Высшая степень окисления серы. Как рассчитать степень окисления элемента в соединении? Соединения серы: разновидности

Подгруппа халькогенов включает в себя серу - это второй из элементов, который способен образовывать большое число рудных месторождений. Сульфаты, сульфиды, оксиды прочие соединения серы являются очень широко распространенными, важными в промышленности и природе. Поэтому в данной статье мы рассмотрим, какими они бывают, что собой представляет сама сера, ее простое вещество.

Сера и ее характеристика

Данный элемент имеет следующее положение в периодической системе.

  1. Шестая группа, главная подгруппа.
  2. Третий малый период.
  3. Атомная масса - 32,064.
  4. Порядковый номер - 16, протонов и электронов столько же, нейтронов также 16.
  5. Относится к элементам-неметаллам.
  6. В формулах читается, как "эс", название элемента сера, латинское sulfur.

В природе встречаются четыре стабильных изотопа с массовыми числами 32,33,34 и 36. Данный элемент шестой по распространенности в природе. Относится к биогенным элементам, так как входит в состав важных органических молекул.

Электронное строение атома

Соединения серы обязаны своим разнообразием особенностям электронного строения атома. Оно выражается следующей конфигурационной формулой: 1s 2 2s 2 2p 6 3s 2 3p 4 .

Приведенный порядок отражает лишь стационарное состояние элемента. Однако известно, что если атому сообщить дополнительную энергию, то возможно расспаривание электронов на 3р и 3s-подуровне, с последующим очередным переходом на 3d, который остается свободным. В результате изменяется не только валентность атома, но и все возможные степени окисления. Их количество значительно увеличивается, равно, как и число различных веществ с участием серы.

Степени окисления серы в соединениях

Можно выделить несколько основных вариантов данного показателя. Для серы это:

Из них наиболее редко встречается S +2 , остальные рассредоточены повсеместно. От степени окисления серы в соединениях зависит химическая активность и окислительная способность всего вещества. Так, например, соединения с -2 - это сульфиды. В них рассматриваемый нами элемент типичный окислитель.

Чем выше значение степени окисления в соединении, тем более выраженными окисляющими способностями будет обладать вещество. В этом легко убедиться, если вспомнить две основные кислоты, которые образует сера:

  • H 2 SO 3 - сернистая;
  • H 2 SO 4 - серная.

Известно, что последняя гораздо более стабильное, сильное соединение, обладающее в высокой концентрации очень серьезной способностью к окислению.

Простое вещество

Как простое вещество сера представляет собой желтые красивые кристаллы ровной правильной удлиненной формы. Хотя это лишь одна из ее форм, потому что существует две основные этого вещества. Первая, моноклинная или ромбическая - это и есть желтое не способное растворяться в воде, а лишь в органических растворителях. Отличается хрупкостью и красивой формой структуры, представленной в виде короны. Температура плавления - около 110 0 С.

Если же не пропустить промежуточный момент при нагревании такой модификации, то можно вовремя обнаружить другое состояние - пластическую серу. Она представляет собой резиноподобный тягучий раствор коричневого цвета, который при дальнейшем нагревании или резком охлаждении снова переходит в ромбическую форму.

Если же говорить о химически чистой сере, полученной путем многократных фильтраций, то она представляет собой ярко-желтые небольшие кристаллики, хрупкие и совсем нерастворимые в воде. Способны возгораться при контакте с влагой и кислородом воздуха. Отличаются достаточно высокой химической активностью.

Нахождение в природе

В природе встречаются естественные месторождения, из которых добываются соединения серы и она сама как простое вещество. Кроме того, она содержится:

  • в минералах, рудах и горных породах;
  • в организме животных, растений и человека, так как входит в состав многих органических молекул;
  • в природных газах, нефти и угле;
  • в горючих сланцах и природных водах.

Можно назвать несколько самых богатых на серу минералов:

  • киноварь;
  • пирит;
  • сфалерит;
  • антимонит;
  • галенит и прочие.

Большая часть получаемой сегодня серы уходит на сернокислое производство. Еще одна часть используется для медицинских целей, сельского хозяйства, промышленных процессов производства веществ.

Физические свойства

Их можно описать несколькими пунктами.

  1. В воде нерастворима, в сероуглероде или скипидаре - хорошо растворяется.
  2. При длительном трении накапливает отрицательный заряд.
  3. Температура плавления составляет 110 0 С.
  4. Температура кипения 190 0 С.
  5. При достижении 300 0 С переходит в жидкость, легкоподвижная.
  6. Чистое вещество способно самовозгораться горючие свойства очень хорошие.
  7. Сама по себе запах практически не имеет, однако водородные соединения серы издают резкий запах тухлых яиц. Так же, как и некоторые газообразные бинарные представители.

Физические свойства рассматриваемого вещества были известны людям с древности. Именно за свою горючесть сера и получила такое название. В войнах использовали удушающие и ядовитые испарения, которые формируются при сгорании этого соединения, как оружие против врагов. Кроме того, кислоты с участием серы также всегда имели важное промышленное значение.

