Записать определение предела. Пределы в математике для чайников: объяснение, теория, примеры решений

(x) в точке x 0 :
,
если
1) существует такая проколотая окрестность точки x 0
2) для любой последовательности { x n } , сходящейся к x 0 :
, элементы которой принадлежат окрестности ,
последовательность { f(x n )} сходится к a :
.

Здесь x 0 и a могут быть как конечными числами, так и бесконечно удаленными точками. Окрестность может быть как двусторонней, так и односторонней.


.

Второе определение предела функции (по Коши)

Число a называется пределом функции f(x) в точке x 0 :
,
если
1) существует такая проколотая окрестность точки x 0 , на которой функция определена;
2) для любого положительного числа ε > 0 существует такое число δ ε > 0 , зависящее от ε , что для всех x , принадлежащих проколотой δ ε - окрестности точки x 0 :
,
значения функции f(x) принадлежат ε - окрестности точки a :
.

Точки x 0 и a могут быть как конечными числами, так и бесконечно удаленными точками. Окрестность также может быть как двусторонней, так и односторонней.

Запишем это определение с помощью логических символов существования и всеобщности:
.

В этом определении используются окрестности с равноудаленными концами. Можно дать и эквивалентное определение, используя произвольные окрестности точек.

Определение с использованием произвольных окрестностей
Число a называется пределом функции f(x) в точке x 0 :
,
если
1) существует такая проколотая окрестность точки x 0 , на которой функция определена;
2) для любой окрестности U(a) точки a существует такая проколотая окрестность точки x 0 , что для всех x , принадлежащих проколотой окрестности точки x 0 :
,
значения функции f(x) принадлежат окрестности U(a) точки a :
.

С помощью логических символов существования и всеобщности это определение можно записать так:
.

Односторонние и двусторонние пределы

Приведенные выше определения универсальны в том смысле, что их можно использовать для любых типов окрестностей. Если, в качестве мы используем левостороннюю проколотую окрестность конечной точки, то получим определение левостороннего предела . Если в качестве окрестности использовать окрестность бесконечно удаленной точки, то получим определение предела на бесконечности.

Для определения предела по Гейне это сводится к тому, что на произвольную, сходящуюся к , последовательность накладывается дополнительное ограничение - ее элементы должны принадлежать соответствующей проколотой окрестности точки .

Для определения предела по Коши нужно в каждом случае преобразовать выражения и в неравенства, используя соответствующие определения окрестности точки.
См. «Окрестность точки ».

Определение, что точка a не является пределом функции

Часто возникает необходимость использовать условие, что точка a не является пределом функции при . Построим отрицания к изложенным выше определениям. В них мы предполагаем, что функция f(x) определена на некоторой проколотой окрестности точки x 0 . Точки a и x 0 могут быть как конечными числами, так и бесконечно удаленными. Все сформулированное ниже относится как к двусторонним, так и к односторонним пределам.

По Гейне .
Число a не является пределом функции f(x) в точке x 0 : ,
если существует такая последовательность { x n } , сходящаяся к x 0 :
,
элементы которой принадлежат окрестности ,
что последовательность { f(x n )} не сходится к a :
.
.

По Коши .
Число a не является пределом функции f(x) в точке x 0 :
,
если существует такое положительное число ε > 0 , так что для любого положительного числа δ > 0 , существует такое x , принадлежащее проколотой δ - окрестности точки x 0 :
,
что значение функции f(x) не принадлежит ε - окрестности точки a :
.
.

Разумеется, если точка a не является пределом функции при , то это не означает, что у нее не может быть предела. Возможно, существует предел , но он не равен a . Также возможен случай, когда функция определена в проколотой окрестности точки , но не имеет предела при .

Функция f(x) = sin(1/x) не имеет предела при x → 0.

Например, функция определена при , но предела не существует. Для доказательства возьмем последовательность . Она сходится к точке 0 : . Поскольку , то .
Возьмем последовательность . Она также сходится к точке 0 : . Но поскольку , то .
Тогда предел не может равняться никакому числу a . Действительно, при , существует последовательность , с которой . Поэтому любое отличное от нуля число не является пределом. Но также не является пределом, поскольку существует последовательность , с которой .

Эквивалентность определений предела по Гейне и по Коши

Теорема
Определения предела функции по Гейне и по Коши эквивалентны.

Доказательство

При доказательстве мы предполагаем, что функция определена в некоторой проколотой окрестности точки (конечной или бесконечно удаленной). Точка a также может быть конечной или бесконечно удаленной.

Доказательство Гейне ⇒ Коши

Пусть функция имеет в точке предел a согласно первому определению (по Гейне). То есть для любой последовательности , принадлежащей окрестности точки и имеющей предел
(1) ,
предел последовательности равен a :
(2) .

Покажем, что функция имеет предел в точке по Коши. То есть для любого существует , что для всех .

Допустим противное. Пусть условия (1) и (2) выполнены, но функция не имеет предела по Коши. То есть существует такое , что для любого существует , так что
.

Возьмем , где n - натуральное число. Тогда существует , причем
.
Таким образом мы построили последовательность , сходящуюся к , но предел последовательности не равен a . Это противоречит условию теоремы.

Первая часть доказана.

Доказательство Коши ⇒ Гейне

Пусть функция имеет в точке предел a согласно второму определению (по Коши). То есть для любого существует , что
(3) для всех .

Покажем, что функция имеет предел a в точке по Гейне.
Возьмем произвольное число . Согласно определению Коши, существует число , так что выполняется (3).

Возьмем произвольную последовательность , принадлежащую проколотой окрестности и сходящуюся к . По определению сходящейся последовательности, для любого существует , что
при .
Тогда из (3) следует, что
при .
Поскольку это выполняется для любого , то
.

