Все замечательные точки треугольника. Четыре замечательные точки треугольника

Первые две теоремы Вам хорошо известны, две другие - докажем.

Теорема 1

Три биссектрисы треугольника пересекаются в одной точке, которая есть центр вписанной окружности.

Доказательство

основано на том факте, что биссектриса угла есть геометрическое место точек, равноудалённых от сторон угла.

Теорема 2

Три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке, которая есть центр описанной окружности.

Доказательство

основано на том, что серединный перпендикуляр отрезка есть геометрическое место точек, равноудалённых от концов этого отрезка.

Теорема 3

Три высоты или три прямые , на которых лежат высоты треугольника, пересекаются в одной точке. Эта точка называется ортоцентром треугольника.

Доказательство

Через вершины треугольника `ABC` проведём прямые, параллельные противолежащим сторонам.

В пересечении образуется треугольник `A_1 B_1 C_1`.

По построению `ABA_1C` - параллелограмм, поэтому `BA_1 = AC`. Аналогично устанавливается, что `C_1B = AC`, следовательно `C_1B = AC`, точка `B` - середина отрезка `C_1A_1`.
Совершенно так же показывается, что `C` - середина `B_1A_1` и `A` - середина `B_1 C_1`.
Пусть `BN` - высота треугольника `ABC`, тогда для отрезка `A_1 C_1` прямая `BN` - серединный перпендикуляр. Откуда следует, что три прямые, на которых лежат высоты треугольника `ABC`, являются серединными перпендикулярами трёх сторон треугольника `A_1B_1C_1`; а такие перпендикуляры пересекаются в одной точке (теорема 2).
Если треугольник остроугольный, то каждая из высот есть отрезок, соединяющий вершину и некоторую точку противолежащей стороны. В этом случае точки `B` и `N` лежат в разных полуплоскостях, образуемых прямой `AM`, значит отрезок `BN` , пересекает прямую `AM`, точка пересечения лежит на высоте `BN`, т. е. лежит внутри треугольника.
В прямоугольном треугольнике точка пересечения высот есть вершина прямого угла.

Теорема 4

Три медианы треугольника пересекаются в одной точке и делятся точкой пересечении в отношении `2:1`, считая от вершины . Эта точка называется центром тяжести (или центром масс) треугольника.
Есть различные доказательства этой теоремы. Приведём то, которое основано на теореме Фалеса.

Доказательство

Пусть `E`, `D` и `F` - середины сторон `AB`, `BC` и `AC` треугольника `ABC`.

Проведём медиану `AD` и через точки `E` и `F` параллельные ей прямые `EK` и `FL`. По теореме Фалеса `BK = KD` `(/_ABC`, E K ‖ A D) EK\|AD) и `DL = LC` `(/_ACB`, A D ‖ F L) AD\| FL) . Но `BD = DC = a//2`, поэтому `BK = KD = DL = LC = a//4`. По тойже теореме `BN = NM = MF` `(/_ FBC`, N K ‖ M D ‖ F L) NK\| MD\| FL) , поэтому `BM = 2MF`.

Это означает, что медиана `BF` в точке `M` пересечения с медианой `AD` разделились в отношении `2:1` считая от вершины.

Докажем, что и медиана `AD` в точке `M` разделилась в том же отношении. Рассуждения аналогичны.

Если рассмотреть медианы `BF` и `CE` то также можно показать, что они пересекаются в той точке, в которой медиана `BF` делится в отношении `2:1` т. е. в той же точке `M`. И этой точкой медиана `CE` также разделится в отношении `2:1`, считая от вершины.

Содержание

Введение………………………………………………………………………………………3

Глава1.

1.1 Треугольник………………………………………………………………………………..4

1.2. Медианы треугольника

1.4. Высоты в треугольнике

Заключение

Список использованной литературы

Буклет

Введение

Геометрия - это раздел математики, который рассматривает различные фигуры и их свойства. Геометрия начинается с треугольника. Вот уже два с половиной тысячелетия треугольник является символом геометрии; но он не только символ, треугольник - атом геометрии.

В своей работе я рассмотрю свойства точек пересечения биссектрис, медиан и высот треугольника, расскажу о замечательных их свойствах и линиях треугольника.

