Вычисление определенных интегралов по формуле прямоугольников. Численное интегрирование


Оценка остаточного члена формулы: , или .

Назначение сервиса . Сервис предназначен для онлайн вычисления определенного интеграла по формуле прямоугольников.

Инструкция . Введите подынтегральную функцию f(x) , нажмите Решить. Полученное решение сохраняется в файле Word . Также создается шаблон решения в Excel . Ниже представлена видеоинструкция.

Подынтегральная функция f(x)

Пределы интегрирования до .
Точность округления 1 2 3 4 5 6
Количество интервалов разбиения n = или Шаг h =
Метод численного интегрирования функций Формула левых прямоугольников Формула правых прямоугольников Формула средних прямоугольников Формула трапеций Элементарная формула Симпсона Формула Симпсона

Правила ввода функции

Примеры
≡ x^2/(x+2)
cos 2 (2x+π) ≡ (cos(2*x+pi))^2
≡ x+(x-1)^(2/3) Это самая простая квадратурная формула вычисления интеграла, в которой используется одно значение функции
(8.5.1)
где ; h=x 1 -x 0 .
Формула (8.5.1) представляет собой центральную формулу прямоугольников. Вычислим остаточный член. Разложим в ряд Тейлора функцию y=f(x) в точке ε 0:
(8.5.2)
где ; . Проинтегрируем (8.5.2):
(8.5.3)

Во втором слагаемом подынтегральная функция нечетная, а пределы интегрирования симметричны относительно точки ε 0 . Поэтому второй интеграл равен нулю. Таким образом, из (8.5.3) следует .
Т. к. второй множитель подынтегрального выражения не меняет знак, то по теореме о среднем получим , где . После интегрирования получим . (8.5.4)
Сравнивая с остаточным членом формулы трапеций, мы видим, что погрешность формулы прямоугольников в два раза меньше, чем погрешность формулы трапеций. Этот результат верен, если в формуле прямоугольников мы берём значение функции в средней точке.
Получим формулу прямоугольников и остаточный член для интервала . Пусть задана сетка x i =a+ih, i=0,1,...,n, . Рассмотрим сетку ε i =ε 0 +ih, i=1,2,..,n, ε 0 =a-h/2. Тогда . (8.5.5)
Остаточный член .
Геометрически формула прямоугольников может быть представлена следующим рисунком:

Если функция f(x) задана таблично, то используют либо левостороннюю формулу прямоугольников (для равномерной сетки)

либо правостороннюю формулу прямоугольников

.
Погрешность этих формул оценивается через первую производную. Для интервала погрешность равна

; .
После интегрирования получим .

Пример . Вычислить интеграл при n=5:
а) по формуле трапеций;
б) по формуле прямоугольников;
в) по формуле Симпсона;
г) по формуле Гаусса;
д) по формуле Чебышева.
Рассчитать погрешность.
Решение. Для 5-ти узлов интегрирования шаг сетки составит 0.125.
При решении будем пользоваться таблицей значений функции. Здесь f(x)=1/x.

x f(x)
x0 0.5 y0 2
x1 0.625 y1 1.6
x2 0.750 y2 1.33
x3 0.875 y3 1.14
x4 1.0 y4 1
a) формула трапеций:
I=h/2×;
I=(0.125/2)×=0.696;
R= [-(b-a)/12]×h×y¢¢(x);
f¢¢(x)=2/(x 3).
Максимальное значение второй производной функции на интервале равно 16: max {f¢¢(x)}, xÎ=2/(0.5 3)=16, поэтому
R=[-(1-0.5)/12]×0.125×16=-0.0833;
б) формула прямоугольников:
для левосторонней формулы I=h×(y0+y1+y2+y3);
I=0.125×(2+1.6+1.33+1.14)=0.759;
R=[(b-a)/6]×h 2 ×y¢¢(x);
R=[(1-0.5)/6]×0.125 2 ×16=0.02;
в) формула Симпсона:
I=(2h/6)×{y0+y4+4×(y1+y3)+2×y2};
I=(2×0.125)/6×{2+1+4×(1.6+1.14)+2×1.33}=0.693;
R=[-(b-a)/180]×h 4 ×y (4) (x);
f (4) (x)=24/(x 5)=768;
R=[-(1-0.5)/180]×(0.125) 4 ×768= - 5.2 e -4;
г) формула Гаусса:
I=(b-a)/2×;
x i =(b+a)/2+t i (b-a)/2
(A i , t i - табличные значения).
t (n=5) A (n=5)
x1 0.9765 y1 1.02 t 1 0.90617985 A 1 0.23692688
x2 0.8846 y2 1.13 t 2 0.53846931 A 2 0.47862868
x3 0.75 y3 1.33 t 3 0 A 3 0.56888889
x4 0.61 y4 1.625 t 4 -0.53846931 A 4 0.47862868
x5 0.52 y5 1.91 t 5 -0.90617985 A 5 0.23692688
I=(1-0.5)/2×(0.2416+0.5408+0.7566+0.7777+0.4525)=0.6923;
д) формула Чебышева:
I=[(b-a)/n] ×S f(x i), i=1..n,
x i =(b+a)/2+[ t i (b-a)]/2 - необходимое приведение интервала интегрирования к интервалу [­­-1;1].
Для n=5
t1 0.832498
t2 0.374541
t3 0
t4 -0.374541
t5 -0.832498
Найдем значения x и значения функции в этих точках:
x1 0,958 f(x1) 1,043
x2 0,844 f(x2) 1,185
x3 0,75 f(x3) 1,333
x4 0,656 f(x4) 1,524
x5 0,542 f(x5) 1,845
Сумма значений функции равна 6,927.
I=(1-0,5)/5×6,927=0,6927.