Теорема доказана.

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.

Постоянное число а называется пределом последовательности {x n }, если для любого сколь угодно малого положительного числа ε > 0 существует номер N, что все значения x n , у которых n>N, удовлетворяют неравенству

|x n - a| < ε. (6.1)

Записывают это следующим образом: или x n → a.

Неравенство (6.1) равносильно двойному неравенству

a- ε < x n < a + ε, (6.2)

которое означает, что точки x n , начиная с некоторого номера n>N, лежат внутри интервала (a- ε, a+ ε), т.е. попадают в какую угодно малую ε-окрестность точки а .

Последовательность, имеющая предел, называется сходящейся , в противном случае - расходящейся .

Понятие предел функции является обобщением понятия предел последовательности, так как предел последовательности можно рассматривать как предел функции x n = f(n) целочисленного аргумента n .

Пусть дана функция f(x) и пусть a - предельная точка области определения этой функции D(f), т.е. такая точка, любая окрестность которой содержит точки множества D(f), отличные от a . Точка a может принадлежать множеству D(f), а может и не принадлежать ему.

Определение 1. Постоянное число А называется предел функции f(x) при x→ a, если для всякой последовательности {x n } значений аргумента, стремящейся к а , соответствующие им последовательности {f(x n)} имеют один и тот же предел А.

Это определение называют определением предел функции по Гейне, или “на языке последовательностей ”.

Определение 2 . Постоянное число А называется предел функции f(x) при x→ a, если, задав произвольное как угодно малое положительное число ε , можно найти такое δ >0 (зависящее от ε ), что для всех x , лежащих в ε-окрестности числа а , т.е. для x , удовлетворяющих неравенству
0 <
x-a < ε , значения функции f(x) будут лежать в ε-окрестности числа А, т.е. |f(x)-A| < ε.

Это определение называют определением предел функции по Коши, или “на языке ε - δ “.

Определения 1 и 2 равносильны. Если функция f(x) при x → a имеет предел , равный А, это записывается в виде

. (6.3)

В том случае, если последовательность {f(x n)} неограниченно возрастает (или убывает) при любом способе приближения x к своему пределу а , то будем говорить, что функция f(x) имеет бесконечный предел, и записывать это в виде:

Переменная величина (т.е. последовательность или функция), предел которой равен нулю, называется бесконечно малой величиной.

Переменная величина, предел которой равен бесконечности, называется бесконечно большой величиной .

Чтобы найти предел на практике пользуются следующими теоремами.

Теорема 1 . Если существует каждый предел

(6.4)

(6.5)

(6.6)

Замечание . Выражения вида 0/0, ∞/∞, ∞-∞ , 0*∞ , - являются неопределенными, например, отношение двух бесконечно малых или бесконечно больших величин, и найти предел такого вида носит название “раскрытие неопределенностей”.

Теорема 2. (6.7)

т.е. можно переходить к пределу в основании степени при постоянном показателе, в частности, ;

(6.8)

(6.9)

Теорема 3.

(6.10)

(6.11)

где e » 2.7 - основание натурального логарифма. Формулы (6.10) и (6.11) носят название первый замечательного предело и второй замечательный предел.

Используются на практике и следствия формулы (6.11):

(6.12)

(6.13)

(6.14)

в частности предел,

Eсли x → a и при этом x > a, то пишут x →a + 0. Если, в частности, a = 0, то вместо символа 0+0 пишут +0. Аналогично если x→ a и при этом xa-0. Числа и называются соответственно предел справа и предел слева функции f(x) в точке а . Чтобы существовал предел функции f(x) при x→ a необходимо и достаточно, чтобы . Функция f(x) называется непрерывной в точке x 0 , если предел

. (6.15)

Условие (6.15) можно переписать в виде:

,

то есть возможен предельный переход под знаком функции, если она непрерывна в данной точке.

Если равенство (6.15) нарушено, то говорят, что при x = x o функция f(x) имеет разрыв. Рассмотрим функцию y = 1/x. Областью определения этой функции является множество R , кроме x = 0. Точка x = 0 является предельной точкой множества D(f), поскольку в любой ее окрестности, т.е. в любом открытом интервале, содержащем точку 0, есть точки из D(f), но она сама не принадлежит этому множеству. Значение f(x o)= f(0) не определено, поэтому в точке x o = 0 функция имеет разрыв.

Функция f(x) называется непрерывной справа в точке x o , если предел

,

и непрерывной слева в точке x o, если предел

.

Непрерывность функции в точке x o равносильна ее непрерывности в этой точке одновременно и справа и слева.

Для того, чтобы функция была непрерывна в точке x o , например, справа, необходимо, во-первых, чтобы существовал конечный предел , а во-вторых, чтобы этот предел был равен f(x o). Следовательно, если хотя бы одно из этих двух условий не выполняется, то функция будет иметь разрыв.

1. Если предел существует и не равен f(x o), то говорят, что функция f(x) в точке x o имеет разрыв первого рода, или скачок .

2. Если предел равен +∞ или -∞ или не существует, то говорят, что в точке x o функция имеет разрыв второго рода .

Например, функция y = ctg x при x → +0 имеет предел, равный +∞ , значит, в точке x=0 она имеет разрыв второго рода. Функция y = E(x) (целая часть от x ) в точках с целыми абсциссами имеет разрывы первого рода, или скачки.

Функция, непрерывная в каждой точке промежутка , называется непрерывной в . Непрерывная функция изображается сплошной кривой.

