «царской водкой» , смесями галогенов и галогеноводородных кислот, кислородом в присутствии цианидов щелочных металлов. Окисляется нитратом натрия при сплавлении, дифторидом криптона.

Au + HNO 3 (конц.) + 4НCl(конц.) = Н + NO + 2Н 2 O

2Au + 6H 2 SeO 4 (конц., гор.) = Au 2 (SeO 4) 3 + 3SeO 2 + 6Н 2 O

2Au + 3Cl 2 (до 150°C) = 2AuCl 3

2Au + Cl 2 (150-250°С) = 2AuCl

Au + 3Наl + 2ННаl(конц.) = Н + NO + 2Н 2 О (Hal = Cl, Br, I)

4Au + 8NaCN + 2Н 2 О + О 2 = 4Na + 4KOH

Au + NaN0 3 = NaAuО 2 + NO

Получение и применение. Медь получают пирометаллургическим восстановлением окисленных сульфидных концентратов. Выделяющийся при обжиге сульфидов диоксид серы SO 2 идет на производство серной кислоты, а шлак используется для производства шлакобетона, каменного литья, шлаковаты и пр. Восстановленную черновую медь очищают электрохимическим рафинированием. Из анодного шлама извлекают благородные металл, селен, теллур и др. Серебро получают при переработке полиметаллических (серебряно-свинцово-цинковых) сульфидных руд. После окислительного обжига, цинк отгоняют, медь окисляют, а черновое серебро подвергают электрохимическому рафинированию. При цианидном способе добычи золота сначала золотоносную породу отмывают водой, затем обрабатывают раствором NaCN на воздухе; при этом золото образует комплекс Na, из которого его осаждают цинком:

Na + Zn = Na 2 + 2Au↓

Этим способом можно выделять и серебро из бедных руд. При ртутном способе золотоносную породу обрабатывают ртутью с целью получения амальгамы золота, затем ртуть отгоняется.

Си, Ag и Au друг с другом и со многими другими металлами образуют сплавы. Из сплавов меди наибольшее значение имеют бронзы (90% Cu, 10% Sn), томпак (90% Cu, 10% Zn), мельхиор (68% Cu, 30% Ni, 1% Mn, 1% Fe), нейзильбер (65% Cu, 20% Zn, 15% Ni), латунь (60% Cu, 40% Zn), а также монетные сплавы.

Ввиду высокой тепло- и электропроводимости, ковкости, хороших литейных качеств, большого сопротивления на разрыв и химической стойкости медь широко используется в промышленности, электротехнике, машиностроении. Из меди изготавливают электрические провода и кабели, различную промышленную аппаратуру (котлы, перегонные кубы и т.п.)

Серебро и золото вследствие мягкости обычно сплавляют с другими металлами, чаще с медью. Сплавы серебра служат для изготовления ювелирных и бытовых изделий, монет, радиодеталей, серебряно-цинковых аккумуляторов, в медицине. Сплавы золота применяются для электрических контактов, для зубопротезирования, в ювелирном деле.

Соединения меди (I), серебра (I) и золота (I). Степень окисления +1 наиболее характерна для серебра; у меди и, в особенности, у золота эта степень окисления проявляется реже.

Бинарные соединения Cu (I), Ag (I) и Au (I) – твердые кристаллические солеподобные вещества, в большинстве нерастворимые в воде. Производные Ag (I) образуются при непосредственном взаимодействии простых веществ, а Cu (I) и Au (I) – при восстановлении соответствующих соединений Cu (II) и Au (III).

