Являются ли системы векторов линейно зависимыми. Примеры решения задач на линейную зависимость или линейную независимость векторов

Пусть L - произвольное линейное пространство, a i Î L, - его элементы (векторы).

Определение 3.3.1. Выражение , где , - произвольные вещественные числа, называется линейной комбинацией векторов a 1 , a 2 ,…, a n .

Если вектор р = , то говорят, что р разложен по векторам a 1 , a 2 ,…, a n .

Определение 3.3.2. Линейная комбинация векторов называется нетривиальной , если среди чисел есть хотя бы одно отличное от нуля. В противном случае, линейная комбинация называется тривиальной .

Определение 3 .3.3 . Векторы a 1 , a 2 ,…, a n называются линейно зависимыми, если существуют их нетривиальная линейная комбинация, такая что

= 0 .

Определение 3 .3.4. Векторы a 1 ,a 2 ,…, a n называются линейно независимыми, если равенство = 0 возможно лишь в случае, когда все числа l 1, l 2,…, l n одновременно равны нулю.

Отметим, что всякий ненулевой элемент a 1 можно рассматривать как линейно независимую систему, ибо равенство l a 1 = 0 возможно лишь при условии l = 0.

Теорема 3.3.1. Необходимым и достаточным условием линейной зависимости a 1 , a 2 ,…, a n является возможность разложения, по крайней мере, одного из этих элементов по остальным.

Доказательство. Необходимость. Пусть элементы a 1 , a 2 ,…, a n линейно зависимы. Это означает, что = 0 , причем хотя бы одно из чисел l 1, l 2,…, l n отлично от нуля. Пусть для определенности l 1 ¹ 0. Тогда

т. е. элемент a 1 разложен по элементам a 2 , a 3 , …, a n .

Достаточность. Пусть элемент a 1 разложен по элементам a 2 , a 3 , …, a n , т. е. a 1 = . Тогда = 0 , следовательно, существует нетривиальная линейная комбинация векторов a 1 , a 2 ,…, a n , равная 0 , поэтому они являются линейно зависимыми.

Теорема 3.3.2 . Если хотя бы один из элементов a 1 , a 2 ,…, a n нулевой, то эти векторы линейно зависимы.

Доказательство. Пусть a n = 0 , тогда = 0 , что и означает линейную зависимость указанных элементов.

Теорема 3.3.3 . Если среди n векторов какие-либо p (p < n) векторов линейно зависимы, то и все n элементов линейно зависимы.

Доказательство. Пусть для определенности элементы a 1 , a 2 ,…, a p линейно зависимы. Это означает, что существует такая нетривиальная линейная комбинация, что = 0 . Указанное равенство сохранится, если добавить к обеим его частям элемент . Тогда + = 0 , при этом хотя бы одно из чисел l 1, l 2,…, lp отлично от нуля. Следовательно, векторы a 1 , a 2 ,…, a n являются линейно зависимыми.

Следствие 3.3.1. Если n элементов линейно независимы, то любые k из них линейно независимы (k < n).

Теорема 3.3.4 . Если векторы a 1 , a 2 ,…, a n - 1 линейно независимы, а элементы a 1 , a 2 ,…, a n - 1 , a n линейно зависимы, то вектор a n можно разложить по векторам a 1 , a 2 ,…, a n - 1 .



Доказательство. Так как по условию a 1 , a 2 ,…, a n - 1 , a n линейно зависимы, то существует их нетривиальная линейная комбинация = 0 , причем (в противном случае, окажутся линейно зависимыми векторы a 1 , a 2 ,…, a n - 1). Но тогда вектор

,

что и требовалось доказать.

a 1 = { 3, 5, 1 , 4 }, a 2 = { –2, 1, -5 , -7 }, a 3 = { -1, –2, 0, –1 }.