Ко второму замечательному пределу приводят многие задачи, связанные с непрерывным ростом какой-либо величины. К таким задачам, например, относятся: рост вклада по закону сложных процентов, рост населения страны, распад радиоактивного вещества, размножение бактерий и т.п.

Рассмотрим пример Я. И. Перельмана , дающий интерпретацию числа e в задаче о сложных процентах. Число e есть предел . В сбербанках процентные деньги присоединяются к основному капиталу ежегодно. Если присоединение совершается чаще, то капитал растет быстрее, так как в образовании процентов участвует большая сумма. Возьмем чисто теоретический, весьма упрощенный пример. Пусть в банк положено 100 ден. ед. из расчета 100 % годовых. Если процентные деньги будут присоединены к основному капиталу лишь по истечении года, то к этому сроку 100 ден. ед. превратятся в 200 ден.ед. Посмотрим теперь, во что превратятся 100 ден. ед., если процентные деньги присоединять к основному капиталу каждые полгода. По истечении полугодия 100 ден. ед. вырастут в 100 × 1,5 = 150, а еще через полгода - в 150 × 1,5 = 225 (ден. ед.). Если присоединение делать каждые 1/3 года, то по истечении года 100 ден. ед. превратятся в 100 × (1 +1/3) 3 » 237 (ден. ед.). Будем учащать сроки присоединения процентных денег до 0,1 года, до 0,01 года, до 0,001 года и т.д. Тогда из 100 ден. ед. спустя год получится:

100 × (1 +1/10) 10 » 259 (ден. ед.),

100 × (1+1/100) 100 » 270 (ден. ед.),

100 × (1+1/1000) 1000 » 271 (ден. ед.).

При безграничном сокращении сроков присоединения процентов наращенный капитал не растет беспредельно, а приближается к некоторому пределу, равному приблизительно 271. Более чем в 2,71 раз капитал, положенный под 100% годовых, увеличиться не может, даже если бы наросшие проценты присоединялись к капиталу каждую секунду, потому что предел

Пример 3.1. Пользуясь определением предела числовой последовательности, доказать, что последовательность x n =(n-1)/n имеет предел, равный 1.

Решение. Нам надо доказать, что, какое бы ε > 0 мы ни взяли, для него найдется натуральное число N, такое, что для всех n N имеет место неравенство |x n -1| < ε.

Возьмем любое e > 0. Так как ; x n -1 =(n+1)/n - 1= 1/n, то для отыскания N достаточно решить неравенство 1/n< e . Отсюда n>1/ e и, следовательно, за N можно принять целую часть от 1/ e , N = E(1/ e ). Мы тем самым доказали, что предел .

Пример 3 .2 . Найти предел последовательности, заданной общим членом .

Решение. Применим теорему предел суммы и найдем предел каждого слагаемого. При n ∞ числитель и знаменатель каждого слагаемого стремится к бесконечности, и мы не можем непосредственно применить теорему предел частного. Поэтому сначала преобразуем x n , разделив числитель и знаменатель первого слагаемого на n 2 , а второго на n . Затем, применяя теорему предел частного и предел суммы, найдем:

.

Пример 3.3 . . Найти .

Решение. .

Здесь мы воспользовались теоремой о пределе степени: предел степени равен степени от предела основания.

Пример 3 .4 . Найти ().

Решение. Применять теорему предел разности нельзя, поскольку имеем неопределенность вида ∞-∞ . Преобразуем формулу общего члена:

.

Пример 3 .5 . Дана функция f(x)=2 1/x . Доказать, что предел не существует.

Решение. Воспользуемся определением 1 предела функции через последовательность. Возьмем последовательность { x n }, сходящуюся к 0, т.е. Покажем, что величина f(x n)= для разных последовательностей ведет себя по-разному. Пусть x n = 1/n. Очевидно, что , тогда предел Выберем теперь в качестве x n последовательность с общим членом x n = -1/n, также стремящуюся к нулю. Поэтому предел не существует.

Пример 3 .6 . Доказать, что предел не существует.

Решение. Пусть x 1 , x 2 ,..., x n ,... - последовательность, для которой
. Как ведет себя последовательность {f(x n)} = {sin x n } при различных x n → ∞

Если x n = p n, то sin x n = sin p n = 0 при всех n и предел Если же
x n =2
p n+ p /2, то sin x n = sin(2 p n+ p /2) = sin p /2 = 1 для всех n и следовательно предел . Таким образом, не существует.

Виджет для вычисления пределов on-line

В верхнем окошке вместо sin(x)/x введите функцию, предел которой надо найти. В нижнее окошко введите число, к которому стремится х и нажмите кнопку Calcular, получите искомый предел. А если в окне результата нажмете на Show steps в правом верхнем углу, то получите подробное решение.

Правила ввода функций: sqrt(x)- квадратный корень, cbrt(x) - кубический корень, exp(x) - экспонента, ln(x) - натуральный логарифм, sin(x) - синус, cos(x) - косинус, tan(x) - тангенс, cot(x) - котангенс, arcsin(x) - арксинус, arccos(x) - арккосинус, arctan(x) - арктангенс. Знаки: * умножения, / деления, ^ возведение в степень, вместо бесконечности Infinity. Пример: функция вводится так sqrt(tan(x/2)).

Определение 1. ПустьЕ – бесконечное множество. Если любая окрестностьсодержит точки множестваЕ , отличные от точкиа , тоа называетсяпредельной точкой множестваЕ .

Определение 2. (Генрих Гейне (1821-1881)). Пусть функция
определена на множествеХ иА называетсяпределом функции
в точке(или при
, если для любой последовательности значений аргумента
, сходящейся к, соответствующая последовательность значений функциисходится к числуА . Пишут:
.

