Закон сохранения импульса выполняется при условии. Условия применения закона сохранения импульса

Применим закон сохранения импульса к задаче об отдаче пушки. Вначале, до выстрела, как пушка (массы ), так и снаряд (массы ) покоятся. Значит, суммарный импульс системы пушка- снаряд равен нулю (в формуле (50.1) можно положить равными нулю скорости и ). После выстрела пушка и снаряд получат скорости и соответственно. Суммарный импульс после выстрела также должен равняться нулю, согласно закону сохранения импульса. Таким образом, непосредственно после выстрела будет выполнено равенство

Или

откуда следует, что пушка получит скорость, во столько раз меньшую скорости снаряда, во сколько раз масса пушки больше массы снаряда; знак минус указывает на противоположность направлений скоростей пушки и снаряда. Этот результат был уже нами получен другим способом в § 48.

Мы видим, что задачу удалось решить, не выясняя даже, какие силы и в течение какого времени действовали на тела системы; эти сведения были бы нужны, если бы мы вычисляли скорость пушки при помощи второго закона Ньютона. В закон сохранения импульса силы вообще не входят. Это обстоятельство позволяет решать простым способом многие задачи, в основном такие, где мы интересуемся не процессом взаимодействия тел системы, а только окончательным результатом этого взаимодействия, как в примере с выстрелом из пушки. Конечно, если силы неизвестны, то должны быть заданы какие-то другие величины, относящиеся к движению. В данном примере, для того чтобы можно было определить скорость пушки, надо было знать скорость снаряда после выстрела.

Если измерено время взаимодействия пушки со снарядом, то можно найти среднюю силу, действовавшую на снаряд. Если это время равнялось, то средняя сила была равна . Такая же по модулю средняя сила (но противоположно направленная) действовала и на пушку.

Рассмотрим еще одну очень важную задачу, которую также можно решить, пользуясь законом сохранения импульса. Это - задача о неупругом соударении двух тел, т. е. о случае, когда тела после соударения движутся с одной и той же скоростью, как это происходит, например, при соударении двух комков мягкой глины, которые, столкнувшись, слипаются и продолжают движение совместно.

Рис. 74. Сложение импульсов при неупругом соударении двух тел

Пусть тело массы имело до соударения скорость , а тело массы имело до соударения скорость. Пусть внешние силы отсутствуют. После соударения оба тела будут двигаться вместе с некоторой скоростью , которую и требуется найти. Суммарный импульс тел легко найти путем векторного сложения, как это показано на рис. 74. Слагаемые векторы - импульсы каждого из тел до соударения. Искомая же скорость получится путем деления суммарного импульса тел на их суммарную массу:

(51.1)

Если до соударения тела двигались по одной прямой, то после соударения они будут двигаться по той же прямой. Примем эту прямую за ось и спроектируем скорости на эту ось. Тогда формула (51.1) превратится в скалярную формулу:

(51.2)

Каждая из проекций в этой формуле равна модулю соответствующего вектора, взятому со знаком плюс, если вектор направлен по оси, и со знаком минус, если направление вектора противоположно направлению оси (ср. с формулой (49.3)).

51.1. Человек массы 60 кг, бегущий вдоль рельсов со скоростью 6 м/с, впрыгивает на неподвижно стоящую на рельсах тележку массы 30 кг и останавливается на тележке. С какой скоростью тележка начнет катиться по рельсам?

Его движения , т.е. величина .

Импульс — величина векторная, совпадающая по направлению с вектором скорости .

Единица измерения импульса в системе СИ: кг м/с .

Импульс системы тел равен векторной сумме импульсов всех тел, входящих в систему:

Закон сохранения импульса

Если на систему взаимодействующих тел действуют дополнительно внешние силы, например, то в этом случае справедливо соотношение, которое иногда называют законом изменения импульса:

Для замкнутой системы (при отсутствии внешних сил) справедлив закон сохранения импульса:

Действием закона сохранения импульса можно объяснить явление отдачи при стрельбе из винтовки или при артиллерийской стрельбе. Также действие закона сохранения импульса лежит в основе принципа работы всех реактивных двигателей.