К числу таких точек, изучаемых в школьном курсе геометрии, относятся:

а) точка пересечения биссектрис (центр вписанной окружности);

б) точка пересечения серединных перпендикуляров (центр описанной окружности);

в) точка пересечения высот (ортоцентр);

г) точка пересечения медиан (центроид).

Актуальность: расширить свои знания о треугольнике, свойствах его замечательных точек.

Цель: исследование треугольника на его замечательные точки, изучение их классификаций и свойств.

Задачи:

1. Изучить необходимую литературу

2. Изучить классификацию замечательных точек треугольника

3. Уметь строить замечательные точки треугольника.

4. Обобщить изученный материал для оформления буклета.

Гипотеза проекта:

умение находить замечательные точки в любом треугольнике, позволяет решать геометрические задачи на построение.

Глава 1. Исторические сведения о замечательных точках треугольника

В четвертой книге "Начал" Евклид решает задачу: "Вписать круг в данный треугольник". Из решения вытекает, что три биссектрисы внутренних углов треугольника пересекаются в одной точке – центре вписанного круга. Из решения другой задачи Евклида вытекает, что перпендикуляры, восстановленные к сторонам треугольника в их серединах, тоже пересекаются в одной точке – центре описанного круга. В "Началах" не говорится о том, что и три высоты треугольника пересекаются в одной точке, называемой ортоцентром (греческое слово "ортос" означает "прямой", "правильный"). Это предложение было, однако, известно Архимеду, Паппу, Проклу.

Четвертой особенной точкой треугольника является точка пересечения медиан. Архимед доказал, что она является центром тяжести (барицентром) треугольника. На вышеназванные четыре точки было обращено особое внимание, и начиная с XVIII века они были названы "замечательными" или "особенными" точками треугольника.

Исследование свойств треугольника, связанных с этими и другими точками, послужило началом для создания новой ветви элементарной математики – "геометрии треугольника" или "новой геометрии треугольника", одним из родоначальников которой стал Леонард Эйлер. В 1765 году Эйлер доказал, что в любом треугольнике ортоцентр, барицентр и центр описанной окружности лежат на одной прямой, названной позже "прямой Эйлера".

    1. Треугольник

Треугольник - геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки. Точки - вершины треугольника, отрезки - стороны треугольника.

В А, В, С - вершины

АВ, ВС, СА - стороны

А С

С каждым треугольником связаны четыре точки:

    Точка пересечения медиан;

    Точка пересечения биссектрис;

    Точка пересечения высот.

    Точка пересечения серединных перпендикуляров;

1.2. Медианы треугольника

Медина треугольника ― , соединяющий вершину с серединой противоположной стороны (Рисунок 1). Точка пересечения медианы со стороной треугольника называется основанием медианы.

Рисунок 1. Медианы треугольника

Построим середины сторон треугольника и проведем отрезки, соединяющую каждую из вершин с серединой противолежащей стороны. Такие отрезки называются медианой.

И вновь мы наблюдаем, что и эти отрезки пересекаются в одной точке. Если мы измерим длины получившихся отрезков медиан, то можно проверить еще одно свойство: точка пересечения медиан делит все медианы в отношении 2:1, считая от вершин. И еще, треугольник, который опирается на острие иглы в точке пересечения медиан, находится в равновесии! Точка, обладающая таким свойством, называется центром тяжести (барицентр). Центр равных масс иногда называют центроидом. Поэтому свойства медиан треугольника можно сформулировать так: медианы треугольника пересекаются в центре тяжести и точкой пересечения делятся в отношении 2:1, считая от вершины.

1.3. Биссектрисы треугольника

Биссектрисой называется биссектрисы угла, проведенный от вершины угла до её пересечения с противолежащей стороной. У треугольника существуют три биссектрисы, соответствующие трём его вершинам (Рисунок 2).

Рисунок 2. Биссектриса треугольника

В произвольном треугольнике ABC проведем биссектрисы его углов. И вновь при точном построении все три биссектрисы пересекутся в одной точке D. Точка D – тоже необычная: она равноудалена от всех трех сторон треугольника. В этом можно убедиться, если опустить перпендикуляры DA 1, DB 1 и DC1 на стороны треугольника. Все они равны между собой: DA1=DB1=DC1.