Примеры . 1) Функция
имеет предел, равныйс , в любой точке числовой прямой.

Действительно, для любой точки и любой последовательности значений аргумента
, сходящейся ки состоящей из чисел, отличных от, соответствующая последовательность значений функции имеет вид
, а мы знаем, что эта последовательность сходится кс . Поэтому
.

2) Для функции

.

Это очевидно, так как если
, то и
.

3) Функция Дирихле
не имеет предела ни в одной точке.

Действительно, пусть
и
, причем все– рациональные числа. Тогда
для всехn , поэтому
. Если же
и все– иррациональные числа, то
для всехn , поэтому
. Мы видим, что условия определения 2 не выполняются, поэтому
не существует.

4)
.

Действительно, возьмем произвольную последовательность
, сходящуюся к

числу 2. Тогда . Что и требовалось доказать.

Определение 3. (Коши (1789-1857)). Пусть функция
определена на множествеХ и– предельная точка этого множества. ЧислоА называетсяпределом функции
в точке(или при
, если для любого
найдется
, такое, что для всех значений аргументах , удовлетворяющих неравенству

,

справедливо неравенство

.

Пишут:
.

Определение Коши можно дать и с помощью окрестностей, если заметить, что , а:

пусть функция
определена на множествеХ и– предельная точка этого множества. ЧислоА называется пределом функции
в точке, если для любой-окрестности точкиА
найдется проколотая- окрестность точки
,такая, что
.

Это определение полезно проиллюстрировать рисунком.

Пример 5.
.

Действительно, возьмем
произвольно и найдем
, такое, что для всехх , удовлетворяющих неравенству
выполняется неравенство
. Последнее неравенство равносильно неравенству
, поэтому видим, что достаточно взять
. Утверждение доказано.

Справедлива

Теорема 1. Определения предела функции по Гейне и по Коши эквивалентны.

Доказательство . 1) Пусть
по Коши. Докажем, что это же число является пределом и по Гейне.

Возьмем
произвольно. Согласно определению 3 существует
, такое, что для всех
выполняется неравенство
. Пусть
– произвольная последовательность такая, что
при
. Тогда существует номерN такой, что для всех
выполняется неравенство
, поэтому
для всех
, т.е.

по Гейне.

2) Пусть теперь
по Гейне. Докажем, что
и по Коши.

Предположим противное, т.е. что
по Коши. Тогда существует
такое, что для любого
найдется
,
и
. Рассмотрим последовательность
. Для указанного
и любогоn существует

и
. Это означает, что
, хотя
, т.е. числоА не является пределом
в точкепо Гейне. Получили противоречие, которое и доказывает утверждение. Теорема доказана.

Теорема 2 (о единственности предела). Если существует предел функции в точке, то он единственный.

Доказательство . Если предел определен по Гейне, то его единственность вытекает из единственности предела последовательности. Если предел определен по Коши, то его единственность вытекает из эквивалентности определений предела по Коши и по Гейне. Теорема доказана.

Аналогично критерию Коши для последовательностей имеет место критерий Коши существования предела функции. Прежде чем его сформулировать, дадим

Определение 4. Говорят, что функция
удовлетворяет условию Коши в точке, если для любого
существует

, таких, что
и
, выполняется неравенство
.

Теорема 3 (критерий Коши существования предела). Для того чтобы функция
имела в точкеконечный предел, необходимо и достаточно, чтобы в этой точке функция удовлетворяла условию Коши.

Доказательство .Необходимость . Пусть
. Надо доказать, что
удовлетворяет в точкеусловию Коши.

Возьмем
произвольно и положим
. По определению предела длясуществует
, такое, что для любых значений
, удовлетворяющих неравенствам
и
, выполняются неравенства
и
. Тогда

Необходимость доказана.

Достаточность . Пусть функция
удовлетворяет в точкеусловию Коши. Надо доказать, что она имеет в точкеконечный предел.

Возьмем
произвольно. По определению 4 найдется
, такое, что из неравенств
,
следует, что
– это дано.

Покажем сначала, что для всякой последовательности
, сходящейся к, последовательность
значений функции сходится. Действительно, если
, то, в силу определения предела последовательности, для заданного
найдется номерN , такой, что для любых

и
. Поскольку
в точкеудовлетворяет условию Коши, имеем
. Тогда по критерию Коши для последовательностей последовательность
сходится. Покажем, что все такие последовательности
сходятся к одному и тому же пределу. Предположим противное, т.е. что есть последовательности
и
,
,
, такие, что. Рассмотрим последовательность. Ясно, что она сходится к, поэтому по доказанному выше последовательностьсходится, что невозможно, так как подпоследовательности
и
имеют разные пределыи. Полученное противоречие показывает, что=. Поэтому по определению Гейне функция имеет в точкеконечный предел. Достаточность, а значит и теорема, доказаны.

Функцией y = f(x) называется закон (правило), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y .

Элемент x ∈ X называют аргументом функции или независимой переменной .
Элемент y ∈ Y называют значением функции или зависимой переменной .

Множество X называется областью определения функции .
Множество элементов y ∈ Y , которые имеют прообразы в множестве X , называется областью или множеством значений функции .

Действительная функция называется ограниченной сверху (снизу) , если существует такое число M , что для всех выполняется неравенство:
.
Числовая функция называется ограниченной , если существует такое число M , что для всех :
.

Верхней гранью или точной верхней границей действительной функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s , для которого для всех и для любого , найдется такой аргумент , значение функции от которого превосходит s′ : .
Верхняя грань функции может обозначаться так:
.