Р е ш е н и е. Ищем общее решение системы уравнений

a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

методом Гаусса. Для этого запишем эту однородную систему по координатам:

Матрица системы

Разрешенная система имеет вид: (r A = 2, n = 3). Система совместна и неопределена. Ее общее решение (x 2 – свободная переменная): x 3 = 13x 2 ; 3x 1 – 2x 2 – 13x 2 = 0 => x 1 = 5x 2 => X o = . Наличие ненулевого частного решения, например, , говорит о том, векторы a 1 , a 2 , a 3 линейно зависимы.

Пример 2.

Выяснить, является ли данная система векторов линейно зависимой или линейно независимой:

1. a 1 = { -20, -15, - 4 }, a 2 = { –7, -2, -4 }, a 3 = { 3, –1, –2 }.

Р е ш е н и е. Рассмотрим однородную систему уравнений a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

или в развернутом виде (по координатам)

Система однородна. Если она невырождена, то она имеет единственное решение. В случае однородной системы – нулевое (тривиальное) решение. Значит, в этом случае система векторов независима. Если же система вырождена, то она имеет ненулевые решения и, следовательно, она зависима.

Проверяем систему на вырожденность:

= –80 – 28 + 180 – 48 + 80 – 210 = – 106 ≠ 0.

Система невырождена и, т.о., векторы a 1 , a 2 , a 3 линейно независимы.

Задания. Выяснить, является ли данная система векторов линейно зависимой или линейно независимой:

1. a 1 = { -4, 2, 8 }, a 2 = { 14, -7, -28 }.

2. a 1 = { 2, -1, 3, 5 }, a 2 = { 6, -3, 3, 15 }.

3. a 1 = { -7, 5, 19 }, a 2 = { -5, 7 , -7 }, a 3 = { -8, 7, 14 }.

4. a 1 = { 1, 2, -2 }, a 2 = { 0, -1, 4 }, a 3 = { 2, -3, 3 }.

5. a 1 = { 1, 8 , -1 }, a 2 = { -2, 3, 3 }, a 3 = { 4, -11, 9 }.

6. a 1 = { 1, 2 , 3 }, a 2 = { 2, -1 , 1 }, a 3 = { 1, 3, 4 }.

7. a 1 = {0, 1, 1 , 0}, a 2 = {1, 1 , 3, 1}, a 3 = {1, 3, 5, 1}, a 4 = {0, 1, 1, -2}.

8. a 1 = {-1, 7, 1 , -2}, a 2 = {2, 3 , 2, 1}, a 3 = {4, 4, 4, -3}, a 4 = {1, 6, -11, 1}.

9. Доказать, что система векторов будет линейно зависимой, если она содержит:

а) два равных вектора;

б) два пропорциональных вектора.

Введенные нами линейные операции над векторами дают возможность составлять различные выражения для векторных величин и преобразовывать их при помощи установленных для этих операций свойств.

Исходя из заданного набора векторов а 1 , ..., а n , можно составить выражение вида

где а 1 , ..., а n - произвольные действительные числа. Это выражение называют линейной комбинацией векторов а 1 , ..., а n . Числа α i , i = 1, n , представляют собой коэффициенты линейной комбинации . Набор векторов называют еще системой векторов .

В связи с введенным понятием линейной комбинации векторов возникает задача описания множества векторов, которые могут быть записаны в виде линейной комбинации данной системы векторов а 1 , ..., а n . Кроме того, закономерны вопросы об условиях, при которых существует представление вектора в виде линейной комбинации, и о единственности такого представления.

Определение 2.1. Векторы а 1 , ..., а n называют линейно зависимыми , если существует такой набор коэффициентов α 1 , ... , α n , что

α 1 a 1 + ... + α n а n = 0 (2.2)

и при этом хотя бы один из этих коэффициентов ненулевой. Если указанного набора коэффициентов не существует, то векторы называют линейно независимыми .