Для Cu (I) и Ag (I) устойчивы амминокомплексы типа [Э(NH 3) 2 ] + , и поэтому большинство соединений Cu (I) и Ag (I) довольно легко растворяется в присутствии аммиака, так:

CuCl + 2NH 3 = Cl

Ag 2 O + 4NH 3 + H 2 O = 2(OH)

Гидроксиды типа [Э(NH 3) 2 ](OH) значительно устойчивее, чем ЭОН, и по силе приближаются к щелочам. Гидроксиды ЭОН неустойчивы, и при попытке их получения по обменным реакциям выделяются оксиды CuО (красный), Ag 2 O (темно-коричневый), так:

2AgNO 3 + 2NaOH = Ag 2 O + 2NaNO 3 + Н 2 O

Оксиды Э 2 O проявляют кислотные свойства при взаимодействии с соответствующими основными соединениями образуются купраты (I), аргентаты (I) и аураты (I).

Cu 2 O + 2NаОН(конц.) + Н 2 O = 2Na

Нерастворимые в воде и кислотах галогениды ЭНаl довольно значительно растворяются в растворах галогеноводородных кислот или основных галогенидов:

CuCl + HC1 = H AgI + KI = K

Аналогично ведут себя нерастворимые в воде цианиды ЭCN, сульфиды Э 2 S и пр.

Большинство соединений Cu (I) и Au (I) легко окисляется (даже кислородом воздуха), переходя в устойчивые производные Cu (II) и Au (III).

4CuCl + O 2 + 4НCl = 4CuCl 2 + 2Н 2 О

Для соединений. Cu (I) и Au (I) характерно диспропорционирование:

2CuC1 = СuCl 2 + Cu

3AuCl + КCl = K + 2Au

Большинство соединений Э (I) при небольшом нагревании и при действии света легко распадаются, поэтому их обычно хранят в банках из темного стекла. Светочувствительность галогенидов серебра используется для приготовления светочувствительных эмульсий. Оксид меди (I) применяют для окрашивания стекла, эмалей, а также в полупроводниковой технике.

Соединения меди (II). Степень окисления +2 характерна только для меди. При растворении солей Cu (II) в воде или при взаимодействии CuО (черного цвета) и Cu(ОН) 2 (голубого цвета) с кислотами образуются голубые аквакомплексы 2+ . Такую же окраску имеет большинство кристаллогидратов, например, Cu(NO 3) 2 ∙6H 2 O; встречаются также кристаллогидраты Cu (II), имеющие зеленую и темно-коричневую окраску.

При действии аммиака на растворы солей меди (II) образуются аммиакаты:

Cu(OH) 2 ↓ + 4NH 3 + 2H 2 = (OH) 2

Для меди (II) характерны также анионные комплексы – купраты (II). Так, Сu(ОН) 2 при нагревании в концентрированных растворах щелочей частично растворяется, образуя синие гидроксокупраты (II) типа M 2 +1 . В водных растворах гидроксокупраты (II) легко разлагаются.

В избытке основных галогенидов CuHal 2 образуют галогенокупраты (II) типа M +1 и М 2 +1 [СuНаl 4 ]. Известны также анионные комплексы Cu (II) с цианид-, карбонат-, сульфат- и другими анионами.

Из соединений меди (II) технически наиболее важен кристаллогидрат CuSO 4 ∙5H 2 O (медный купорос ) применяется для получения красок, для борьбы с вредителями и болезнями растений, служит исходными продуктом для получения меди и ее соединений и т. д.

Соединения меди (III), серебра (III), золота (III). Степень окисления +3 наиболее характерна для золота. Соединения меди (III) и серебра (III) неустойчивы и являются сильными окислителями.

Исходным продуктом для получения многих соединений золота является АuCl 3 , который получают взаимодействием порошка Аu с избытком Cl 2 при 200°С.

Галогениды, оксид и гидроксид Au (III) – амфотерные соединения с преобладанием кислотных свойств.

NaOH + Au(OH) 3 = Na

Au(OH) 3 + 4HN0 3 = H + 3H 2 O

AuHal 3 + M +1 Hal = M

Нитрато- и цианоаураты (III) водорода выделены в свободном состоянии. В присутствии солей щелочных металлов образуются аураты, например: М +1 , M +1 и др.