Соответственно нижней гранью или точной нижней границей действительной функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i , для которого для всех и для любого , найдется такой аргумент , значение функции от которого меньше чем i′ : .
Нижняя грань функции может обозначаться так:
.

Определение предела функции

Определение предела функции по Коши

Конечные пределы функции в конечных точках

Пусть функция определена в некоторой окрестности конечной точки за исключением, может быть, самой точки . в точке , если для любого существует такое , зависящее от , что для всех x , для которых , выполняется неравенство
.
Предел функции обозначается так:
.
Или при .

С помощью логических символов существования и всеобщности определение предела функции можно записать следующим образом:
.

Односторонние пределы.
Левый предел в точке (левосторонний предел):
.
Правый предел в точке (правосторонний предел):
.
Пределы слева и справа часто обозначают так:
; .

Конечные пределы функции в бесконечно удаленных точках

Аналогичным образом определяются пределы в бесконечно удаленных точках.
.
.
.
Их часто обозначают так:
; ; .

Использование понятия окрестности точки

Если ввести понятие проколотой окрестности точки , то можно дать единое определение конечного предела функции в конечных и бесконечно удаленных точках:
.
Здесь для конечных точек
; ;
.
Любые окрестности бесконечно удаленных точек являются проколотыми:
; ; .

Бесконечные пределы функции

Определение
Пусть функция определена в некоторой проколотой окрестности точки (конечной или бесконечно удаленной). Предел функции f(x) при x → x 0 равен бесконечности , если для любого, сколь угодно большого числа M > 0 , существует такое число δ M > 0 , зависящее от M , что для всех x , принадлежащих проколотой δ M - окрестности точки : , выполняется неравенство:
.
Бесконечный предел обозначают так:
.
Или при .

С помощью логических символов существования и всеобщности определение бесконечного предела функции можно записать так:
.

Также можно ввести определения бесконечных пределов определенных знаков, равных и :
.
.

Универсальное определение предела функции

Используя понятие окрестности точки, можно дать универсальное определение конечного и бесконечно предела функции, применимое как для конечных (двусторонних и односторонних), так и для бесконечно удаленных точек:
.

Определение предела функции по Гейне

Пусть функция определена на некотором множестве X : .
Число a называется пределом функции в точке :
,
если для любой последовательности , сходящейся к x 0 :
,
элементы которой принадлежат множеству X : ,
.

Запишем это определение с помощью логических символов существования и всеобщности:
.

Если в качестве множества X взять левостороннюю окрестность точки x 0 , то получим определение левого предела. Если правостороннюю - то получим определение правого предела. Если в качестве множества X взять окрестность бесконечно удаленной точки, то получим определение предела функции на бесконечности.

Теорема
Определения предела функции по Коши и по Гейне эквивалентны.
Доказательство

Свойства и теоремы предела функции

Далее мы считаем, что рассматриваемые функции определены в соответствующей окрестности точки , которая является конечным числом или одним из символов: . Также может быть точкой одностороннего предела, то есть иметь вид или . Окрестность является двусторонней для двустороннего предела и односторонней для одностороннего.

Основные свойства

Если значения функции f(x) изменить (или сделать неопределенными) в конечном числе точек x 1 , x 2 , x 3 , ... x n , то это изменение никак не повлияет на существование и величину предела функции в произвольной точке x 0 .

Если существует конечный предел , то существует такая проколотая окрестность точки x 0 , на которой функция f(x) ограничена:
.

Пусть функция имеет в точке x 0 конечный предел, отличный от нуля:
.
Тогда, для любого числа c из интервала , существует такая проколотая окрестность точки x 0 , что для ,
, если ;
, если .

Если, на некоторой проколотой окрестности точки , - постоянная, то .

Если существуют конечные пределы и и на некоторой проколотой окрестности точки x 0
,
то .

Если , и на некоторой окрестности точки
,
то .
В частности, если на некоторой окрестности точки
,
то если , то и ;
если , то и .

Если на некоторой проколотой окрестности точки x 0 :
,
и существуют конечные (или бесконечные определенного знака) равные пределы:
, то
.

Доказательства основных свойств приведены на странице
«Основные свойства пределов функции ».

Арифметические свойства предела функции

Пусть функции и определены в некоторой проколотой окрестности точки . И пусть существуют конечные пределы:
и .
И пусть C - постоянная, то есть заданное число. Тогда
;
;
;
, если .

Если , то .

Доказательства арифметических свойств приведены на странице
«Арифметические свойства пределов функции ».

Критерий Коши существования предела функции

Теорема
Для того, чтобы функция , определенная на некоторой проколотой окрестности конечной или бесконечно удаленной точки x 0 , имела в этой точке конечный предел, необходимо и достаточно, чтобы для любого ε > 0 существовала такая проколотая окрестность точки x 0 , что для любых точек и из этой окрестности, выполнялось неравенство:
.

Предел сложной функции

Теорема о пределе сложной функции
Пусть функция имеет предел и отображает проколотую окрестность точки на проколотую окрестность точки . Пусть функция определена на этой окрестности и имеет на ней предел .
Здесь - конечные или бесконечно удаленные точки: . Окрестности и соответствующие им пределы могут быть как двусторонние, так и односторонние.
Тогда существует предел сложной функции и он равен :
.

Теорема о пределе сложной функции применяется в том случае, когда функция не определена в точке или имеет значение, отличное от предельного . Для применения этой теоремы, должна существовать проколотая окрестность точки , на которой множество значений функции не содержит точку :
.

Если функция непрерывна в точке , то знак предела можно применять к аргументу непрерывной функции:
.
Далее приводится теорема, соответствующая этому случаю.