Если провести окружность с центром в точке D и радиусом DA 1, то она будет касаться всех трех сторон треугольника (то есть будет иметь с каждым из них только одну общую точку). Такая окружность называется вписанной в треугольник. Итак, биссектрисы углов треугольника пересекаются в центре вписанной окружности.

1.4. Высоты в треугольнике

Высота треугольника - , опущенный из вершины на противоположную сторону или прямую, совпадающую с противоположной стороной. В зависимости от типа треугольника высота может содержаться внутри треугольника (для треугольника), совпадать с его стороной (являться треугольника) или проходить вне треугольника у тупоугольного треугольника (Рисунок 3).

Рисунок 3. Высоты в треугольниках

    Если в треугольнике построить три высоты, то все они пересекутся в одной точке H. Эта точка называется ортоцентром. (Рисунок 4).

С помощью построений можно проверить, что в зависимости от вида треугольника ортоцентр располагается по – разному:

    у остроугольного треугольника – внутри;

    у прямоугольного – на гипотенузе;

    у тупоугольного – снаружи.

Рисунок 4. Ортоцентр треугольника

Таким образом, мы познакомились еще с одной замечательной точкой треугольника и можем сказать, что: высоты треугольника пересекаются в ортоцентре.

1.5. Серединные перпендикуляры к сторонам треугольника

Серединный перпендикуляр к отрезку - это прямая, перпендикулярная данному отрезку и проходящая через его середину.

Начертим произвольный треугольник ABC и проведем серединные перпендикуляры к его сторонам. Если построение выполнено точно, то все перпендикуляры пересекутся в одной точке – точке О. Эта точка равноудалена от всех вершин треугольника. Другими словами, если провести окружность с центром в точке О, проходящую через одну из вершин треугольника, то она пройдет и через две другие его вершины.

Окружность, проходящая через все вершины треугольника, называется описанной около него. Поэтому установленное свойство треугольника можно сформулировать так: серединные перпендикуляры к сторонам треугольника пересекаются в центре описанной окружности (Рисунок 5).

Рисунок 5. Треугольник вписанный в окружность

Глава 2. Исследование замечательных точек треугольника.

Исследование высоты в треугольниках

Все три высоты треугольника пересекаются в одной точке. Эта точка называется ортоцентром треугольника.

Высоты остроугольного треугольника расположены строго внутри треугольника.

Соответственно, точка пересечения высот также находится внутри треугольника.

В прямоугольном треугольнике две высоты совпадают со сторонами. (Это высоты, проведенные из вершин острых углов к катетам).

Высота, проведенная к гипотенузе, лежит внутри треугольника.

AC - высота, проведенная из вершины С к стороне AB.

AB - высота, проведенная из вершины B к стороне AC.

AK - высота, проведенная из вершины прямого угла А к гипотенузе ВС.

Высоты прямоугольного треугольника пересекаются в вершине прямого угла (А - ортоцентр).

В тупоугольном треугольника внутри треугольника лежит только одна высота - та, которая проведена из вершины тупого угла.

Две другие высоты лежат вне треугольника и опущены к продолжению сторон треугольника.

AK - высота, проведенная к стороне BC.

BF - высота, проведенная к продолжению стороны АС.

CD - высота, проведенная к продолжению стороны AB.

Точка пересечения высот тупоугольного треугольника также находится вне треугольника:

H - ортоцентр треугольника ABC.

Исследование биссектрис в треугольнике

Биссектриса треугольника является частью биссектрисы угла треугольника (луча), которая находится внутри треугольника.

Все три биссектрисы треугольника пересекаются в одной точке.


Точка пересечения биссектрис в остроугольном, тупоугольном и прямоугольном треугольниках, является центром вписанной в треугольник окружности и находится внутри.

Исследование медиан в треугольнике

Так как у треугольника три вершины и три стороны, то и отрезков, соединяющих вершину и середину противолежащей стороны, тоже три.


Исследовав эти треугольники я понял, что в любом треугольнике медианы пересекаются в одной точке. Эту точку называют центром тяжести треугольника.

Исследование серединных перпендикуляров к стороне треугольника

Серединный перпендикуляр треугольника – это перпендикуляр, проведенный к середине стороны треугольника.