Если α 1 = ... = α n = 0, то, очевидно, α 1 а 1 + ... + α n а n = 0. Имея это в виду, можем сказать так: векторы а 1 , ..., а n линейно независимы, если из равенства (2.2) вытекает, что все коэффициенты α 1 , ... , α n равны нулю.

Следующая теорема поясняет, почему новое понятие названо термином "зависимость" (или "независимость"), и дает простой критерий линейной зависимости.

Теорема 2.1. Для того чтобы векторы а 1 , ..., а n , n > 1, были линейно зависимы, необходимо и достаточно, чтобы один из них являлся линейной комбинацией остальных.

◄ Необходимость. Предположим, что векторы а 1 , ..., а n линейно зависимы. Согласно определению 2.1 линейной зависимости, в равенстве (2.2) слева есть хотя бы один ненулевой коэффициент, например α 1 . Оставив первое слагаемое в левой части равенства, перенесем остальные в правую часть, меняя, как обычно, у них знаки. Разделив полученное равенство на α 1 , получим

a 1 =-α 2 /α 1 ⋅ a 2 - ... - α n /α 1 ⋅ a n

т.е. представление вектора a 1 в виде линейной комбинации остальных векторов а 2 , ..., а n .

Достаточность. Пусть, например, первый вектор а 1 можно представить в виде линейной комбинации остальных векторов: а 1 = β 2 а 2 + ... + β n а n . Перенеся все слагаемые из правой части в левую, получим а 1 - β 2 а 2 - ... - β n а n = 0, т.е. линейную комбинацию векторов а 1 , ..., а n с коэффициентами α 1 = 1, α 2 = - β 2 , ..., α n = - β n , равную нулевому вектору. В этой линейной комбинации не все коэффициенты равны нулю. Согласно определению 2.1, векторы а 1 , ..., а n линейно зависимы.

Определение и критерий линейной зависимости сформулированы так, что подразумевают наличие двух или более векторов. Однако можно также говорить о линейной зависимости одного вектора. Чтобы реализовать такую возможность, нужно вместо "векторы линейно зависимы" говорить "система векторов линейно зависима". Нетрудно убедиться, что выражение "система из одного вектора линейно зависима" означает, что этот единственный вектор является нулевым (в линейной комбинации имеется только один коэффициент, и он не должен равняться нулю).

Понятие линейной зависимости имеет простую геометрическую интерпретацию. Эту ин-терпретацию проясняют следующие три утверждения.

Теорема 2.2. Два вектора линейно зависимы тогда и только тогда, когда они коллинеарны.

◄ Если векторы а и b линейно зависимы, то один из них, например а, выражается через другой, т.е. а = λb для некоторого действительного числа λ. Согласно определению 1.7 произведения вектора на число, векторы а и b являются коллинеарными.

Пусть теперь векторы а и b коллинеарны. Если они оба нулевые, то очевидно, что они линейно зависимы, так как любая их линейная комбинация равна нулевому вектору. Пусть один из этих векторов не равен 0, например вектор b. Обозначим через λ отношение длин векторов: λ = |а|/|b|. Коллинеарные векторы могут быть однонаправленными или противоположно направленными . В последнем случае у λ изменим знак. Тогда, проверяя определение 1.7, убеждаемся, что а = λb. Согласно теореме 2.1, векторы а и b линейно зависимы.

Замечание 2.1. В случае двух векторов, учитывая критерий линейной зависимости, доказанную теорему можно переформулировать так: два вектора коллинеарны тогда и только тогда, когда один из них представляется как произведение другого на число. Это является удобным критерием коллинеарности двух векторов.

Теорема 2.3. Три вектора линейно зависимы тогда и только тогда, когда они компланарны .

◄ Если три вектора а, Ь, с линейно зависимы, то, согласно теореме 2.1, один из них, например а, является линейной комбинацией остальных: а = βb + γс. Совместим начала векторов b и с в точке A. Тогда векторы βb, γс будут иметь общее начало в точке A и по правилу параллелограмма их сумма, т.е. вектор а, будет представлять собой вектор с началом A и концом , являющимся вершиной параллелограмма, построенного на векторах-слагаемых. Таким образом, все векторы лежат в одной плоскости, т. е. компланарны.