Химические свойства

Тема: "Сера и ее соединения" в школьном курсе химии занимает не один урок, а несколько. Ведь их очень много. Это объясняется химической активностью данного вещества. Она может проявлять как окислительные свойства с более сильными восстановителями (металлы, бор и прочие), так и восстановительные с большинством неметаллов.

Однако, несмотря на такую активность, только с фтором взаимодействие идет при обычных условиях. Для всех остальных требуется нагревание. Можно обозначить несколько категорий веществ, с которыми способна взаимодействовать сера:

  • металлы;
  • неметаллы;
  • щелочи;
  • сильные окисляющие кислоты - серная и азотная.

Соединения серы: разновидности

Разнообразие их будет объясняется неодинаковым значением степени окисления основного элемента - серы. Так, можно выделить несколько основных типов веществ по этому признаку:

  • соединения со степенью окисления -2;

Если же рассматривать классы, а не показатель валентности, то данный элемент образует такие молекулы, как:

  • кислоты;
  • оксиды;
  • соли;
  • бинарные соединения с неметаллами (сероуглерод, хлориды);
  • органические вещества.

Теперь рассмотрим основные из них и приведем примеры.

Вещества со степенью окисления -2

Соединения серы 2 - это ее конформации с металлами, а также с:

  • углеродом;
  • водородом;
  • фосфором;
  • кремнием;
  • мышьяком;
  • бором.

В этих случаях она выступает в роли окислителя, так как все перечисленные элементы более электроположительные. Рассмотрим особо важные из них.

  1. Сероуглерод - CS 2 . Прозрачная жидкость с характерным приятным ароматом эфира. Является токсичным, огнеопасным и взрывающимся веществом. Используется как растворитель, причем для большинства видов масел, жиров, неметаллов, нитрата серебра, смол и каучуков. Также является важной частью в производстве искусственного шелка - вискозы. В промышленности синтезируется в больших количествах.
  2. Сероводород или сульфид водорода - H 2 S. Газ, не имеющий окраски и сладкий на вкус. Запах резкий, крайне неприятный, напоминает тухлое яйцо. Ядовитый, угнетает дыхательный центр, так как связывает ионы меди. Поэтому при отравлении им наступает удушье и смерть. Широко используется в медицине, органических синтезах, производстве серной кислоты, а также в качестве энергетически выгодного сырья.
  3. Сульфиды металлов находят широкое применение в медицине, в сернокислом производстве, получении красок, изготовлении люминофоров и прочих местах. Общая формула - Me x S y .

Соединения со степенью окисления +4

Соединения серы 4 - это преимущественно оксид и соответствующие ему соли и кислота. Все они являются достаточно распространенными соединениями, имеющими определенное значение в промышленности. Могут выступать и как окислители, но чаще проявляют восстановительные свойства.

Формулы соединения серы со степенью окисления +4 следующие:

  • оксид - сернистый газ SO 2 ;
  • кислота - сернистая H 2 SO 3 ;
  • соли имеют общую формулу Me x (SO 3) y.

Одним из самых распространенных является или ангидрид. Он представляет собой бесцветное вещество, обладающее запахом горелой спички. В больших скоплениях формируется при извержении вулканов, его в этот момент легко определить по запаху.

Растворяется в воде с образование легко разлагающейся кислоты - сернистой. Ведет себя, как типичный образует соли, в которые входит в виде сульфит-иона SO 3 2- . Этот ангидрид - основной газ, который влияет на загрязнение окружающей атмосферы. Именно он влияет на образование В промышленности используется в сернокислом производстве.

Соединения, в которых у серы степень окисления +6

К таким относятся, прежде всего, серный ангидрид и серная кислота со своими солями:

  • сульфатами;
  • гидросульфатами.

Так как атом серы в них находится в высшей степени окисления, то и свойства этих соединений вполне объяснимы. Они сильные окислители.

Оксид серы (VI) - серный ангидрид - представляет собой летучую бесцветную жидкость. Характерная черта - сильная влагопоглотительная способность. На открытом воздухе дымит. При растворении в воде дает одну из сильнейших минеральных кислот - серную. Концентрированный раствор ее является тяжелой маслянистой слегка желтоватой жидкостью. Если же ангидрид растворить в серной кислоте, то получится особое соединение, называемое олеум. Он используется в промышленности при производстве кислоты.

Среди солей - сульфатов - большое значение имеет такие соединения, как:

  • гипс CaSO 4 ·2H 2 O;
  • барит BaSO 4 ;
  • мирабилит;
  • сульфат свинца и прочие.

Они находят применение в строительстве, химических синтезах, медицине, изготовлении оптических приборов и стекол и даже пищевой промышленности.

Гидросульфаты находят широкое применение в металлургии, где используются в качестве флюса. А также именно они помогают переводить многие сложные окислы в растворимые сульфатные формы, что используется в соответствующих производствах.