Формула левых прямоугольников:

Метод средних прямоугольников

Разделим отрезок на n равных частей, т.е. на n элементарных отрезков. Длина каждого элементарного отрезка. Точки деления будут: x 0 =a; x 1 =a+h; x 2 =a+2Ч h,., x n-1 =a+ (n-1) Ч h; x n =b. Эти числа будем называть узлами. Вычислим значения функции f (x) в узлах, обозначим их y 0 , y 1 ,y 2 ,., y n . Cталобыть, y 0 =f (a), y 1 =f (x 1),y 2 =f (x 2),., y n =f (b). Числа y 0 , y 1 ,y 2 ,., y n являются ординатами точек графика функции, соответствующих абсциссам x 0 , x 1 ,x 2 ,., x n. Площадь криволинейной трапеции приближенно заменяется площадью многоугольника, составленного из n прямоугольников. Таким образом, вычисление определенного интеграла сводится к нахождению суммы n элементарных прямоугольников.

Формула средних прямоугольников

Метод правых прямоугольников

Разделим отрезок на n равных частей, т.е. на n элементарных отрезков. Длина каждого элементарного отрезка. Точки деления будут: x 0 =a; x 1 =a+h; x 2 =a+2Ч h,., x n-1 =a+ (n-1) Ч h; x n =b. Эти числа будем называть узлами. Вычислим значения функции f (x) в узлах, обозначим их y 0 , y 1 ,y 2 ,., y n . Cталобыть, y 0 =f (a), y 1 =f (x 1),y 2 =f (x 2),., y n =f (b). Числа y 0 , y 1 ,y 2 ,., y n являются ординатами точек графика функции, соответствующих абсциссам x 0 , x 1 ,x 2 ,., x n. Площадь криволинейной трапеции приближенно заменяется площадью многоугольника, составленного из n прямоугольников. Таким образом, вычисление определенного интеграла сводится к нахождению суммы n элементарных прямоугольников.

Формула правых прямоугольников

Метод Симпсона

Геометрически иллюстрация формулы Симпсона состоит в том, что на каждом из сдвоенных частичных отрезков заменяем дугу данной кривой дугой графика квадратного трехчлена.

Разобьем отрезок интегрирования на 2Ч n равных частей длины. Обозначим точки разбиения x 0 =a; x 1 =x 0 +h,., x i =x 0 +iЧ h,., x 2n =b. Значения функции f в точках x i обозначим y i , т.е. y i =f (x i). Тогда согласно методу Симпсона


Метод трапеций

Разделим отрезок на n равных частей, т.е. на n элементарных отрезков. Длина каждого элементарного отрезка. Точки деления будут: x 0 =a; x 1 =a+h; x 2 =a+2Ч h,., x n-1 =a+ (n-1) Ч h; x n =b. Эти числа будем называть узлами. Вычислим значения функции f (x) в узлах, обозначим их y 0 , y 1 ,y 2 ,., y n . Cталобыть, y 0 =f (a), y 1 =f (x 1),y 2 =f (x 2),., y n =f (b). Числа y 0 , y 1 ,y 2 ,., y n являются ординатами точек графика функции, соответствующих абсциссам x 0 , x 1 ,x 2 ,., x n

Формула трапеций:

Формула означает, что площадь криволинейной трапеции заменяется площадью многоугольника, составленного из n трапеций (рис.5); при этом кривая заменяется вписанной в нее ломаной.