Теорема о пределе непрерывной функции от функции
Пусть существует предел функции g(t) при t → t 0 , и он равен x 0 :
.
Здесь точка t 0 может быть конечной или бесконечно удаленной: .
И пусть функция f(x) непрерывна в точке x 0 .
Тогда существует предел сложной функции f(g(t)) , и он равен f(x 0) :
.

Доказательства теорем приведены на странице
«Предел и непрерывность сложной функции ».

Бесконечно малые и бесконечно большие функции

Бесконечно малые функции

Определение
Функция называется бесконечно малой при , если
.

Сумма, разность и произведение конечного числа бесконечно малых функций при является бесконечно малой функцией при .

Произведение функции, ограниченной на некоторой проколотой окрестности точки , на бесконечно малую при является бесконечно малой функцией при .

Для того, чтобы функция имела конечный предел , необходимо и достаточно, чтобы
,
где - бесконечно малая функция при .


«Свойства бесконечно малых функций ».

Бесконечно большие функции

Определение
Функция называется бесконечно большой при , если
.

Сумма или разность ограниченной функции, на некоторой проколотой окрестности точки , и бесконечно большой функции при является бесконечно большой функцией при .

Если функция является бесконечно большой при , а функция - ограничена, на некоторой проколотой окрестности точки , то
.

Если функция , на некоторой проколотой окрестности точки , удовлетворяет неравенству:
,
а функция является бесконечно малой при :
, и (на некоторой проколотой окрестности точки ), то
.

Доказательства свойств изложены в разделе
«Свойства бесконечно больших функций ».

Связь между бесконечно большими и бесконечно малыми функциями

Из двух предыдущих свойств вытекает связь между бесконечно большими и бесконечно малыми функциями.

Если функция являются бесконечно большой при , то функция является бесконечно малой при .

Если функция являются бесконечно малой при , и , то функция является бесконечно большой при .

Связь между бесконечно малой и бесконечно большой функцией можно выразить символическим образом:
, .

Если бесконечно малая функция имеет определенный знак при , то есть положительна (или отрицательна) на некоторой проколотой окрестности точки , то этот факт можно выразить так:
.
Точно также если бесконечно большая функция имеет определенный знак при , то пишут:
.

Тогда символическую связь между бесконечно малыми и бесконечно большими функциями можно дополнить следующими соотношениями:
, ,
, .

Дополнительные формулы, связывающие символы бесконечности, можно найти на странице
«Бесконечно удаленные точки и их свойства ».

Пределы монотонных функций

Определение
Функция , определенная на некотором множестве действительных чисел X называется строго возрастающей , если для всех таких что выполняется неравенство:
.
Соответственно, для строго убывающей функции выполняется неравенство:
.
Для неубывающей :
.
Для невозрастающей :
.

Отсюда следует, что строго возрастающая функция также является неубывающей. Строго убывающая функция также является невозрастающей.

Функция называется монотонной , если она неубывающая или невозрастающая.

Теорема
Пусть функция не убывает на интервале , где .
Если она ограничена сверху числом M : , то существует конечный предел . Если не ограничена сверху, то .
Если ограничена снизу числом m : , то существует конечный предел . Если не ограничена снизу, то .

Если точки a и b являются бесконечно удаленными, то в выражениях под знаками пределов подразумевается, что .
Эту теорему можно сформулировать более компактно.

Пусть функция не убывает на интервале , где . Тогда существуют односторонние пределы в точках a и b :
;
.

Аналогичная теорема для невозрастающей функции.

Пусть функция не возрастает на интервале , где . Тогда существуют односторонние пределы:
;
.

Доказательство теоремы изложено на странице
«Пределы монотонных функций ».

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

Сегодня на уроке мы разберём строгое определение последовательности и строгое определение предела функции , а также научимся решать соответствующие задачи теоретического характера. Статья предназначена, прежде всего, для студентов 1-го курса естественнонаучных и инженерно-технических специальностей, которые начали изучать теорию математического анализа, и столкнулись с трудностями в плане понимания этого раздела высшей математики. Кроме того, материал вполне доступен и учащимся старших классов.

За годы существования сайта я получил недобрый десяток писем примерно такого содержания: «Плохо понимаю математический анализ, что делать?», «Совсем не понимаю матан, думаю бросить учёбу» и т.п. И действительно, именно матан часто прореживает студенческую группу после первой же сессии. Почему так обстоят дела? Потому что предмет немыслимо сложен? Вовсе нет! Теория математического анализа не столь трудна, сколько своеобразна . И её нужно принять и полюбить такой, какая она есть =)

Начнём с самого тяжёлого случая. Первое и главное – не надо бросать учёбу. Поймите правильно, бросить, оно всегда успеется;-) Безусловно, если через год-два от выбранной специальности будет тошнить, тогда да – следует задуматься (а не пороть горячку!) о смене деятельности. Но пока стОит продолжить. И, пожалуйста, забудьте фразу «Ничего не понимаю» – так не бывает, чтобы СОВСЕМ ничего не понимать.

Что делать, если с теорией плохо? Это, кстати, касается не только математического анализа. Если с теорией плохо, то сначала нужно СЕРЬЁЗНО налечь на практику. При этом решаются сразу две стратегические задачи:

– Во-первых, значительная доля теоретических знаний появилась благодаря практике. И поэтому многие люди понимают теорию через… – всё верно! Нет-нет, вы не о том подумали =)

– И, во-вторых, практические навыки с большой вероятностью «вытянут» вас на экзамене, даже если…, но не будем так настраиваться! Всё реально и всё реально «поднять» в достаточно короткие сроки. Математический анализ – это мой любимый раздел высшей математики, и поэтому я просто не мог не протянуть вам ноги руку помощи:

В начале 1-го семестра обычно проходят пределы последовательностей и пределы функций. Не понимаете, что это такое и не знаете, как их решать? Начните со статьи Пределы функций , в которой «на пальцах» рассмотрено само понятие и разобраны простейшие примеры. Далее проработайте другие уроки по теме, в том числе урок о пределах последовательностей , на котором я фактически уже сформулировал строгое определение.