Изучение серы в школьном курсе химии

Когда лучше всего происходит усвоение учащимися знаний о том, что такое сера, каковы ее свойства, что представляет собой соединение серы? 9 класс - лучший период. Это уже не самое начало, когда для детей все новое и непонятное. Это середина в изучении химической науки, когда основы, заложенные ранее, помогут полностью вникнуть в тему. Поэтому на рассмотрение данных вопросов выделяется именно второе полугодие выпускного класса. При этом вся тема делится на несколько блоков, в которых отдельно стоит урок "Соединения серы. 9 класс".

Это объясняется их многочисленностью. Также отдельно рассматривается вопрос о производстве серной кислоты в промышленности. В целом на данную тему отводится в среднем 3 часа.

А вот серы выносятся на изучение только в 10 классе, когда рассматриваются вопросы органики. Также затрагиваются они и на биологии в старших классах. Ведь сера входит в состав таких органических молекул, как:

  • тиоспирты (тиолы);
  • белки (третичная структура, на которой происходит формирование дисульфидных мостиков);
  • тиоальдегиды;
  • тиофенолы;
  • тиоэфиры;
  • сульфоновые кислоты;
  • сульфоксиды и прочие.

Их выделяют в особую группу сераорганических соединений. Они имеют важное значение не только в биологических процессах живых существ, но и в промышленности. Например, сульфоновые кислоты - основа многих лекарственных препаратов (аспирин, сульфаниламид или стрептоцид).

Кроме того, сера постоянный компонент таких соединений, как некоторые:

  • аминокислоты;
  • ферменты;
  • витамины;
  • гормоны.

Соединения со степенью окисления –2. Наиболее важными соединениями серыв степени окисления -2 являются сероводород и сульфиды. Сероводород - H 2 S - бесцветный газ с характерным запахом гниющего белка, токсичен. Молекула сероводорода имеет угловую форму, валентный угол равен 92º. Образуется при непосредственном взаимодействии водорода с парами серы. В лаборатории сероводород получают действием сильных кислот на сульфиды металлов:

Na 2 S + 2HCl = 2NaCl + H 2 S­

Сероводород сильный восстановитель, окисляется даже оксидом серы(IV).

2H 2 S -2 + S +4 O 2 = 3S 0 + 2H 2 O

В зависимости от условий продуктами окисления сульфидов могут быть S, SO 2 или Н 2 SO 4:

2KMnO 4 + 5H 2 S -2 + 3H 2 SO 4 ® 2MnSO 4 + 5S + K 2 SO 4 + 8H 2 O;

H 2 S -2 + 4Br 2 + 4H 2 O = H 2 S +4 O 4 + 8HBr

На воздухе и в атмосфере кислорода сероводород горит, образуя серу или SO 2 в зависимости от условий.

В воде сероводород мало растворим (2,5 объема H 2 S на 1 объем воды) и ведет себя как слабая двухосновная кислота.

H 2 S H + + HS - ; К 1 = 1×10 -7

HS - H + + S 2- ; К 2 = 2,5×10 -13

Как двухосновная кислота сероводород образует два ряда солей: гидросульфиды (кислые соли) и сульфиды (средние соли). Например, NaНS - гидросульфид и Na 2 S - сульфид натрия.

Сульфиды большинства металлов в воде малорастворимы, окрашены в характерные цвета и отличаются по растворимости в кислотах: ZnS - белый, CdS - желто-оранжевый, MnS - телесного цвета, HgS, CuS, PbS, FeS - черные, SnS - бурый, SnS 2 - желтый. В воде хорошо растворимы сульфиды щелочных и щелочноземельных металлов, а также сульфид аммония. Растворимые сульфиды сильно гидролизованы.

Na 2 S + H 2 О NaHS + NaOH

Сульфиды, как и оксиды, бывают основными, кислотными и амфотерными. Основные свойства проявляют сульфиды щелочных и щелочноземельных металлов, кислотные свойства – сульфиды неметаллов. Различие химической природы сульфидов проявляется в реакциях гидролиза и при взаимодействии сульфидов разной природы между собой. Основные сульфиды при гидролизе образуют щелочную среду, кислотные гидролизуются необратимо с образованием соответствующих кислот:

SiS 2 + 3H 2 О = H 2 SiO 3 + 2H 2 S

Амфотерные сульфиды в воде нерастворимы, некоторые из них, например, сульфиды алюминия, железа(III), хрома(III), полностью гидролизуются:

Аl 2 S 3 + 3H 2 О = 2Al(OH) 3 + 3H 2 S

При взаимодействии основных и кислотных сульфидов образуются тиосоли. Отвечающие им тиокислоты обычно неустойчивы, их разложение аналогично разложению кислородсодержащих кислот.

СS 2 + Na 2 S = Na 2 CS 3 ; Na 2 CS 3 + H 2 SO 4 = H 2 CS 3 + Na 2 SO 4 ;

тиокарбонат натрия тиоугольная кислота

H 2 CS 3 = H 2 S + CS 2

Персульфидные соединения. Тенденция серы образовывать гомоцепи реализуется в персульфидах (полисульфидах), которые образуются при нагревании растворов сульфидов с серой:

Na 2 S + (n-1)S = Na 2 S n

Персульфиды встречаются в природе, например, широко распространенный минерал пирит FeS 2 представляет собой персульфид железа(II). При действии на растворы полисульфидов минеральных кислот выделены полисульфаны - нестойкие маслоподобные вещества состава H 2 S n , где n изменяется от 2 до 23.