При решении физических задач законом сохранения импульса пользуются, когда знание всех деталей движения не требуется, а важен результат взаимодействия тел. Такими задачами, к примеру, являются задачи о соударении или столкновении тел. Законом сохранения импульса пользуются при рассмотрении движения тел переменной массы таких, как ракеты-носители. Большую часть массы такой ракеты составляет топливо. На активном участке полета это топливо выгорает, и масса ракеты на этом участке траектории быстро уменьшается. Также закон сохранения импульса необходим в случаях, когда неприменимо понятие . Трудно себе представить ситуацию, когда неподвижное тело приобретает некоторую скорость мгновенно. В обычной практике тела всегда разгоняются и набирают скорость постепенно. Однако при движении электронов и других субатомных частиц изменение их состояния происходит скачком без пребывания в промежуточных состояниях. В таких случаях классическое понятие «ускорения» применять нельзя.

Примеры решения задач

ПРИМЕР 1

Задание Снаряд массой 100 кг, летящий горизонтально вдоль железнодорожного пути со скоростью 500 м/с, попадает в вагон с песком массой 10 т и застревает в нем. Какую скорость получит вагон, если он двигался со скоростью 36 км/ч в направлении, противоположном движению снаряда?
Решение Система вагон+снаряд является замкнутой, поэтому в данном случае можно применить закон сохранения импульса.

Выполним рисунок, указав состояние тел до и после взаимодействия.

При взаимодействии снаряда и вагона имеет место неупругий удар. Закон сохранения импульса в этом случае запишется в виде:

Выбирая направление оси совпадающим с направлением движения вагона, запишем проекцию этого уравнения на координатную ось:

откуда скорость вагона после попадания в него снаряда:

Переводим единицы в систему СИ: т кг.

Вычислим:

Ответ После попадания снаряда вагон будет двигаться со скоростью 5 м/с.

ПРИМЕР 2

Задание Снаряд массой m=10 кг обладал скоростью v=200 м/с в верхней точке . В этой точке он разорвался на две части. Меньшая часть массой m 1 =3 кг получила скорость v 1 =400 м/с в прежнем направлении под углом к горизонту. С какой скоростью и в каком направлении полетит большая часть снаряда?
Решение Траектория движения снаряда – парабола. Скорость тела всегда направлена по касательной к траектории. В верхней точке траектории скорость снаряда параллельна оси .

Запишем закон сохранения импульса:

Перейдем от векторов к скалярным величинам. Для этого возведем обе части векторного равенства в квадрат и воспользуемся формулами для :

Учитывая, что , а также что , находим скорость второго осколка:

Подставив в полученную формулу численные значения физических величин, вычислим:

Направление полета большей части снаряда определим, воспользовавшись :

Подставив в формулу численные значения, получим:

Ответ Большая часть снаряда полетит со скоростью 249 м/с вниз под углом к горизонтальному направлению.

ПРИМЕР 3

Задание Масса поезда 3000 т. Коэффициент трения 0,02. Какова должна быть паровоза, чтобы поезд набрал скорость 60 км/ч через 2 мин после начала движения.
Решение Так как на поезд действует (внешняя сила), систему нельзя считать замкнутой, и закон сохранения импульса в данном случае не выполняется.

Воспользуемся законом изменения импульса:

Так как сила трения всегда направлена в сторону, противоположную движению тела, в проекцию уравнения на ось координат (направление оси совпадает с направлением движения поезда) импульс силы трения войдет со знаком «минус»:

Начну с пары определений, без знания которых дальнейшее рассмотрение вопроса будет бессмысленным.

Сопротивление, которое оказывает тело при попытке привести его в движение или изменить его скорость, называется инертностью.

Мера инертности – масса .

Таким образом можно сделать следующие выводы:

  1. Чем больше масса тела, тем большее оно оказывает сопротивление силам, которые пытаются вывести его из состояния покоя.
  2. Чем больше масса тела, тем большее оно оказывает сопротивление силам, которые пытаются изменить его скорость в случае, если тело движется равномерно.