В общем виде формула левых прямоугольников на отрезке выглядит следующим образом(21) :

В данной формуле x 0 =a, x n =b , так как любой интеграл в общем виде выглядит: (см. формулу18 ).

h можно вычислить по формуле 19 .

y 0 , y 1 ,..., y n-1 x 0 , x 1 ,..., x n-1 (x i =x i-1 +h ).

    Формула правых прямоугольников.

В общем виде формула правых прямоугольников на отрезке выглядит следующим образом(22) :

В данной формуле x 0 =a, x n =b (см. формулу для левых прямоугольников).

h можно вычислить по той же формуле, что и в формуле для левых прямоугольников.

y 1 , y 2 ,..., y n - это значения соответствующей функции f(x) в точкахx 1 , x 2 ,..., x n (x i =x i-1 +h ).

    Формула средних прямоугольников.

В общем виде формула средних прямоугольников на отрезке выглядит следующим образом(23) :

Где x i =x i-1 +h .

В данной формуле, как и в предыдущих, требуется h умножать сумму значений функции f(x), но уже не просто подставляя соответствующие значения x 0 ,x 1 ,...,x n-1 в функцию f(x), а прибавляя к каждому из этих значенийh/2 (x 0 +h/2, x 1 +h/2,..., x n-1 +h/2), а затем только подставляя их в заданную функцию.

h можно вычислить по той же формуле, что и в формуле для левых прямоугольников." [6 ]

На практике данные способы реализуются следующим образом:

    Mathcad ;

    Excel .

    Mathcad ;

    Excel .

Для того, чтобы вычислить интеграл по формуле средних прямоугольников в Excel, необходимо выполнить следующие действия:

    Продолжить работу в том же документе, что и при вычислении интеграла по формулам левых и правых прямоугольников.

    В ячейку E6 ввести текст xi+h/2, а в F6 - f(xi+h/2).

    Ввести в ячейку E7 формулу =B7+$B$4/2, скопировать эту формулу методом протягивания в диапазон ячеек E8:E16

    Ввести в ячейку F7 формулу =КОРЕНЬ(E7^4-E7^3+8), скопировать эту формулу методом протягивания в диапазон ячеек F8:F16

    Ввести в ячейку F18 формулу =СУММ(F7:F16).

    Ввести в ячейку F19 формулу =B4*F18.

    Ввести в ячейку F20 текст средних.

В итоге получаем следующее:

Ответ: значение заданного интеграла равно 13,40797.

Исходя из полученных результатов, можно сделать вывод, что формула средних прямоугольников является наиболее точной, чем формулы правых и левых прямоугольников.

1. Метод Монте-Карло

"Основная идея метода Монте-Карло заключается в многократном повторении случайных испытаний. Характерной особенностью метода Монте-Карло является использование случайных чисел (числовых значений некоторой случайной величины). Такие числа можно получать с помощью датчиков случайных чисел. Например, в языке программирования Turbo Pascal имеется стандартная функция random , значениями которой являются случайные чис¬ла, равномерно распределенные на отрезке . Сказанное означает, что если разбить указанный отрезок на некоторое число равных интервалов и вычислить значение функции random большое число раз, то в каждый интервал попадет приблизительно одинаковое количество случайных чисел. В языке программирования basin подобным датчиком является функция rnd. В табличном процессоре MS Excel функция СЛЧИС возвращает равномерно распределенное случайное число большее или равное 0 и меньшее 1 (изменяется при пересчете)" [7 ].

Для того чтобы его вычислить, необходимо воспользоваться формулой () :

Где (i=1, 2, …, n) – случайные числа, лежащие в интервале .

Для получения таких чисел на основе последовательности случайных чисел x i , равномерно распределенных в интервале , достаточно выполнить преобразование x i =a+(b-a)x i .

На практике данный способ реализуется следующим образом:

Для того, чтобы вычислить интеграл методом Монте-Карло в Excel, необходимо выполнить следующие действия:

    В ячейку B1 ввести текст n=.

    В ячейку B2 ввести текст a=.

    В ячейку B3 ввести текст b=.

В ячейку C1 ввести число 10.

    В ячейку C2 ввести число 0.

    В ячейку C3 ввести число 3,2.

    В ячейку A5 ввести I, в В5 – xi, в C5 – f(xi).