Соединения золота (V) и(VII). Взаимодействием золота и фторида криптона (II) получен пентафторид золота AuF 5:

2Au + 5KrF 2 = 2AuF 5 + 5Кr

Пентафторид AuF 5 проявляет кислотные свойства, с оснóвными фторидами образует фтороаураты (V).

NaF + AuF 5 = Na

Соединения Au (V) – очень сильные окислители. Так, AuF 5 окисляет даже XeF 2:

AuF 5 + XeF 2 = XeF 4 + AuF 3

Известны также соединения типа XeFAuF 6 , XeF 5 AuF 6 и некоторые другие.

Известен крайне неустойчивый фторид AuF 7 .

Машина без выхлопных газов. Это Mirai производства Toyota. Автомобиль работает на водородном топливе.

Из выхлопных труб выходят лишь нагретый воздух и водяной пар. Машина будущего уже ездит по дорогам, хоть и испытывает проблемы с дозаправкой.

Хотя, учитывая распространенность водорода во Вселенной, такой загвоздки не должно быть.

Мир состоит из 1-го вещества на три четверти. Так что, свой порядковый номер элемент водород оправдывает. Сегодня, все внимание ему.

Свойства водорода

Будучи первым элементом, водород порождает первое вещество. Это вода. Ее формула, как известно, H 2 O.

На греческом название водорода пишется, как hidrogenium, где hidro – вода, а genium – порождать.

Однако, имя элементу дали не греки, а французский естествоиспытатель Лоран Лавуазье. До него, водород исследовали Генри Кевендишь, Никола Лемери и Теофраст Парацельс.

Последний, собственно, оставил науке первое упоминание о 1-ом веществе. Запись датирована 16-ым веком. К каким же выводам пришли ученые по поводу водорода ?

Характеристика элемента – двойственность. У атома водорода всего 1 электрон. В ряде реакций вещество отдает его.

Это поведение типичного металла из первой группы. Однако, водород способен и достраивать свою оболочку, не отдавая, а принимая 1 электрон.

В этом случае, 1-ый элемент ведет себя, как галогены. Они располагаются в 17-ой группе периодической системы и склонны к образованию .

В каких из них можно найти водород? К примеру, в гидросульфиде . Его формула: — NaHS.

Это соединение элемента водорода основано на . Как видно, атомы водорода вытеснены из нее натрием лишь частично.

Наличие всего одного электрона и способность его отдать превращает атом водорода в протон. В ядре тоже всего одна частица с положительным зарядом.

Относительная масса протона с электроном равна 2-ум. Показатель в 14 раз меньше, чем у воздуха. Без электрона вещество и того легче.

Вывод, что водород – газ, напрашивается сам собой. Но, у элемента есть и жидкая форма. Сжижжение происходит при температуре -252,8 градусов Цельсия.

За счет своих малых размеров химический элемент водород обладает способностью просачиваться сквозь другие вещества.

Так, если надуть воздушный не гелием, или обычным воздухом, а чистым элементом №1, сдуется уже через пару дней.

Частицы газа без труда пройдут в поры . Проходит водород и в некоторые металлы, к примеру, и .

Накапливаясь в их структуре, вещество испаряется при повышении температуры.

Хоть водород входит в состав воды, растворяется он плохо. Не зря в лабораториях элемент выделяют путем вытеснения влаги. А как добывают 1-е вещество промышленники? Этому посвятим следующую главу.

Добыча водорода

Формула водорода позволяет добывать его минимум 6-ю способами. Первый – паровая конверсия метана и природного газа.

Берутся легроиновые фракции . Чистый водород из них извлекается каталитическим путем. Для этого необходимо присутствие паров воды.

Второй путь добычи 1-го вещества – газификация . топливо нагревают до 1500 градусов, преобразуя в горючие газы.

Для этого требуется окислитель. Достаточно обычного атмосферного кислорода.