Резюмируя можно сказать, что инертность тела противодействует попыткам придать телу ускорение. А масса служит показателем уровня инертности. Чем больше масса, тем большую силу нужно применить для воздействия на тело, чтобы придать ему ускорение.

Замкнутая система (изолированная) – система тел, на которую не оказывают влияние другие тела не входящие в эту систему. Тела в такой системе взаимодействуют только между собой.

Если хотя бы одно из двух условий выше не выполняется, то систему замкнутой назвать нельзя. Пусть есть система, состоящая из двух материальных точек, обладающими скоростями и соответственно. Представим, что между точками произошло взаимодействие, в результате которого скорости точек изменились. Обозначим через и приращения этих скоростей за время взаимодействия между точками . Будем считать, что приращения имеют противоположные направления и связаны соотношением . Мы знаем, что коэффициенты и не зависят от характера взаимодействия материальных точек — это подтверждено множеством экспериментов. Коэффициенты и являются характеристиками самих точек. Эти коэффициенты называются массами (инертными массами). Приведенное соотношения для приращения скоростей и масс можно описать следующим образом.

Отношение масс двух материальных точек равно отношению приращений скоростей этих материальных точек в результате взаимодействия между ними.

Представленное выше соотношение можно представить в другом виде. Обозначим скорости тел до взаимодействия как и соответственно, а после взаимодействия — и . В этом случае приращения скоростей могут быть представлены в таком виде — и . Следовательно, соотношение можно записать так — .

Импульс (количество энергии материальной точки) – вектор равный произведению массы материальной точки на вектор ее скорости —

Импульс системы (количество движения системы материальных точек) – векторная сумма импульсов материальных точек, из которых эта система состоит — .

Можно сделать вывод, что в случае замкнутой системы импульс до и после взаимодействия материальных точек должен остаться тем же — , где и . Можно сформулировать закон закон сохранения импульса.

Импульс изолированной системы остается постоянным во времени, независимо от взаимодействия между ними.

Необходимое определение:

Консервативные силы – силы, работа которых не зависит от траектории, а обусловлена только начальными и конечными координатами точки.

Формулировка закона сохранения энергии:

В системе, в которой действуют только консервативные силы, полная энергия системы остается неизменной. Возможны лишь превращения потенциальной энергии в кинетическую и обратно.

Потенциальная энергия материальной точки является функцией только координат этой точки. Т.е. потенциальная энергия зависит от положения точки в системе. Таким образом силы , действующие на точку, можно определить так: можно определить так: . – потенциальная энергия материальной точки. Помножим обе части на и получим . Преобразуем и получим выражение доказывающее закон сохранения энергии .

Упругие и неупругие столкновения

Абсолютно неупругий удар – столкновение двух тел, в результате которого они соединяются и далее двигаются как одно целое.

Два шара , с и испытывают абсолютно неупругий дар друг с другом. По закону сохранения импульса . Отсюда можно выразить скорость двух шаров, двигающихся после соударения как единое целое — . Кинетические энергии до и после удара: и . Найдем разность

,

где – приведенная масса шаров . Отсюда видно, что при абсолютно неупругом столкновении двух шаров происходит потеря кинетической энергии макроскопического движения. Эта потеря равна половине произведения приведенной массы на квадрат относительной скорости.

Закон сохранения импульса является следствием законов Ньютона и применяется для определения мгновенных скоростей тел после их взаимодействия.

Импульсом тела (материальной точки) называется векторная физическая величина равная произведению массы тела на его скорость p -> = mϑ -> , где m – масса тела, ϑ -> – мгновенная скорость. Импульсом системы тел называется векторная сумма импульсов тел p c -> = p 1 -> + p 2 -> + p 3 -> + … + p n -> .

Согласно первому закону Ньютона, если тела не взаимодействуют, сохраняется импульс каждого тела и импульс нескольких тел входящих в систему. При взаимодействии внутри системы, между телами возникают пары сил равные по величине и противоположные по направлению, согласно третьему закону Ньютона.