    Ячейки A6:A15 заполнить числами 1,2,3, …,10 – так как n=10.

    Ввести в ячейку B6 формулу =СЛЧИС()*3,2 (происходит генерация чисел в диапазоне от 0 до 3,2), скопировать эту формулу методом протягивания в диапазон ячеек В7:В15.

    Ввести в ячейку C6 формулу =КОРЕНЬ(B6^4-B6^3+8), скопировать эту формулу методом протягивания в диапазон ячеек C7:C15.

    Ввести в ячейку B16 текст «сумма», в B17 – «(b-a)/n», в B18 – «I=».

    Вести в ячейку C16 формулу =СУММ(C6:C15).

    Вести в ячейку C17 формулу =(C3-C2)/C1.

    Вести в ячейку C18 формулу =C16*C17.

В итоге получаем:

Ответ: значение заданного интеграла равно 13,12416.

Графическое изображение:


Вычислим приближенное значение интеграла. Для оценки точности используем просчет методом левых и правых прямоугольников.

Рассчитаем шаг при разбиении на 10 частей:

Точки разбиения отрезка определяются как.

Вычислим приближенное значение интеграла по формулам левых прямоугольников:

0.1(0.6288+0.6042+0.5828+0.5642+0.5479+0.5338+0.5214+0.5105+0.5008+0.4924)0.5486

Вычислим приближенное значение интеграла по формулам правых прямоугольников:

0.1(0.6042+0.5828+0.5642+0.5479+0.5338+0.5214+0.5105+0.5008+0.4924+0.4848)0.5342

Решение краевой задачи для обыкновенного дифференциального уравнения методом прогонки.

Для приближенного решения обыкновенного дифференциального уравнения можно использовать метод прогонки.

Рассмотрим линейное д.у.

y""+p(x)y"+q(x)y=f(x) (1)

c двухточечными линейными краевыми условиями

Введём обозначения:

Метод прогонки состоит из «прямого хода», в котором определяются коэффициенты:

После выполнения «прямого хода», переходят к выполнению «обратного хода», который заключается в определении значений искомой функции по формулам:

Используя метод прогонки, составить решение краевой задачи для обыкновенного дифференциального уравнения с точностью; Шаг h=0.05

2; A=1; =0; B=1.2;

Задача Дирихле для уравнения Лапласа методом сеток

Найти непрерывную функцию и (х, у), удовлетворяющую внутри прямоугольной области уравнению Лапласа

и принимающую на границе области заданные значения, т. е.

где f l , f 2 , f 3 , f 4 -- заданные функции.

Вводя обозначения, аппроксимируем частные производные и в каждом внутреннем узле сетки центральными разностными производными второго порядка

и заменим уравнение Лапласа конечно-разностным уравнением

Погрешность замены дифференциального уравнения разностным составляет величину.

Уравнения (1) вместе со значениями в граничных узлах образуют систему линейных алгебраических уравнений относительно приближенных значений функции и (х, у) в узлах сетки. Наиболее простой вид имеет эта система при:

При получении сеточных уравнений (2) была использована схема узлов, изображенная на рис. 1. Набор узлов, используемых для аппроксимации уравнения в точке, называется шаблоном.

Рисунок 1

Численное решение задачи Дирихле для уравнения Лапласа в прямоугольнике состоит в нахождении приближенных значений искомой функции и(х, у) во внутренних узлах сетки. Для определения величин требуется решить систему линейных алгебраических уравнений (2).

В данной работе она решается методом Гаусса--Зейделя, который состоит в построении последовательности итераций вида

(верхним индексом s обозначен номер итерации). При последовательность сходится к точному решению системы (2). В качестве условия окончания итерационного процесса можно принять

Таким образом, погрешность приближенного решения, полученного методом сеток, складывается из двух погрешностей: погрешности аппроксимации дифференциального уравнения разностными; погрешности, возникающей в результате приближенного решения системы разностных уравнений (2).

Известно, что описанная здесь разностная схема обладает свойством устойчивости и сходимости. Устойчивость схемы означает, что малые изменения в начальных данных приводят к малым изменениям решения разностной задачи. Только такие схемы имеет смысл применять в реальных вычислениях. Сходимость схемы означает, что при стремлении шага сетки к нулю () решение разностной задачи стремится в некотором смысле к решению исходной задачи. Таким образом, выбрав достаточно малый шаг h, можно как угодно точно решить исходную задачу.