Три серединных перпендикуляра треугольника пересекаются в одной точке, являются центром описанной окружности.

Точка пересечения серединных перпендикуляров в остроугольном треугольнике лежит внутри треугольника; в тупоугольном – вне треугольника; в прямоугольном – на середине гипотенузы.

Заключение

В ходе проделанной работы мы приходим к следующим выводам:

    Цель достигнута: исследовали треугольник и нашли его замечательные точки.

    Поставленные задачи решены:

1). Изучили необходимую литературу;

2). Изучили классификацию замечательных точек треугольника;

3). Научились строить замечательные точки треугольника;

4). Обобщили изученный материал для оформления буклета.

Гипотеза, что умение находить замечательные точки треугольника, помогает в решении задач на построение подтвердилась.

В работе последовательно излагаются приемы построения замечательных точек треугольника, приведены исторические сведения о геометрических построениях.

Сведения из данной работы могут пригодиться на уроках геометрии в 7 классе. Буклет может стать справочником по геометрии по изложенной теме.

Список литературы

    Учебник . Л.С. Атанасян «Геометрия 7-9 классы Мнемозина,2015.

    Википедияhttps://ru.wikipedia.org/wiki/Геометрия#/media/File:Euclid%27s_postulates.png

    Портал Алые Паруса

    Ведущий образовательный портал России http://cendomzn.ucoz.ru/index/0-15157

Докажем сначала теорему о биссектрисе угла.

Теорема

Доказательство

1) Возьмём произвольную точку М на биссектрисе угла ВАС, проведём перпендикуляры МК и ML к прямым АВ и АС и докажем, что MK = ML (рис. 224). Рассмотрим прямоугольные треугольники AM К и AML. Они равны по гипотенузе и острому углу (AM - общая гипотенуза, ∠1 = ∠2 по условию). Следовательно, MK = ML.

2) Пусть точка М лежит внутри угла ВАС и равноудалена от его сторон АВ и АС. Докажем, что луч AM - биссектриса угла ВАС (см. рис. 224). Проведём перпендикуляры МК и ML к прямым АВ и АС. Прямоугольные треугольники АМК и AML равны по гипотенузе и катету (AM - общая гипотенуза, МК = ML по условию). Следовательно, ∠1 = ∠2. Но это и означает, что луч AM - биссектриса угла ВАС. Теорема доказана.


Рис. 224

Следствие 1

Следствие 2

В самом деле, обозначим буквой О точку пересечения биссектрис АА 1 и ВВ 1 треугольника АВС и проведём из этой точки перпендикуляры OK, OL и ОМ соответственно к прямым АВ, ВС и СА (рис. 225). По доказанной теореме ОК = ОМ и OK = OL. Поэтому ОМ = OL, т. е. точка О равноудалена от сторон угла АСВ и, значит, лежит на биссектрисе СС 1 этого угла. Следовательно, все три биссектрисы треугольника АВС пересекаются в точке О, что и требовалось доказать.


Рис. 225

Свойства серединного перпендикуляра к отрезку

Серединным перпендикуляром к отрезку называется прямая, проходящая через середину данного отрезка и перпендикулярная к нему.


Рис. 226

Докажем теорему о серединном перпендикуляре к отрезку.

Теорема

Доказательство

Пусть прямая m - серединный перпендикуляр к отрезку АВ, точка О - середина этого отрезка (рис. 227, а).


Рис. 227

1) Рассмотрим произвольную точку М прямой m и докажем, что AM = ВМ. Если точка M совпадает с точкой О, то это равенство верно, так как О - середина отрезка АВ. Пусть M и О различные точки. Прямоугольные треугольники ОAM и ОВМ равны по двум катетам (ОА = ОВ, ОМ - общий катет), поэтому AM = ВМ.

2) Рассмотрим произвольную точку N, равноудалённую от концов отрезка АВ, и докажем, что точка N лежит на прямой m. Если N - точка прямой АВ, то она совпадает с серединой О отрезка АВ и потому лежит на прямой m. Если же точка N не лежит на прямой АВ, то треугольник ANB равнобедренный, так как AN = BN (рис. 227, б). Отрезок NO - медиана этого треугольника, а значит, и высота. Таким образом, NO ⊥ АВ, поэтому прямые ON и m совпадают, т. е. N - точка прямой m. Теорема доказана.