Персульфиды подобно пероксидам проявляют как окислительные, так и восстановительные свойства, а также легко диспропорционируют.

Na 2 S 2 + SnS = SnS 2 + Na 2 S; 4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 ;

Na 2 S 2 -1 = S 0 + Na 2 S -2

Соединения со степенью окисления +4. Наибольшее значение имеет оксид серы(IV) - бесцветный газ с резким неприятным запахом горящей серы. Молекула SO 2 имеет угловое строение (угол OSO равен 119,5 °):

В промышленности SO 2 получают обжигом пирита или сжиганием серы. Лабораторный метод получения диоксида серы - действие сильных минеральных кислот на сульфиты.

Na 2 SO 3 + 2HCl = 2NaCl + SO 2 ­ + H 2 O

Оксид серы(IV) является энергичным восстановителем

S +4 O 2 + Cl 2 = S +6 O 2 Cl 2 ,

но, взаимодействуя с сильными восстановителями, может выступать в роли окислителя:

2H 2 S + S +4 O 2 = 3S 0 + 2H 2 O

Диоксид серы хорошо растворим в воде (40 объемов на 1 объем воды). В водном растворе гидратированные молекулы SO 2 частично диссоциируют с образованием катиона водорода:

SO 2 ×H 2 O H + + HSO 3 - 2H + + SO 3 2-

По этой причине водный раствор диоксида серы часто рассматривают как раствор сернистой кислоты - H 2 SO 3 , хотя реально это соединение, по-видимому, не существует. Тем не менее, соли сернистой кислоты устойчивы и могут быть выделены в индивидуальном виде:

SO 2 + NaOH = NaHSO 3 ; SO 2 + 2NaOH = Na 2 SO 3

гидросульфит натрия сульфит натрия

Сульфит-анион имеет структуру тригональной пирамиды с атомом серы в вершине. Неподеленная пара атома серы пространственно направлена, поэтому анион – активный донор электронной пары, легко переходит в тетраэдрический HSO 3 - и существует в виде двух таутомерных форм:

Сульфиты щелочных металлов хорошо растворимы в воде, в значительной мере гидролизованы:

SO 3 2- + H 2 О HSO 3 - + ОН -

Сильные восстановители, при хранении их растворов постепенно окисляются кислородом воздуха, при нагревании диспропорционируют:

2Na 2 S +4 O 3 + О 2 = 2Na 2 S +6 O 4 ; 4Na 2 S +4 O 3 = Na 2 S -2 + 3Na 2 S +6 O 4

Степень окисления +4 проявляется в галогенидах и оксогалогенидах:

SF 4 SOF 2 SOCl 2 SOBr 2

фторид серы(IV) оксофторид серы(IV) оксохлорид серы(IV) оксобромид серы(IV)

Во всех приведенных молекулах на атоме серы локализована неподеленная электронная пара, SF 4 имеет форму искаженного тетраэдра (бисфеноид), SOHal 2 – тригональной пирамиды.

Фторид серы(IV) - бесцветный газ. Оксохлорид серы(IV) (хлористый тионил, тионилхлорид) - бесцветная жидкость с резким запахом. Эти вещества широко применяются в органическом синтезе для получения фтор- и хлорорганических соединений.

Соединения данного типа имеют кислотный характер о чем свидетельствует их отношение к воде:

SF 4 + 3H 2 О = H 2 SO 3 + 4HF; SOCl 2 + 2H 2 О = H 2 SO 3 + 2HCl.

Соединения со степенью окисления +6:

SF 6 SO 2 Cl 2 SO 3 H 2 SO 4 2-

фторид серы(VI) диоксодихлорид серы(VI) оксид серы(VI) серная кислота сульфат-анион

Гксафторид серы - бесцветный инертный газ, применяется в качестве газообразного диэлектрика. Молекула SF 6 высокосимметрична, имеет геометрию октаэдра. SO 2 Cl 2 (хлористый сульфурил, сульфурилхлорид) - бесцветная жидкость, дымящаяся на воздухе вследствие гидролиза, применяется в органическом синтезе как хлорирующий реагент:

SO 2 Cl 2 + 2H 2 О = H 2 SO 4 + 2HCl

Оксид серы(VI) - бесцветная жидкость (т.кип. 44,8 °С, т.пл. 16,8 °С). В газообразном состоянии SO 3 имеет мономерное строение, в жидком - преимущественно существует в виде циклических тримерных молекул, в твердом состоянии - полимер.

В промышленности триоксид серы получают каталитическим окислением ее диоксида:

2SO 2 + O 2 ¾® 2SO 3

В лаборатории SO 3 можно получить перегонкой олеума - раствора триоксида серы в серной кислоте.