Используя метод сеток, составить приближенное решение задачи Дирихле, для уравнения Лапласа в квадрате ABCD c вершинами A(0;0) B(0;1) C(1;1) D(1;0); шаг h=0.02. При решении задачи использовать итерационный процесс усреднения Либмана до получения ответа с точностью до 0,01.

1) Вычислим значения функции на сторонах:

  • 1. На стороне AB: по формуле. u(0;0)=0 u(0;0.2)=9.6 u(0;0.4)=16.8 u(0;0.6)=19.2 u(0;0.8)=14.4 u(0;1)=0
  • 2. На стороне ВС=0
  • 3. На стороне CD=0
  • 4. На стороне AD: по формуле u(0;0)=0 u(0.2;0)=29,376 u(0.4;0)=47,542 u(0.6;0)=47,567 u(0.8;0)=29,44 u(1;0)=0
  • 2) Для определения значений функции во внутренних точках области методом сеток заданное уравнение Лапласа в каждой точке заменим конечно-разностным уравнением по формуле

Используя эту формулу, составим уравнение для каждой внутренней точки. В результате получаем систему уравнений.

Решение этой системы выполним итерационным способом типа Либмана. Для каждого значения составим последовательность которую строим до сходимости в сотых долях. Запишем соотношения, с помощью которых будем находить элементы всех последовательностей:

Для вычислений по этим формулам нужно определить начальные значения которые могут быть найдены каким-либо способом.

3) Чтобы получить начальное приближенное решение задачи, будем считать, что функция u(x,y) по горизонталям области распределена равномерно.

Сначала рассмотрим горизонталь с граничными точками (0;0.2) и (1;0.2).

Обозначим искомые значения функции во внутренних точках через.

Так как отрезок разбит на 5 частей, то шаг измерения функции

Тогда получим:

Аналогично найдём значения функции во внутренних точках других горизонталей. Для горизонтали, с граничными точками (0;0.4) и (1;0.4) имеем

Для горизонтали с граничными точками (0;0.6) и (1;0.6) имеем

Наконец, найдем значения для горизонтали с граничными точками (0;0.8) и(1;0.8).

Все полученные значения представим в следующей таблице, которая называется нулевым шаблоном:

И парадокс состоит в том, что по этой причине (видимо) он довольно редко встречается на практике. Неудивительно, что данная статья появилась на свет через несколько лет после того, как я рассказал о более распространённых методах трапеции и Симпсона , где упомянул о прямоугольниках лишь вскользь. Однако на сегодняшний день раздел об интегралах практически завершён и поэтому настало время закрыть этот маленький пробел. Читаем, вникаем и смотрим видео! ….о чём? Об интегралах, конечно =)

Постановка задачи уже была озвучена на указанном выше уроке, и сейчас мы быстренько актуализируем материал:

Рассмотрим интеграл . Он неберущийся. Но с другой стороны, подынтегральная функция непрерывна на отрезке , а значит, конечная площадь существует. Как её вычислить? Приближённо. И сегодня, как вы догадываетесь – методом прямоугольников.

Разбиваем промежуток интегрирования на 5, 10, 20 или бОльшее количество равных (хотя это не обязательно) отрезков, чем больше – тем точнее будет приближение. На каждом отрезке строим прямоугольник, одна из сторон которого лежит на оси , а противоположная – пересекает график подынтегральной функции. Вычисляем площадь полученной ступенчатой фигуры, которая и будет приближённой оценкой площади криволинейной трапеции (заштрихована на 1-м рисунке) .

Очевидно, что прямоугольники можно построить многими способами, но стандартно рассматривают 3 модификации:

1) метод левых прямоугольников;
2) метод правых прямоугольников;
3) метод средних прямоугольников.

Оформим дальнейшие выкладки в рамках «полноценного» задания:

Пример 1

Вычислить определённый интеграл приближённо:
а) методом левых прямоугольников;
б) методом правых прямоугольников.

Промежуток интегрирования разделить на равных отрезков, результаты вычислений округлять до 0,001

Решение : признАюсь сразу, я специально выбрал такое малое значение – из тех соображений, чтобы всё было видно на чертеже – за что пришлось поплатиться точностью приближений.

Вычислим шаг разбиения (длину каждого промежуточного отрезка) :

Метод левых прямоугольников получил своё называние из-за того,

что высОты прямоугольников на промежуточных отрезках равны значениям функции в левых концах данных отрезков:

Ни в коем случае не забываем, что округление следует проводить до трёх знаков после запятой – это существенное требование условия , и «самодеятельность» здесь чревата пометкой «оформите задачу, как следует».