Какие значки помимо знаков неравенств и модуля вы знаете?

– длинная вертикальная палка читается так: «такое, что», «такая, что», «такой, что» либо «такие, что» , в нашем случае, очевидно, речь идёт о номере – поэтому «такой, что»;

– для всех «эн», бОльших чем ;

знак модуля означает расстояние , т.е. эта запись сообщает нам о том, что расстояние между значениями меньше эпсилон.

Ну как, убийственно сложно? =)

После освоения практики жду вас в следующем параграфе:

И в самом деле, немного порассуждаем – как сформулировать строгое определение последовательности? …Первое, что приходит на ум в свете практического занятия : «предел последовательности – это число, к которому бесконечно близко приближаются члены последовательности».

Хорошо, распишем последовательность :

Нетрудно уловить, что подпоследовательность бесконечно близко приближаются к числу –1, а члены с чётными номерами – к «единице».

А может быть предела два? Но тогда почему у какой-нибудь последовательности их не может быть десять или двадцать? Так можно далеко зайти. В этой связи логично считать, что если у последовательности существует предел, то он единственный .

Примечание : у последовательности нет предела, однако из неё можно выделить две подпоследовательности (см. выше), у каждой из которых существует свой предел.

Таким образом, высказанное выше определение оказывается несостоятельным. Да, оно работает для случаев вроде (чем я не совсем корректно пользовался в упрощённых объяснениях практических примеров) , но сейчас нам нужно отыскать строгое определение.

Попытка вторая: «предел последовательности – это число, к которому приближаются ВСЕ члены последовательности, за исключением, разве что их конечного количества». Вот это уже ближе к истине, но всё равно не совсем точно. Так, например, у последовательности половина членов вовсе не приближается к нулю – они ему просто-напросто равны =) К слову, «мигалка» вообще принимает два фиксированных значения.

Формулировку нетрудно уточнить, но тогда возникает другой вопрос: как записать определение в математических знаках? Научный мир долго бился над этой проблемой, пока ситуацию не разрешил известный маэстро , который, по существу, и оформил классический матанализ во всей его строгости. Коши предложил оперировать окрестностями , чем значительно продвинул теорию.

Рассмотрим некоторую точку и её произвольную -окрестность:

Значение «эпсилон» всегда положительно, и, более того, мы вправе выбрать его самостоятельно . Предположим, что в данной окрестности находится множество членов (не обязательно все) некоторой последовательности . Как записать тот факт, что, например десятый член попал в окрестность? Пусть он находится в правой её части. Тогда расстояние между точками и должно быть меньше «эпсилон»: . Однако если «икс десятое» расположено левее точки «а», то разность будет отрицательна, и поэтому к ней нужно добавить знак модуля : .

Определение : число называется пределом последовательности, если для любой его окрестности (заранее выбранной) существует натуральный номер – ТАКОЙ, что ВСЕ члены последовательности с бОльшими номерами окажутся внутри окрестности:

Или короче: , если

Иными словами, какое бы малое значение «эпсилон» мы ни взяли, рано или поздно «бесконечный хвост» последовательности ПОЛНОСТЬЮ окажется в этой окрестности.

Так, например, «бесконечный хвост» последовательности ПОЛНОСТЬЮ зайдёт в любую сколь угодно малую -окрестность точки . Таким образом, это значение является пределом последовательности по определению. Напоминаю, что последовательность, предел которой равен нулю, называют бесконечно малой .

Следует отметить, что для последовательности уже нельзя сказать «бесконечный хвост зайдёт » – члены с нечётными номерами по факту равны нулю и «никуда не заходят» =) Именно поэтому в определении использован глагол «окажутся». И, разумеется, члены такой последовательности, как тоже «никуда не идут». Кстати, проверьте, будет ли число её пределом.

Теперь покажем, что у последовательности не существует предела. Рассмотрим, например, окрестность точки . Совершенно понятно, что нет такого номера, после которого ВСЕ члены окажутся в данной окрестности – нечётные члены всегда будут «выскакивать» к «минус единице». По аналогичной причине не существует предела и в точке .

Закрепим материал практикой:

Пример 1

Доказать что предел последовательности равен нулю. Указать номер , после которого, все члены последовательности гарантированно окажутся внутри любой сколь угодно малой -окрестности точки .

Примечание : у многих последовательностей искомый натуральный номер зависит от значения – отсюда и обозначение .

Решение : рассмотрим произвольную найдётся ли номер – такой, что ВСЕ члены с бОльшими номерами окажутся внутри этой окрестности:

Чтобы показать существование искомого номера , выразим через .

Так как при любом значении «эн» , то знак модуля можно убрать:

Используем «школьные» действия с неравенствами, которые я повторял на уроках Линейные неравенства и Область определения функции . При этом важным обстоятельством является то, что «эпсилон» и «эн» положительны:

Поскольку слева речь идёт о натуральных номерах, а правая часть в общем случае дробна, то её нужно округлить:

Примечание : иногда для перестраховки справа добавляют единицу, но на самом деле это излишество. Условно говоря, если и мы ослабим результат округлением в меньшую сторону , то ближайший подходящий номер («тройка») всё равно будет удовлетворять первоначальному неравенству.