Следствие 1

Следствие 2

Для доказательства этого утверждения рассмотрим серединные перпендикуляры m и n к сторонам АВ и ВС треугольника АВС (рис. 228). Эти прямые пересекаются в некоторой точке О. В самом деле, если предположить противное, т. е. что m || n, то прямая ВА, будучи перпендикулярной к прямой m, была бы перпендикулярна и к параллельной ей прямой n, а тогда через точку В проходили бы две прямые ВА и ВС, перпендикулярные к прямой n, что невозможно.


Рис. 228

По доказанной теореме ОВ = ОА и ОВ = ОС. Поэтому ОА = ОС, т. е. точка О равноудалена от концов отрезка АС и, значит, лежит на серединном перпендикуляре р к этому отрезку. Следовательно, все три серединных перпендикуляра m, n и р к сторонам треугольника АВС пересекаются в точке О.

Теорема о пересечении высот треугольника

Мы доказали, что биссектрисы треугольника пересекаются в одной точке, серединные перпендикуляры к сторонам треугольника пересекаются в одной точке. Ранее было доказано, что медианы треугольника пересекаются в одной точке (п. 64). Оказывается, аналогичным свойством обладают и высоты треугольника.

Теорема

Доказательство

Рассмотрим произвольный треугольник АВС и докажем, что прямые АА 1 ВВ 1 и СС 1 содержащие его высоты, пересекаются в одной точке (рис. 229).


Рис. 229

Проведём через каждую вершину треугольника АВС прямую, параллельную противоположной стороне. Получим треугольник А 2 В 2 С 2 . Точки А, В и С являются серединами сторон этого треугольника. Действительно, АВ = А 2 С и АВ = СВ 2 как противоположные стороны параллелограммов АВА 2 С и АВСВ 2 , поэтому А 2 С = СВ 2 . Аналогично С 2 А = АВ 2 и С 2 В = ВА 2 . Кроме того, как следует из построения, СС 1 ⊥ А 2 В 2 , АА 1 ⊥ В 2 С 2 и ВВ 1 ⊥ А 2 С 2 . Таким образом, прямые АА 1 , ВВ 1 и СС 1 являются серединными перпендикулярами к сторонам треугольника А 2 В 2 С 2 . Следовательно, оНи пересекаются в одной точке. Теорема доказана.

Итак, с каждым треугольником связаны четыре точки: точка пересечения медиан, точка пересечения биссектрис, точка пересечения серединных перпендикуляров к сторонам и точка пересечения высот (или их продолжений). Эти четыре точки называются замечательными точками треугольника .

Задачи

674. Из точки М биссектрисы неразвёрнутого угла О проведены перпендикуляры МА и МВ к сторонам этого угла. Докажите, что АВ ⊥ ОМ.

675. Стороны угла О касаются каждой из двух окружностей, имеющих общую касательную в точке А. Докажите, что центры этих окружностей лежат на прямой О А.

676. Стороны угла А касаются окружности с центром О радиуса r. Найдите: а) ОА, если r = 5 см, ∠A = 60°; б) г, если ОА = 14 дм, ∠A = 90°.

677. Биссектрисы внешних углов при вершинах В и С треугольника АВС пересекаются в точке О. Докажите, что точка О является центром окружности, касающейся прямых АВ, ВС, АС.

678. Биссектрисы АА 1 и ВВ 1 треугольника АВС пересекаются в точке М. Найдите углы ACM и ВСМ, если: a) ∠AMB = 136°; б) ∠AMB = 111°.

679. Серединный перпендикуляр к стороне ВС треугольника АВС пересекает сторону АС в точке D. Найдите: a) AD и CD, если BD = 5 см, Ас = 8,5см; б) АС, если BD = 11,4 см, AD = 3,2 см.

680. Серединные перпендикуляры к сторонам АВ и АС треугольника АВС пересекаются в точке D стороны ВС. Докажите, что: а) точка D - середина стороны ВС; б) ∠A - ∠B + ∠C.