Векторная физическая величина, являющаяся мерой действия силы в течении некоторого промежутка времени называется импульсом силы и обозначается F -> Δt. Из второго закона Ньютона в случае действия одной силы и определения ускорения следует F -> = ma -> , a -> = (ϑ -> - ϑ 0 ->)/Δt =>

F -> = m(ϑ -> – ϑ 0 ->)/Δt => F -> Δt = mϑ -> – mϑ 0 -> => … F -> Δt = p -> – p 0 ->

Это уравнение является законом сохранения импульса в импульсной форме. Импульс силы (равнодействующей) равен изменению импульса тела (материальной точки). В замкнутой системе взаимодействия происходят попарно, причем импульс одного тела изменяется на величину F 21 -> Δt, импульс второго на F 12 -> Δt, где F 12 -> – сила, действующая со стороны первого тела на второе и F 21 -> – сила действующая со стороны второго тела на первое.

Замкнутой назовем систему тел, взаимодействующих только между собой.

Импульс первого тела изменяется на величину F 21 -> Δt, p 1 -> = p 01 -> + F 21 -> Δt, импульс второго тела изменяется на величину F 12 -> Δt, p 2 -> = p 02 -> + F 12 -> Δt. Но импульс системы тел остается постоянной величиной

p 01 -> + p 02 -> = p 1 -> + p2 -> , так как F 21 -> Δt + F 12 -> Δt = 0, поскольку F 12 -> = -F 21 -> .

При любом взаимодействии двух тел внутри замкнутой системы импульс всей системы не изменяется. Сформулируем закон сохранения импульса.

Векторная сумма импульсов взаимодействующих тел, составляющих замкнутую систему, остается неизменной.

При использовании закона сохранения импульса в задаче делаем два схематических рисунка, показывая состояние системы тел до и после взаимодейсвия. Для решения векторных уравнений выбираем одинаковые системы координат.

Задача 1. Неупругий удар.

Вагон массой 30 т движется со скоростью 4 м/с и сталкивается с неподвижной платформой массой 10 т. Найти скорость вагона и платформы после того, как сработает автосцеп.

Решение.

p 01 -> + p 02 -> = p 1 -> + p 2 ->

M1ϑ 1 -> = (M1 + M2)ϑ ->

ОХ: M 1 ϑ 1 = (M 1 + M 2)ϑ

Отсюда: ϑ = M 1 ϑ 1 /(M 1 + M 2);

ϑ = (30 · 103 · 4) / (30 · 103 + 10 · 103) = 0,75 м/c

[ϑ] = (кг · м/с)/кг = м/с

Ответ. 0,75 м/c

Закон сохранения импульса также можно применить для незамкнутых систем, если взаимодействие тел происходит мгновенно и определяются скорости тел сразу после взаимодействия.

Задача 2. Разделение на части.

Граната, летящая со скоростью 20 м/с, разрывается на два осколка массами 1,2 кг и 1,8 кг. Больший осколок продолжает двигаться в том же направлении со скоростью 50 м/с. Найти скорость меньшего осколка.

Решение.


Система не замкнута на тело и его части действует сила тяжести, но так как разрыв происходит мгновенно, изменением импульса каждой части силой тяжести можно пренебречь. Применим закон сохранения импульса в векторном виде.

Mϑ -> = M 1 ϑ -> 1 + M 2 ϑ -> 2

ОХ: Mϑ = M 1 ϑ 1 + M 2 ϑ 2

Отсюда: ϑ 2х = (Mϑ - M 1 ϑ 1)/M 2

ϑ 2х = (3 · 20 – 1,8 · 50)/1,2 = -25 м/с

[ϑ] = (кг · м/с)/кг = м/с

Ответ.

Закон сохранения импульса может быть применен в проекциях на ось, если проекция равнодействующей внешних сил на эту ось равна О. p х = 0; p 01х + p 02х = p 1х + p 2х.

Задача 3. Выстрел под углом.