Пусть векторы а, b, с компланарны. Если один из этих векторов является нулевым, то очевидно, что он будет линейной комбинацией остальных. Достаточно все коэффициенты линейной комбинации взять равными нулю. Поэтому можно считать, что все три вектора не являются нулевыми. Совместим начала этих векторов в общей точке O. Пусть их концами будут соот-ветственно точки A, B, C (рис. 2.1). Через точку C проведем прямые, параллельные прямым, проходящим через пары точек O, A и O, B. Обозначив точки пересечения через A" и B", получим параллелограмм OA"CB", следовательно, OC" = OA" + OB" . Вектор OA" и ненулевой вектор а= OA коллинеарны, а потому первый из них может быть получен умножением второго на действительное число α:OA" = αOA . Аналогично OB" = βOB , β ∈ R. В результате получаем,что OC" = α OA + βOB , т.е. вектор с является линейной комбинацией векторов а и b. Согласно теореме 2.1, векторы a, b, с являются линейно зависимыми.

Теорема 2.4. Любые четыре вектора линейно зависимы.

◄ Доказательство проводим по той же схеме, что и в теореме 2.3. Рассмотрим произвольные четыре вектора a, b, с и d. Если один из четырех векторов является нулевым, либо среди них есть два коллинеарных вектора, либо три из четырех векторов компланарны, то эти четыре вектора линейно зависимы. Например, если векторы а и b коллинеарны, то мы можем составить их линейную комбинацию αa + βb = 0 с ненулевыми коэффициентами, а затем в эту комбинацию добавить оставшиеся два вектора, взяв в качестве коэффициентов нули. Получим равную 0 линейную комбинацию четырех векторов, в которой есть ненулевые коэффициенты.

Таким образом, мы можем считать, что среди выбранных четырех векторов нет нулевых, никакие два не коллинеарны и никакие три не являются компланарными. Выберем в качестве их общего начала точку О. Тогда концами векторов a, b, с, d будут некоторые точки A, B, С, D (рис. 2.2). Через точку D проведем три плоскости, параллельные плоскостям ОВС, OCA, OAB, и пусть A", B", С" - точки пересечения этих плоскостей с прямыми OA, OB, ОС соответственно. Мы получаем параллелепипед OA"C"B"C"B"DA", и векторы a, b, с лежат на его ребрах, выходящих из вершины О. Так как четырехугольник OC"DC" является параллелограммом, то OD = OC" + OC" . В свою очередь, отрезок ОС" является диагональю параллелограмма OA"C"B", так что OC" = OA" + OB" , а OD = OA" + OB" + OC" .

Остается заметить, что пары векторов OA ≠ 0 и OA" , OB ≠ 0 и OB" , OC ≠ 0 и OC" коллинеарны, и, следовательно, можно подобрать коэффициенты α, β, γ так, что OA" = αOA , OB" = βOB и OC" = γOC . Окончательно получаем OD = αOA + βOB + γOC . Следовательно, вектор OD выражается через остальные три вектора, а все четыре вектора, согласно теореме 2.1, линейно зависимы.

Определение. Линейной комбинацией векторов a 1 , ..., a n с коэффициентами x 1 , ..., x n называется вектор

x 1 a 1 + ... + x n a n .

тривиальной , если все коэффициенты x 1 , ..., x n равны нулю.

Определение. Линейная комбинация x 1 a 1 + ... + x n a n называется нетривиальной , если хотябы один из коэффициентов x 1 , ..., x n не равен нулю.

линейно независимыми , если не существует нетривиальной комбинации этих векторов равной нулевому вектору .