Вычислим площадь ступенчатой фигуры, которая равна сумме площадей прямоугольников:


Таким образом, площадь криволинейной трапеции : . Да, приближение чудовищно грубое (завышение хорошо видно на чертеже) , но и пример, повторюсь, демонстрационный. Совершенно понятно, что, рассмотрев бОльшее количество промежуточных отрезков (измельчив разбиение), ступенчатая фигура будет гораздо больше похожа на криволинейную трапецию, и мы получим лучший результат.

При использовании «правого» метода высОты прямоугольников равны значениям функции в правых концах промежуточных отрезков:

Вычислим недостающее значение и площадь ступенчатой фигуры:


– тут, что и следовало ожидать, приближение сильно занижено:

Запишем формулы в общем виде. Если функция непрерывна на отрезке , и он разбит на равных частей: , то определённый интеграл можно вычислить приближенно по формулам:
– левых прямоугольников;
– правых прямоугольников;
(формула в следующей задаче) – средних прямоугольников,
где – шаг разбиения.

В чём их формальное различие? В первой формуле нет слагаемого , а во второй -

На практике рассчитываемые значения удобно заносить в таблицу:


а сами вычисления проводить в Экселе. И быстро, и без ошибок:

Ответ :

Наверное, вы уже поняли, в чём состоит метод средних прямоугольников:

Пример 2

Вычислить приближенно определенный интеграл методом прямоугольников с точностью до 0,01. Разбиение промежутка интегрирования начать с отрезков.

Решение : во-первых, обращаем внимание, что интеграл нужно вычислить с точностью до 0,01 . Что подразумевает такая формулировка?

Если в предыдущей задаче требовалось прОсто округлить результаты до 3 знаков после запятой (а уж насколько они будут правдивы – не важно) , то здесь найденное приближённое значение площади должно отличаться от истины не более чем на .

И во-вторых, в условии задачи не сказано, какую модификацию метода прямоугольников использовать для решения. И действительно, какую?

По умолчанию всегда используйте метод средних прямоугольников

Почему? А он при прочих равных условиях (том же самом разбиении) даёт гораздо более точное приближение. Это строго обосновано в теории, и это очень хорошо видно на чертеже:

В качестве высот прямоугольников здесь принимаются значения функции , вычисленные в серединах промежуточных отрезков, и в общем виде формула приближённых вычислений запишется следующим образом:
, где – шаг стандартного «равноотрезочного» разбиения .

Следует отметить, что формулу средних прямоугольников можно записать несколькими способами, но чтобы не разводить путаницу, я остановлюсь на единственном варианте, который вы видите выше.

Вычисления, как и в предыдущем примере, удобно свести в таблицу. Длина промежуточных отрезков, понятно, та же самая: – и очевидно, что расстояние между серединами отрезков равно этому же числу. Поскольку требуемая точность вычислений составляет , то значения нужно округлять «с запасом» – 4-5 знаками после запятой:


Вычислим площадь ступенчатой фигуры:

Давайте посмотрим, как автоматизировать этот процесс:

Таким образом, по формуле средних прямоугольников:

Как оценить точность приближения? Иными словами, насколько далёк результат от истины (площади криволинейно трапеции) ? Для оценки погрешности существует специальная формула, однако, на практике её применение зачастую затруднено, и поэтому мы будем использовать «прикладной» способ:

Вычислим более точное приближение – с удвоенным количеством отрезков разбиения: . Алгоритм решения точно такой же: .

Найдём середину первого промежуточного отрезка и далее приплюсовываем к полученному значению по 0,3. Таблицу можно оформить «эконом-классом», но комментарий о том, что изменяется от 0 до 10 – всё же лучше не пропускать:


В Экселе вычисления проводятся «в один ряд» (кстати, потренируйтесь) , а вот в тетради таблицу, скорее всего, придётся сделать двухэтажной (если у вас, конечно, не сверхмелкий почерк).

Вычислим суммарную площадь десяти прямоугольников:

Таким образом, более точное приближение:

Которые я и предлагаю вам изучить!

Пример 3: Решение : вычислим шаг разбиения:
Заполним расчётную таблицу:


Вычислим интеграл приближённо методом:
1) левых прямоугольников:
;
2) правых прямоугольников:
;
3) средних прямоугольников:
.

Вычислим интеграл более точно по формуле Ньютона-Лейбница:

и соответствующие абсолютные погрешности вычислений:

Ответ :



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...