SO 3 - типичный кислотный оксид, энергично присоединяющий воду и другие протонсодержащие реагенты:

SO 3 + H 2 O = H 2 SO 4 ; SO 3 + HF = HOSO 2 F

фторсерная (фторсульфоновая)

кислота

Серная кислота - H 2 SO 4 - бесцветная маслянистая жидкость, т.пл. 10,4 °С, т.кип. 340 °С (с разложением). Неограниченно растворима в воде, сильная двухосновная кислота. Концентрирован­ная серная кислота - энергичный окислитель, особенно при нагревании. Она окисляет неметаллы и металлы, стоящие в ряду стандартных электродных потенциалов правее водорода:

C + 2H 2 SO 4 = CO 2 + 2SO 2 + 2H 2 O; Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O

Взаимодействуя с более активными металлами, серная кислота может восстанавливаться до серы или сероводорода, например,

4Zn + 5H 2 SO 4 (конц.) = 4ZnSO 4 + H 2 S­ + 4H 2 O

Холодная концентрированная серная кислота пассивирует многие металлы (железо, свинец, алюминий, хром) за счет образования на их поверхности плотной оксидной или солевой пленки.

Серная кислота образует два ряда солей: содержащие сульфат-анион - SO 4 2- (средние соли) и содержащие гидросульфат-анион - HSO 4 - (кислые соли). Сульфаты в основном хорошо растворимы в воде, плохорастворимы BaSO 4 , SrSO 4 , PbSO 4 , Cu 2 SO 4 . Образование белого мелкокристаллического осадка сульфата бария при действии на раствор хлорида бария является качественной реакцией на сульфат-анион. Эта реакция применяется и для количественного определения серы.

Ва 2+ + SO 4 2- = ВаSO 4 ¯

Важнейшими солями серной кислоты являются: Na 2 SO 4 ×10H 2 O - мирабилит, глауберова соль - применяется при производстве соды и стекла; MgSO 4 ×7H 2 O - горькая английская соль - применяется в медицине как слабительное, для отделки тканей, при дублении кожи; CaSO 4 ×2H 2 O - гипс - применяется в медицине и строительстве; CaSO 4 ×1/2H 2 O - алебастр - применяется как строительный материал; CuSO 4 ×5H 2 O - медный купорос - используется в сельском хозяйстве для защиты растений от грибковых заболеваний; FeSO 4 ×7H 2 O - железный купорос - применяется в сельском хозяйстве в качестве микроудобрения и при очистке воды в качестве коагулятора; K 2 SO 4 ×Al 2 (SO 4) 3 ×24H 2 O - алюмокалиевые квасцы - применяются для дубления кож.

Синтез серной кислоты в промышленности осуществляется контактным методом, первой стадией которого является обжиг пирита:

4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2

2SO 2 + O 2 = 2SO 3

При растворении SO 3 в концентрированной серной кислоте образуется целая серия полисерных кислот. Смесь H 2 SO 4 , H 2 S 2 O 7 , H 2 S 3 O 10 , H 2 S 4 O 13 – густая маслянистая, дымящая на воздухе жидкость – олеум. При разбавлении олеума водой связи S-O-S разрываются и полисерные кислоты превращаются в серную кислоту необходимой концентрации.

Пиросерная (двусерная) кислота - H 2 S 2 O 7:

Бесцветные легкоплавкие кристаллы, выделяющиеся из олеума.

SO 3 + H 2 SO 4 = H 2 S 2 O 7

Соли пиросерной кислоты - пиросульфаты (дисульфаты) - получают термическим разложением гидросульфатов:

KHSO 4 = K 2 S 2 O 7 + H 2 O

Тиосерная кислота - H 2 S 2 O 3 – существует в двух таутомерных формах:

В водных растворах неустойчива и распадается с выделением серы и SO 2:

H 2 S 2 O 3 = S¯ + SO 2 ­ + H 2 O

Соли тиосерной кислоты - тиосульфаты - устойчивы и могут быть получены кипячением серы с водными растворами сульфитов:

Na 2 SO 3 + S = Na 2 S 2 O 3

Свойства тиосульфатов определяется присутствием атомов серы в двух разных степенях окисления –2 и +6. Так наличие серы в степени окисления –2 обусловливает восстановительные свойства:

Na 2 SO 3 S -2 + Cl 2 + H 2 O = Na 2 S +6 O 4 + S 0 + 2HCl

Тиосульфат натрия широко применяется в фотоделе как закрепитель и в аналитической химии для количественного определения иода и веществ, выделяющих иод (иодометрический анализ).

Политионовые кислоты . Тетраэдрические структурные звенья в полисерных кислотах могут объединяться через атомы серы, при этом получаются соединения общей формулы H 2 S x O 6 , в которой x = 2 – 6.

Политионовые кислоты неустойчивы, но образуют устойчивые соли - политионаты. Например. тетратионат натрия образуется при действии иода на водный раствор тиосульфата натрия:

Na 2 S 2 O 3 + I 2 = Na 2 S 4 O 6 + 2NaI

Пероксосерные (надсерные) кислоты . Роль мостика, объединяющего структурные единицы полисерных кислот, может играть пероксидная группировка. Эта же группа входит в состав мононадсерной кислоты:

H 2 SO 5 - мононадсерная кислота H 2 S 2 O 8 - пероксодисерная кислота

(кислота Каро)

Пероксосерные кислоты гидролизуются с образованием перекиси водорода:

H 2 SO 5 + H 2 O = H 2 SO 4 + H 2 O 2 ; H 2 S 2 O 8 + 2H 2 O = 2H 2 SO 4 + H 2 O 2 .