Тоесть вектора a 1 , ..., a n линейно независимы если x 1 a 1 + ... + x n a n = 0 тогда и только тогда, когда x 1 = 0, ..., x n = 0.

Определение. Вектора a 1 , ..., a n называются линейно зависимыми , если существует нетривиальная комбинация этих векторов равная нулевому вектору .

Свойства линейно зависимых векторов:

    Для 2-х и 3-х мерных векторов.

    Два линейно зависимые вектора - коллинеарные. (Коллинеарные вектора - линейно зависимы.) .

    Для 3-х мерных векторов.

    Три линейно зависимые вектора - компланарные. (Три компланарные вектора - линейно зависимы.)

  • Для n -мерных векторов.

    n + 1 вектор всегда линейно зависимы.

Примеры задач на линейную зависимость и линейную независимость векторов:

Пример 1. Проверить будут ли вектора a = {3; 4; 5}, b = {-3; 0; 5}, c = {4; 4; 4}, d = {3; 4; 0} линейно независимыми.

Решение:

Вектора будут линейно зависимыми, так как размерность векторов меньше количества векторов.

Пример 2. Проверить будут ли вектора a = {1; 1; 1}, b = {1; 2; 0}, c = {0; -1; 1} линейно независимыми.

Решение:

x 1 + x 2 = 0
x 1 + 2x 2 - x 3 = 0
x 1 + x 3 = 0
1 1 0 0 ~
1 2 -1 0
1 0 1 0
~ 1 1 0 0 ~ 1 1 0 0 ~
1 - 1 2 - 1 -1 - 0 0 - 0 0 1 -1 0
1 - 1 0 - 1 1 - 0 0 - 0 0 -1 1 0

из первой строки вычтем вторую; к третей строке добавим вторую:

~ 1 - 0 1 - 1 0 - (-1) 0 - 0 ~ 1 0 1 0
0 1 -1 0 0 1 -1 0
0 + 0 -1 + 1 1 + (-1) 0 + 0 0 0 0 0

Данное решение показывает, что система имеет множество решений, то есть существует не нулевая комбинация значений чисел x 1 , x 2 , x 3 таких, что линейная комбинация векторов a , b , c равна нулевому вектору, например:

A + b + c = 0

а это значит вектора a , b , c линейно зависимы.

Ответ: вектора a , b , c линейно зависимы.

Пример 3. Проверить будут ли вектора a = {1; 1; 1}, b = {1; 2; 0}, c = {0; -1; 2} линейно независимыми.

Решение: Найдем значения коэффициентов при котором линейная комбинация этих векторов будет равна нулевому вектору.

x 1 a + x 2 b + x 3 c 1 = 0

Это векторное уравнение можно записать в виде системы линейных уравнений

x 1 + x 2 = 0
x 1 + 2x 2 - x 3 = 0
x 1 + 2x 3 = 0

Решим эту систему используя метод Гаусса

1 1 0 0 ~
1 2 -1 0
1 0 2 0

из второй строки вычтем первую; из третей строки вычтем первую:

~ 1 1 0 0 ~ 1 1 0 0 ~
1 - 1 2 - 1 -1 - 0 0 - 0 0 1 -1 0
1 - 1 0 - 1 2 - 0 0 - 0 0 -1 2 0

из первой строки вычтем вторую; к третей строке добавим вторую.

Система векторов , называется линейно зависимой , если существуют такие числа , среди которых хотя бы одно отлично от нуля, что выполняется равенство https://pandia.ru/text/78/624/images/image004_77.gif" width="57" height="24 src=">.

Если же это равенство выполняется только в том случае, когда все , то система векторов называется линейно независимой .

Теорема. Система векторов , будет линейно зависимой тогда и только тогда, когда хотя бы один из ее векторов является линейной комбинацией остальных.

Пример 1. Многочлен является линейной комбинацией многочленов https://pandia.ru/text/78/624/images/image010_46.gif" width="88 height=24" height="24">. Многочлены составляют линейно независимую систему, так как многочлен https://pandia.ru/text/78/624/images/image012_44.gif" width="129" height="24">.