Из орудия, установленного на платформе массой М, производят выстрел снарядом массы m под углом a к горизонту и скоростью V относительно земли, определить скорость платформы после выстрела.

Решение.


Система не замкнута, на тело во время выстрела действует дополнительная сила реакции опоры, которая сообщает снаряду импульс вдоль вертикальной оси ОY, ее проекция на горизонтальную ось ОХ равна 0, других сил, действующих вдоль оси ОХ нет, значит можно применить закон сохранения импульса в проекциях на ось ОХ.

p х = p 1х + p 2х

ОХ: 0 = МU x + mϑ x

0 = МU x + mϑ cosα

U x = m ϑcosα/М

[U] = (кг · м/с)/кг = м/с

Остались вопросы? Не знаете, как решить задачу на закон сохранения импульса?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

При взаимодействии тел импульс одного тела может частично или полностью передаваться другому телу. Если на систему тел не действуют внешние силы со стороны других тел, то такая система называется замкнутой .

В замкнутой системе векторная сумма импульсов всех тел, входящих в систему, остается постоянной при любых взаимодействиях тел этой системы между собой.

Этот фундаментальный закон природы называется законом сохранения импульса . Он является следствием из второго и третьего законов Ньютона.

Рассмотрим какие-либо два взаимодействующих тела, входящих в состав замкнутой системы. Силы взаимодействия между этими телами обозначим через и По третьему закону Ньютона

Если эти тела взаимодействуют в течение времени t , то импульсы сил взаимодействия одинаковы по модулю и направлены в противоположные стороны:

Применим к этим телам второй закон Ньютона:

Где и - импульсы тел в начальный момент времени, и - импульсы тел в конце взаимодействия. Из этих соотношений следует, что в результате взаимодействия двух тел их суммарный импульс не изменился:

Закон сохранения импульса:

Рассматривая теперь всевозможные парные взаимодействия тел, входящих в замкнутую систему, можно сделать вывод, что внутренние силы замкнутой системы не могут изменить ее суммарный импульс, т. е. векторную сумму импульсов всех тел, входящих в эту систему.

Рис. 1.17.1 иллюстрирует закон сохранения импульса на примере нецентрального соударения двух шаров разных масс, один из которых до соударения находился в состоянии покоя.

Изображенные на рис. 1.17.1 вектора импульсов шаров до и после соударения можно спроектировать на координатные оси OX и OY . Закон сохранения импульса выполняется и для проекций векторов на каждую ось. В частности, из диаграммы импульсов (рис. 1.17.1) следует, что проекции векторов и импульсов обоих шаров после соударения на ось OY должны быть одинаковы по модулю и иметь разные знаки, чтобы их сумма равнялась нулю.

Закон сохранения импульса во многих случаях позволяет находить скорости взаимодействующих тел даже тогда, когда значения действующих сил неизвестны. Примером может служить реактивное движение .

При стрельбе из орудия возникает отдача - снаряд движется вперед, а орудие - откатывается назад. Снаряд и орудие - два взаимодействующих тела. Скорость, которую приобретает орудие при отдаче, зависит только от скорости снаряда и отношения масс (рис. 1.17.2). Если скорости орудия и снаряда обозначить через и а их массы через M и m , то на основании закона сохранения импульса можно записать в проекциях на ось OX

На принципе отдачи основано реактивное движение . В ракете при сгорании топлива газы, нагретые до высокой температуры, выбрасываются из сопла с большой скоростью относительно ракеты. Обозначим массу выброшенных газов через m , а массу ракеты после истечения газов через M . Тогда для замкнутой системы «ракета + газы» на основании закона сохранения импульса (по аналогии с задачей о выстреле из орудия) можно записать:

где V - скорость ракеты после истечения газов. В данном случае предполагается, что начальная скорость ракеты равнялась нулю.

Полученная формула для скорости ракеты справедлива лишь при условии, что вся масса сгоревшего топлива выбрасывается из ракеты одновременно . На самом деле истечение происходит постепенно в течение всего времени ускоренного движения ракеты. Каждая последующая порция газа выбрасывается из ракеты, которая уже приобрела некоторую скорость.