Пероксодисерная кислота получается при электролизе водного раствора серной кислоты:

2HSO 4 - - 2e - = H 2 S 2 O 8

Образует соли - персульфаты. Персульфат аммония - (NH 4) 2 S 2 O 8 - применяется в лабораторных условиях как окислитель.

Степень окисления - условный заряд атома в соединении, вычисленный исходя из предположения, что оно состоит только из ионов. При определении этого понятия условно полагают, что связующие (валентные) электроны переходят к более электроотрицательным атомам (см. Электроотрицательность), а потому соединения состоят как бы из положительно и отрицательно заряженных ионов. Степень окисления может иметь нулевое, отрицательное и положительное значения, которые обычно ставятся над символом элемента сверху: .

Нулевое значение степени окисления приписывается атомам элементов, находящихся в свободном состоянии, например: . Отрицательное значение степени окисления имеют те атомы, в сторону которых смещается связующее электронное облако (электронная пара). У фтора во всех его соединениях она равна -1. Положительную степень окисления имеют атомы, отдающие валентные электроны другим атомам. Например, у щелочных и щелочноземельных металлов она соответственно равна и В простых ионах, подобных , К , она равна заряду иона. В большинстве соединений степень окисления атомов водорода равна , но в гидридах металлов (соединениях их с водородом) - и других - она равна -1. Для кислорода характерна степень окисления -2, но, к примеру, в соединении с фтором она будет , а в перекисных соединениях и др.) -1. В некоторых случаях эта величина может быть выражена и дробным числом: для железа в оксиде железа (II, III) она равна .

Алгебраическая сумма степеней окисления атомов в соединении равна нулю, а в сложном ионе - заряду иона. С помощью этого правила вычислим, например, степень окисления фосфора в ортофосфорной кислоте . Обозначив ее через и умножив степень окисления для водорода и кислорода на число их атомов в соединении, получим уравнение: откуда . Аналогично вычисляем степень окисления хрома в ионе - .

В соединениях степень окисления марганца будет соответственно .

Высшая степень окисления - это наибольшее положительное ее значение. Для большинства элементов она равна номеру группы в периодической системе и является важной количественной характеристикой элемента в его соединениях. Наименьшее значение степени окисления элемента, которое встречается в его соединениях, принято называть низшей степенью окисления; все остальные - промежуточными. Так, для серы высшая степень окисления равна , низшая -2, промежуточная .

Изменение степеней окисления элементов по группам периодической системы отражает периодичность изменения их химических свойств с ростом порядкового номера.

Понятие степени окисления элементов используется при классификации веществ, описании их свойств, составлении формул соединений и их международных названий. Но особенно широко оно применяется при изучении окислительно-восстановительных реакций. Понятие «степень окисления» часто используют в неорганической химии вместо понятия «валентность» (см. Валентность).

Валентность является сложным понятием. Этот термин претерпел значительную трансформацию одновременно с развитием теории химической связи. Первоначально валентностью называли способность атома присоединять или замещать определённое число других атомов или атомных групп с образованием химической связи.

Количественной мерой валентности атома элемента считали число атомов водорода или кислорода (данные элементы считали соответственно одно- и двухвалентными), которые элемент присоединяет, образуя гидрид формулы ЭH x или оксид формулы Э n O m .

Так, валентность атома азота в молекуле аммиака NH 3 равна трём, а атома серы в молекуле H 2 S равна двум, поскольку валентность атома водорода равна одному.

В соединениях Na 2 O, BaO, Al 2 O 3 , SiO 2 валентности натрия, бария и кремния соответственно равны 1, 2, 3 и 4.

Понятие о валентности было введено в химию до того, как стало известно строение атома, а именно в 1853 году английским химиком Франклендом. В настоящее время установлено, что валентность элемента тесно связана с числом внешних электронов атомов, поскольку электроны внутренних оболочек атомов не участвуют в образовании химических связей.

В электронной теории ковалентной связи считают, что валентность атома определяется числом его неспаренных электронов в основном или возбуждённом состоянии, участвующих в образовании общих электронных пар с электронами других атомов.

Для некоторых элементов валентность является величиной постоянной. Так, натрий или калий во всех соединениях одновалентны, кальций, магний и цинк - двухвалентны, алюминий - трёхвалентен и т. д. Но большинство химических элементов проявляют переменную валентность, которая зависит от природы элемента - партнёра и условий протекания процесса. Так, железо может образовывать с хлором два соединения - FeCl 2 и FeCl 3 , в которых валентность железа равна соответственно 2 и 3.

Степень окисления - понятие, характеризующее состояние элемента в химическом соединении и его поведение в окислительно-восстановительных реакциях; численно степень окисления равна формальному заряду, который можно приписать элементу, исходя из предположения, что все электроны каждой его связи перешли к более электроотрицательному атому.