681. Серединный перпендикуляр к стороне АВ равнобедренного треугольника АВС пересекает сторону ВС в точке Е. Найдите основание АС, если периметр треугольника АЕС равен 27 см, а АВ = 18 см.

682. Равнобедренные треугольники АВС и ABD имеют общее основание АВ. Докажите, что прямая CD проходит через середину отрезка АВ.

683. Докажите, что если в треугольнике АВС стороны АВ и АС не равны, то медиана AM треугольника не является высотой.

684. Биссектрисы углов при основании АВ равнобедренного треугольника АВС пересекаются в точке М. Докажите, что прямая СМ перпендикулярна к прямой АВ.

685. Высоты АА 1 и ВВ 1 равнобедренного треугольника АВС, проведённые к боковым сторонам, пересекаются в точке М. Докажите, что прямая МС - серединный перпендикуляр к отрезку АВ.

686. Постройте серединный перпендикуляр к данному отрезку.

Решение

Пусть АВ - данный отрезок. Построим две окружности с центрами в точках А и В радиуса АВ (рис. 230). Эти окружности пересекаются в двух точках М 1 и М 2 . Отрезки АМ 1 , AM 2 , ВМ 1 , ВМ 2 равны друг другу как радиусы этих окружностей.


Рис. 230

Проведём прямую М 1 М 2 . Она является искомым серединным перпендикуляром к отрезку АВ. В самом деле, точки М 1 и М 2 равноудалены от концов отрезка АВ, поэтому они лежат на серединном перпендикуляре к этому отрезку. Значит, прямая М 1 М 2 и есть серединный перпендикуляр к отрезку АВ.

687. Даны прямая а и две точки А и В, лежащие по одну сторону от этой прямой. На прямой а постройте точку М, равноудалённую от точек А к В.

688. Даны угол и отрезок. Постройте точку, лежащую внутри данного угла, равноудалённую от его сторон и равноудалённую от концов данного отрезка.

Ответы к задачам

    674. Указание. Сначала доказать, что треугольник АОВ равнобедренный.

    676. а) 10 см; б) 7√2 дм.

    678. а) 46° и 46°; б) 21° и 21°.

    679. a) АВ = 3,5 см, CD = 5 см; б) АС = 14,6 см.

    683. Указание. Воспользоваться методом доказательства от противного.

    687. Указание. Воспользоваться теоремой п. 75.

    688. Указание. Учесть, что искомая точка лежит на биссектрисе данного угла.

1 То есть равноудалена от прямых, содержащих стороны угла.

Сильченков Илья

материалы к уроку, презентация с анимацией

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон и равна половине этой стороны. Так же по теореме средняя линия треугольника параллельна одной из его сторон и равна половине это стороны.

Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой

Замечательных точки треугольника

Замечательные точки треугольника Точка пересечения медиан (центроид треугольника) ; Точка пересечения биссектрис, центр вписанной окружности; Точка пересечения серединных перпендикуляров; Точка пересечения высот (ортоцентр); Прямая Эйлера и окружность девяти точек; Точки Жергонна и Нагеля; Точка Ферма-Торричелли;

Точка пересечения медиан

Медиана треугольника- отрезок, соединяющий вершину любого угла треугольника с серединой противоположной стороны.

I. Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1, считая от вершины.

Доказательство:

A B C A 1 C 1 B 1 1 2 3 4 0 1. Обозначим буквой О точку пересечения двух медиан АА 1 и В В1 треугольника АВС и проведём среднюю линию А 1 В 1 этого треугольника. 2.Отрезок А 1 В 1 параллелен стороне АВ и 1/2 АВ = А 1 В 1 т. е. АВ = 2А1В1 (по теореме о средней линии треугольника), поэтому 1= 4 и 3= 2 (т.к. они внутренние накрест лежащие углы при параллельных прямых AB и A 1 B 1 и секущей BB 1 для 1, 4 и AA 1 для 3, 2 3.Следовательно, треугольники АОВ и А 1 ОВ 1 подобны по двум углам, и, значит их стороны пропорциональны, т. е. равны отношения сторон АО и А 1 О, ВО и В 1 О, АВ и А 1 В 1 . Но АВ = 2А 1 В 1 , поэтому АО=2А 1 О и ВО=2В 1 О. Таким образом, точка О пересечения медиан ВВ 1 и АА 1 делит каждую из них в отношении 2:1 , считая от вершины. Теорема доказана. Аналогично можно доказать и про другие две медианы