Для получения точной формулы процесс истечения газа из сопла ракеты нужно рассмотреть более детально. Пусть ракета в момент времени t имеет массу M и движется со скоростью (рис. 1.17.3 (1)). В течение малого промежутка времени Δt из ракеты будет выброшена некоторая порция газа с относительной скоростью Ракета в момент t + Δt будет иметь скорость а ее масса станет равной M + ΔM , где ΔM < 0 (рис. 1.17.3 (2)). Масса выброшенных газов будет, очевидно, равна -ΔM > 0. Скорость газов в инерциальной системе OX будет равна Применим закон сохранения импульса. В момент времени t + Δt импульс ракеты равен , а импульс испущенных газов равен . В момент времени t импульс всей системы был равен Предполагая систему «ракета + газы» замкнутой, можно записать:

Величиной можно пренебречь, так как |ΔM | << M . Разделив обе части последнего соотношения на Δt и перейдя к пределу при Δt →0, получаем:

Рисунок 1.17.3.

Ракета, движущаяся в свободном пространстве (без гравитации). 1 - в момент времени t . Масса ракеты М, ее скорость

2 - Ракета в момент времени t + Δt . Масса ракеты M + ΔM , где ΔM < 0, ее скорость масса выброшенных газов -ΔM > 0, относительная скорость газов скорость газов в инерциальной системе

Величина есть расход топлива в единицу времени. Величина называется реактивной силой тяги Реактивная сила тяги действует на ракету со стороны истекающих газов, она направлена в сторону, противоположную относительной скорости. Соотношение
выражает второй закон Ньютона для тела переменной массы. Если газы выбрасываются из сопла ракеты строго назад (рис. 1.17.3), то в скалярной форме это соотношение принимает вид:

где u - модуль относительной скорости. С помощью математической операции интегрирования из этого соотношения можно получить формулу Циолковского для конечной скорости υ ракеты:

где - отношение начальной и конечной масс ракеты.

Из нее следует, что конечная скорость ракеты может превышать относительную скорость истечения газов. Следовательно, ракета может быть разогнана до больших скоростей, необходимых для космических полетов. Но это может быть достигнуто только путем расхода значительной массы топлива, составляющей большую долю первоначальной массы ракеты. Например, для достижения первой космической скорости υ = υ 1 = 7,9·10 3 м/с при u = 3·10 3 м/с (скорости истечения газов при сгорании топлива бывают порядка 2-4 км/с) стартовая масса одноступенчатой ракеты должна примерно в 14 раз превышать конечную массу. Для достижения конечной скорости υ = 4u отношение должно быть равно 50.

Реактивное движение основано на законе сохранения импульса и это бесспорно. Только многие задачи решаются разными способами. Я предлагаю следующий. Простейший реактивный двигатель: камера, в которой с помощью сжигания топлива поддерживается постоянное давление, в нижнем днище камеры отверстие, через которое с определенной скоростью происходит истечение газа. Согласно закону сохранения импульса камера приходит в движение (прописные истины). Другой способ. В нижнем днище камеры отверстие, т.е. площадь нижнего днища меньше площади верхнего днища на площадь отверстия. Произведение давления на площадь дает силу. Сила, действующая на верхнее днище больше чем на нижнее (из-за разности площадей), получаем неуравновешенную силу, которая приводит камеру в движение. F = p (S1-S2) = pSотверстия, где S1 площадь верхнего днища, S2 площадь нижнего днища, Sотверстия площадь отверстия. Если решать задачи традиционным методом и предложенным мной результат будет один и тот же. Предложенный мной способ более сложен, но он объясняет динамику реактивного движения. Решение задач с помощью закона сохранения импульса более простое, но оно не дает понять откуда берется сила, приводящая камеру в движение.



Последние материалы раздела:

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...

Пробный ЕГЭ по русскому языку
Пробный ЕГЭ по русскому языку

Здравствуйте! Уточните, пожалуйста, как верно оформлять подобные предложения с оборотом «Как пишет...» (двоеточие/запятая, кавычки/без,...