Электроотрицательность - мера способности атома к приобретению отрицательного заряда при образовании химической связи или способность атома в молекуле притягивать к себе валентные электроны, участвующие в образовании химической связи. Электроотрицательность не является абсолютной величиной и рассчитывается различными методами. Поэтому приводимые в разных учебниках и справочниках значения электроотрицательности могут отличаться.

В таблице 2 приведена электроотрицательность некоторых химических элементов по шкале Сандерсона, а в таблице 3 - электроотрицательность элементов по шкале Полинга.

Значение электроотрицательности приведено под символом соответствующего элемента. Чем больше численное значение электроотрицательности атома, тем более электроотрицательным является элемент. Наиболее электроотрицательным является атом фтора, наименее электроотрицательным - атом рубидия. В молекуле, образованной атомами двух разных химических элементов, формальный отрицательный заряд будет у атома, численное значение электроотрицательности у которого будет выше. Так, в молекуле диоксида серы SO 2 электроотрицательность атома серы равна 2,5, а значение электроотрицательности атома кислорода больше - 3,5. Следовательно, отрицательный заряд будет на атоме кислорода, а положительный - на атоме серы.

В молекуле аммиака NH 3 значение электроотрицательности атома азота равно 3,0, а водорода - 2,1. Поэтому отрицательный заряд будет у атома азота, а положительный - у атома водорода.

Следует чётко знать общие тенденции изменения электроотрицательности. Поскольку атом любого химического элемента стремится приобрести устойчивую конфигурацию внешнего электронного слоя - октетную оболочку инертного газа, то электроотрицательность элементов в периоде увеличивается, а в группе электроотрицательность в общем случае уменьшается с увеличением атомного номера элемента. Поэтому, например, сера более электроотрицательна по сравнению с фосфором и кремнием, а углерод более электроотрицателен по сравнению с кремнием.

При составлении формул соединений, состоящих из двух неметаллов, более электроотрицательный из них всегда ставят правее: PCl 3 , NO 2 . Из этого правила есть некоторые исторически сложившиеся исключения, например NH 3 , PH 3 и т.д.

Степень окисления обычно обозначают арабской цифрой (со знаком перед цифрой), расположенной над символом элемента, например:

Для определения степени окисления атомов в химических соединениях руководствуются следующими правилами:

  1. Степень окисления элементов в простых веществах равна нулю.
  2. Алгебраическая сумма степеней окисления атомов в молекуле равна нулю.
  3. Кислород в соединениях проявляет главным образом степень окисления, равную –2 (во фториде кислорода OF 2 + 2, в пероксидах металлов типа M 2 O 2 –1).
  4. Водород в соединениях проявляет степень окисления + 1, за исключением гидридов активных металлов, например, щелочных или щёлочноземельных, в которых степень окисления водорода равна – 1.
  5. У одноатомных ионов степень окисления равна заряду иона, например: K + - +1, Ba 2+ - +2, Br – - –1, S 2– - –2 и т. д.
  6. В соединениях с ковалентной полярной связью степень окисления более электроотрицательного атома имеет знак минус, а менее электроотрицательного - знак плюс.
  7. В органических соединениях степень окисления водорода равна +1.

Проиллюстрируем вышеприведённые правила несколькими примерами.

Пример 1. Определить степень окисления элементов в оксидах калия K 2 O, селена SeO 3 и железа Fe 3 O 4 .

Оксид калия K 2 O. Алгебраическая сумма степеней окисления атомов в молекуле равна нулю. Степень окисления кислорода в оксидах равна –2. Обозначим степень окисления калия в его оксиде за n, тогда 2n + (–2) = 0 или 2n = 2, отсюда n = +1, т. е. степень окисления калия равна +1.

Оксид селена SeO 3 . Молекула SeO 3 электронейтральна. Суммарный отрицательный заряд трёх атомов кислорода составляет –2 × 3 = –6. Следовательно, чтобы уравнять этот отрицательный заряд до ноля, степень окисления селена должна быть равна +6.

Молекула Fe 3 O 4 электронейтральна. Суммарный отрицательный заряд четырёх атомов кислорода составляет –2 × 4 = –8. Чтобы уравнять этот отрицательный заряд, суммарный положительный заряд на трёх атомах железа должен быть равен +8. Следовательно, на одном атоме железа должен быть заряд 8/3 = +8/3.

Следует подчеркнуть, что степень окисления элемента в соединении может быть дробным числом. Такие дробные степени окисления не имеют смысла при объяснении связи в химическом соединении, но могут быть использованы для составления уравнений окислительно-восстановительных реакций.

Пример 2. Определить степень окисления элементов в соединениях NaClO 3 , K 2 Cr 2 O 7 .

Молекула NaClO 3 электронейтральна. Степень окисления натрия равна +1, степень окисления кислорода равна –2. Обозначим степень окисления хлора за n, тогда +1 + n + 3 × (–2) = 0, или +1 + n – 6 = 0, или n – 5 = 0, отсюда n = +5. Таким образом, степень окисления хлора равна +5.