Пример 2. Система матриц , , https://pandia.ru/text/78/624/images/image016_37.gif" width="51" height="48 src="> является линейно независимой, так как линейная комбинация равна нулевой матрице только в том случае, когда https://pandia.ru/text/78/624/images/image019_27.gif" width="69" height="21">, , https://pandia.ru/text/78/624/images/image022_26.gif" width="40" height="21"> линейно зависимой.

Решение.

Составим линейную комбинацию данных векторов https://pandia.ru/text/78/624/images/image023_29.gif" width="97" height="24">=0..gif" width="360" height="22">.

Приравнивая одноименные координаты равных векторов, получаем https://pandia.ru/text/78/624/images/image027_24.gif" width="289" height="69">

Окончательно получим

и

Система имеет единственное тривиальное решение, поэтому линейная комбинация данных векторов равна нулю только в случае, когда все коэффициенты равны нулю. Поэтому данная система векторов линейно независима.

Пример 4. Векторы линейно независимы. Какими будут системы векторов

a). ;

b). ?

Решение.

a). Составим линейную комбинацию и приравняем её к нулю

Используя свойства операций с векторами в линейном пространстве, перепишем последнее равенство в виде

Так как векторы линейно независимы, то коэффициенты при должны быть равны нулю, т. е..gif" width="12" height="23 src=">

Полученная система уравнений имеет единственное тривиальное решение .

Так как равенство (*) выполняется только при https://pandia.ru/text/78/624/images/image031_26.gif" width="115 height=20" height="20"> – линейно независимы;

b). Составим равенство https://pandia.ru/text/78/624/images/image039_17.gif" width="265" height="24 src=">(**)

Применяя аналогичные рассуждения, получим

Решая систему уравнений методом Гаусса, получим

или

Последняя система имеет бесконечное множество решений https://pandia.ru/text/78/624/images/image044_14.gif" width="149" height="24 src=">. Таким образом, существует, ненулевой набор коэффициентов, для которого выполняется равенство (**) . Следовательно, система векторов – линейно зависима.

Пример 5 Система векторов линейно независима, а система векторов линейно зависима..gif" width="80" height="24">.gif" width="149 height=24" height="24">(***)

В равенстве (***) . Действительно, при система была бы линейно зависимой.

Из соотношения (***) получаем или Обозначим .

Получим

Задачи для самостоятельного решения (в аудитории)

1. Система, содержащая нулевой вектор, линейно зависима.

2. Система, состоящая из одного вектора а , линейно зависима тогда и только тогда, когда, а=0 .

3. Система, состоящая из двух векторов, линейно зависима тогда и только тогда, когда, векторы пропорциональны (т. е. один из них получается из другого умножением на число).

4. Если к линейно зависимой системе добавить вектор, то получится линейно зависимая система.

5. Если из линейно независимой системы удалить вектор, то полученная система векторов линейна независима.

6. Если система S линейно независима, но становится линейно зависимой при добавлении вектора b , то вектор b линейно выражается через векторы системы S .

c). Система матриц , , в пространстве матриц второго порядка.

10. Пусть система векторов a, b, c векторного пространства линейно независима. Докажите линейную независимость следующих систем векторов:

a). a+ b, b, c.

b). a+ https://pandia.ru/text/78/624/images/image062_13.gif" width="15" height="19">– произвольное число

c). a+ b, a+c, b+c.

11. Пусть a, b, c – три вектора на плоскости, из которых можно сложить треугольник. Будут ли эти векторы линейно зависимы?

12. Даны два вектора a1=(1, 2, 3, 4), a2=(0, 0, 0, 1) . Подобрать ещё два четырёхмерных вектора a3 и a4 так, чтобы система a1, a2, a3, a4 была линейно независимой.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...