Центр масс иногда называют центроидом. Именно поэтому говорят, что точка пересечения медиан- центроид треугольника. В этой же точке располагается и центр масс однородной треугольной пластинки. Если подобную пластинку поставить на булавку так, чтобы остриё булавки попало точно в центроид треугольника, то пластинка будет находиться в равновесии. Также точка пересечения медиан является центром вписанной окружности его серединного треугольника. Интересное свойство точки пересечения медиан связано с физическим понятием центра масс. Оказывается, если поместить в вершины треугольника равные массы, то их центр попадёт именно в эту точку.

Точка пересечения биссектрис

Биссектриса треугольника - отрезок биссектрисы угла, соединяющий вершину одного из углов треугольника с точкой лежащей на противоположной стороне.

Биссектрисы треугольника пересекаются в одной точке, равноудаленной от его сторон.

Доказательство:

С А В А 1 В 1 С 1 0 1. Обозначим буквой О точку пересечения биссектрис АА 1 и ВВ 1 треугольника АВС. 3.Воспользуемся тем, что каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон и обратно: каждая точка, лежащая внутри угла и равноудалённая от сторон угла, лежит на его биссектрисе. Тогда ОК=OL и ОК=ОМ. А значит ОМ=OL , т. е. точка О равноудалена от сторон треугольника АВС и, значит, лежит на биссектрисе СС1 угла C . 4.Следовательво, все три биссектрисы треугольника АВС пересекаются в точке О. K L M Теорема доказана. 2.проведём из этой точки перпендикуляры ОК, OL и ОМ соответственно к прямым АВ, ВС и СА.

Точка пересечения серединных перпендикуляров

Серединный перпендикуляр- прямая, проходящая через середину данного отрезка и перпендикулярная к нему.

Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке, равноудаленной от вершин треугольника.

Доказательство:

В С A m n 1. Обозначим буквой О точку пересечения серединных перпендикуляров т и п к сторонам АВ и ВС треугольника АВС. O 2. Воспользовавшись теоремой о том, что каждая точка серединного перпендикуляра к отрезку равноудалена от концов этого отрезка и обратно: каждая точка, равноудалённая от концов отрезка, лежит на серединном перпендикуляре к нему, получим, что ОВ=ОА и ОВ=ОС. 3. Поэтому ОА=ОС, т. е. точка О равноудалена от концов отрезка АС и, значит, лежит на серединном перпендикуляре к этому отрезку. 4. Следовательно, все три серединных перпендикуляра m, n и p к сторонам треугольника АВС пересекаются в точке О. Теорема доказана. р

Точка пересечения высот (или их продолжений)

Высота треугольника- перпендикуляр, проведенный из вершины любого угла треугольника к прямой, содержащей противоположную сторону.

Высоты треугольника или их продолжения пересекаются в одной точке, которая может лежать в треугольнике, а может находиться за его пределами.

Доказательство:

Докажем, что прямые АА 1 , ВВ 1 и СС 1 пересекаются в одной точке. В A C C2 C1 A1 A2 В 1 В 2 1. Проведём через каждую вершину треугольника АВС прямую, параллельную противоположной стороне. Получим треугольник А 2 В 2 С 2 . 2. Точки А, В и С являются серединами сторон этого треугольника. Действительно, АВ=А 2 С и АВ=СВ 2 как противоположные стороны параллелограммов АВА 2 С и АВСВ 2 , поэтому А 2 С=СВ 2 . Аналогично С 2 А=АВ 2 и С 2 В=ВА 2 . Кроме того, как следует из построения, СС 1 перпендикулярен А 2 В 2 , АА 1 перпендикулярен В 2 С 2 и ВВ 1 перпендикулярен А 2 С 2 (из следствия по теореме параллельных прямых и секущей) . Таким об p азом, прямые АА 1 , ВВ 1 и СС 1 являются серединными перпендикулярами к сторонам треугольника А 2 В 2 С 2 . Следовательно, они пересекаются в одной точке. Теорема доказана.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...