Третий путь получения водорода – электролиз воды. Через нее пропускают ток. Он помогает выделить на электродах нужный элемент.

Воспользоваться можно и пиролизом. Это термическое разложение соединений. Распасться заставляют, как органику, так и неорганические вещества, к примеру, ту же воду. Процесс происходит под действием высоких температур.

Пятый путь получения водорода – частичное окисление, а шестой – биотехнологии.

Под последними, понимается добыча газа из воды путем ее биохимического расщепления. Помогают специальные водоросли.

Нужен замкнутый фотобиореактор, поэтому, 6-ым способом пользуются редко. Популярен, собственно, лишь метод паровой конверсии.

Он наиболее дешев и прост. Однако, наличие массы альтернатив делает водород желанным сырьем для промышленности, ведь нет зависимости от конкретного источника элемента.

Применение водорода

Водород используют для синтеза . Это соединение является хладагентом в морозильной технике, известно, как составляющая нашатырного спирта, применяется в качестве нейтрализатора кислот.

Водород пускают, так же, на синтез хлороводородной кислоты. Это второе название .

Она нужна, к примеру, для очистки поверхностей металлов, их полировки. В пищевой промышленности хлороводородная – регулятор кислотности Е507.

В качестве пищевой добавки зарегистрирован и сам водород. Его название на упаковках продуктов – Е949.

Применяется, в частности, на производстве маргарина. Система гидрогенезации, собственно, делает маргарин .

В жирных из растительных масел разрывается часть связей. На местах разрыва встают атомы водорода. Это и преобразует текучую субстанцию в относительно .

В роли топливного элемент водород применяется, пока, не столько в , сколько ракетах.

Первое вещество сгорает в кислороде, что и дает энергию для движения космических аппаратах.

Так, одна из самых мощных российских ракет «Энергия» работает именно на водородном топливе. Первый элемент в нем сжижен.

Реакция горения водорода в кислороде пригождается и при сварочных работах. Можно скреплять самые тугоплавкие материалы.

Температура реакции в чистом виде – 3000 градусов Цельсия. С использованием специальных удается достичь 4000 градусов.

«Сдастся» любой , любой металл. Кстати, металлы с помощью 1-го элемента тоже получают. Реакция основана на выделении ценных веществ из их оксидов.

В ядерной промышленности жалуют изотопы водорода . Их всего 3. Один из них – тритий. Он радиоактивен.

Есть еще нерадиоактивные протий и дейтерий. Хоть тритий и излучает опасность, но встречается в естественной среде.

Изотоп образуется в верхних слоях атмосферы, на которые действуют космические лучи. Это приводит к ядерным реакциям.

В реакторах же на поверхности земли тритий – итог нейтронного облучения .

Цена водорода

Чаще всего, промышленники предлагают газообразный водород, естественно, в сжатом состоянии и в специальной таре, которая не пропустит мелкие атомы вещества.

Первый элемент делят на технический и очищенный, то есть, высший сорт. Есть даже марки водорода , к примеру, «А».

Для нее действует ГОСТ 3022-80. Это технический газ. За 40 кубических литров производители просят чуть меньше 1000 . За 50 литров дают 1300.

ГОСТ для чистого водорода – Р 51673-2000. Чистота газа составляет 9,9999%. Технический элемент, правда, немногим уступает.

Его чистота – 9,99%. Однако, за 40 кубических литров чистого вещества дают уже больше 13000 рублей.

По ценнику видно, как непросто дается промышленникам финальная стадия очистки газа. За 50-литровый баллон придется отдать 15000-16000 рублей.

Жидкий водород почти не используется. Слишком затратно, потери велики. Поэтому, и предложений о продаже, или покупке не найти.

Сжиженный водород не только трудно получить, но и хранить. Температура в минус 252 градуса – не шутки.

Поэтому, шутить никто и не собирается, пользуясь эффективным и простым в обращении газом.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...