Молекула K 2 Cr 2 O 7 электронейтральна. Степень окисления калия равна +1, степень окисления кислорода равна –2. Обозначим степень окисления хрома за n, тогда 2 × 1 + 2n + 7 × (–2) = 0, или +2 + 2n – 14 = 0, или 2n – 12 = 0, 2n = 12, отсюда n = +6. Таким образом, степень окисления хрома равна +6.

Пример 3. Определим степени окисления серы в сульфат-ионе SO 4 2– . Ион SO 4 2– имеет заряд –2. Степень окисления кислорода равна –2. Обозначим степень окисления серы за n, тогда n + 4 × (–2) = –2, или n – 8 = –2, или n = –2 – (–8), отсюда n = +6. Таким образом, степень окисления серы равна +6.

Следует помнить, что степень окисления иногда не равна валентности данного элемента.

Например, степени окисления атома азота в молекуле аммиака NH 3 или в молекуле гидразина N 2 H 4 равны –3 и –2 соответственно, тогда как валентность азота в этих соединениях равна трём.

Максимальная положительная степень окисления для элементов главных подгрупп, как правило, равна номеру группы (исключения: кислород, фтор и некоторые другие элементы).

Максимальная отрицательная степень окисления равна 8 - номер группы.

Тренировочные задания

1. В каком соединении степень окисления фосфора равна +5?

1) HPO 3
2) H 3 PO 3
3) Li 3 P
4) AlP

2. В каком соединении степень окисления фосфора равна –3?

1) HPO 3
2) H 3 PO 3
3) Li 3 PO 4
4) AlP

3. В каком соединении степень окисления азота равна +4?

1) HNO 2
2) N 2 O 4
3) N 2 O
4) HNO 3

4. В каком соединении степень окисления азота равна –2?

1) NH 3
2) N 2 H 4
3) N 2 O 5
4) HNO 2

5. В каком соединении степень окисления серы равна +2?

1) Na 2 SO 3
2) SO 2
3) SCl 2
4) H 2 SO 4

6. В каком соединении степень окисления серы равна +6?

1) Na 2 SO 3
2) SO 3
3) SCl 2
4) H 2 SO 3

7. В веществах, формулы которых CrBr 2 , K 2 Cr 2 O 7 , Na 2 CrO 4 , степень окисления хрома соответственно равна

1) +2, +3, +6
2) +3, +6, +6
3) +2, +6, +5
4) +2, +6, +6

8. Минимальная отрицательная степень окисления химического элемента, как правило, равна

1) номеру периода
3) числу электронов, недостающих до завершения внешнего электронного слоя

9. Максимальная положительная степень окисления химических элементов, расположенных в главных подгруппах, как правило, равна

1) номеру периода
2) порядковому номеру химического элемента
3) номеру группы
4) общему числу электронов в элементе

10. Фосфор проявляет максимальную положительную степень окисления в соединении

1) HPO 3
2) H 3 PO 3
3) Na 3 P
4) Ca 3 P 2

11. Фосфор проявляет минимальную степень окисления в соединении

1) HPO 3
2) H 3 PO 3
3) Na 3 PO 4
4) Ca 3 P 2

12. Атомы азота в нитрите аммония, находящиеся в составе катиона и аниона, проявляют степени окисления соответственно

1) –3, +3
2) –3, +5
3) +3, –3
4) +3, +5

13. Валентность и степень окисления кислорода в перекиси водорода соответственно равны

1) II, –2
2) II, –1
3) I, +4
4) III, –2

14. Валентность и степень окисления серы в пирите FeS2 соответственно равны

1) IV, +5
2) II, –1
3) II, +6
4) III, +4

15. Валентность и степень окисления атома азота в бромиде аммония соответственно равны

1) IV, –3
2) III, +3
3) IV, –2
4) III, +4

16. Атом углерода проявляет отрицательную степень окисления в соединении с

1) кислородом
2) натрием
3) фтором
4) хлором

17. Постоянную степень окисления в своих соединениях проявляет

1) стронций
2) железо
3) сера
4) хлор

18. Степень окисления +3 в своих соединениях могут проявлять

1) хлор и фтор
2) фосфор и хлор
3) углерод и сера
4) кислород и водород

19. Степень окисления +4 в своих соединениях могут проявлять

1) углерод и водород
2) углерод и фосфор
3) углерод и кальций
4) азот и сера

20. Степень окисления, равную номеру группы, в своих соединениях проявляет

1) хлор
2) железо
3) кислород
4) фтор



Последние материалы раздела:

SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение
SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко...

Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи
Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи

Учебно-методический комплект "Вертоград" включает Конспекты учителя, Рабочие Тетради и Сборники тестов по следующим предметам:1. ХРАМОВЕДЕНИЕ...

Перемещение Определить величину перемещения тела
Перемещение Определить величину перемещения тела

Когда мы говорим о перемещении, важно помнить, что перемещение зависит от системы отсчета, в которой рассматривается движение. Обратите внимание...