А теперь смотрим на неравенство и вспоминаем, что изначально мы рассматривали произвольную -окрестность, т.е. «эпсилон» может быть равно любому положительному числу.

Вывод : для любой сколько угодно малой -окрестности точки нашлось значение . Таким образом, число является пределом последовательности по определению. Что и требовалось доказать .

К слову, из полученного результата хорошо просматривается естественная закономерность: чем меньше -окрестность – тем больше номер , после которого ВСЕ члены последовательности окажутся в данной окрестности. Но каким бы малым ни было «эпсилон» – внутри всегда будет «бесконечный хвост», а снаружи – пусть даже большое, однако конечное число членов.

Как впечатления? =) Согласен, что странновато. Но строго! Пожалуйста, перечитайте и осмыслите всё ещё раз.

Рассмотрим аналогичный пример и познакомимся с другими техническими приёмами:

Пример 2

Решение : по определению последовательности нужно доказать, что (проговариваем вслух!!!) .

Рассмотрим произвольную -окрестность точки и проверим, существует ли натуральный номер – такой, что для всех бОльших номеров выполнено неравенство:

Чтобы показать существование такого , нужно выразить «эн» через «эпсилон». Упрощаем выражение под знаком модуля:

Модуль уничтожает знак «минус»:

Знаменатель положителен при любом «эн», следовательно, палки можно убрать:

Перетасовка:

Теперь надо бы извлечь квадратный корень, но загвоздка состоит в том, что при некоторых «эпсилон» правая часть будет отрицательной. Чтобы избежать этой неприятности усилим неравенство модулем:

Почему так можно сделать? Если, условно говоря, окажется, что , то подавно будет выполнено и условие . Модуль может только увеличить разыскиваемый номер , и это нас тоже устроит! Грубо говоря, если подходит сотый, то подойдёт и двухсотый! В соответствии с определением, нужно показать сам факт существования номера (хоть какого-то), после которого все члены последовательности окажутся в -окрестности. Кстати, именно поэтому нам не страшнО финальное округление правой части в бОльшую сторону.

Извлекаем корень:

И округляем результат:

Вывод : т.к. значение «эпсилон» выбиралось произвольно, то для любой сколько угодно малой -окрестности точки нашлось значение , такое, что для всех бОльших номеров выполнено неравенство . Таким образом, по определению. Что и требовалось доказать .

Советую особо разобраться в усилении и ослаблении неравенств – это типичные и очень распространённые приёмы математического анализа. Единственное, нужно следить за корректностью того или иного действия. Так, например, неравенство ни в коем случае нельзя ослаблять , вычитая, скажем, единицу:

Опять же условно: если номер точно подойдёт, то предыдущий может уже и не подойти.

Следующий пример для самостоятельного решения:

Пример 3

Используя определение последовательности, доказать, что

Краткое решение и ответ в конце урока.

Если последовательность бесконечно велика , то определение предела формулируется похожим образом: точка называется пределом последовательности, если для любого, сколь угодно большого числа существует номер , такой, что для всех бОльших номеров , будет выполнено неравенство . Число называют окрестностью точки «плюс бесконечность» :

Иными словами, какое бы большое значение мы ни взяли, «бесконечный хвост» последовательности обязательно зайдёт в -окрестность точки , оставив слева лишь конечное число членов.

Дежурный пример:

И сокращённая запись: , если

Для случая запишите определение самостоятельно. Правильная версия в конце урока.

После того, как вы «набили» руку на практических примерах и разобрались с определением предела последовательности, можно обратиться к литературе по математическому анализу и/или своей тетрадке с лекциями. Рекомендую закачать 1-й том Бохана (попроще – для заочников) и Фихтенгольца (более подробно и обстоятельно) . Из других авторов советую Пискунова, курс которого ориентирован на технические ВУЗы.

Попытайтесь добросовестно изучить теоремы, которые касаются предела последовательности, их доказательства, следствия. Поначалу теория может казаться «мутной», но это нормально – просто нужно привыкнуть. И многие даже войдут во вкус!

Строгое определение предела функции

Начнём с того же самого – как сформулировать данное понятие? Словесное определение предела функции формулируется значительно проще: «число является пределом функции , если при «икс», стремящемся к (и слева, и справа) , соответствующие значения функции стремятся к » (см. чертёж) . Всё вроде бы нормально, но слова словами, смысл смыслом, значок значком, а строгих математических обозначений маловато. И во втором параграфе мы познакомимся с двумя подходами к решению данного вопроса.

Пусть функция определена на некотором промежутке за исключением, возможно, точки . В учебной литературе общепринято считают, что функция там не определена:

Такой выбор подчёркивает суть предела функции : «икс» бесконечно близко приближается к , и соответствующие значения функции – бесконечно близко к . Иными словами, понятие предела подразумевает не «точный заход» в точки, а именно бесконечно близкое приближение , при этом не важно – определена ли функция в точке или нет.

Первое определение предела функции, что неудивительно, формулируется с помощью двух последовательностей. Во-первых, понятия родственные, и, во-вторых, пределы функций обычно изучают после пределов последовательностей.

Рассмотрим последовательность точек (на чертеже отсутствуют) , принадлежащих промежутку и отличных от , которая сходится к . Тогда соответствующие значения функции тоже образуют числовую последовательность, члены которой располагаются на оси ординат.

Предел функции по Гейне для любой последовательности точек (принадлежащих и отличных от ) , которая сходится к точке , соответствующая последовательность значений функции сходится к .

Эдуард Гейне – это немецкий математик. …И не надо тут ничего такого думать, гей в Европе всего лишь один – это Гей-Люссак =)

Второе определение предела соорудил… да-да, вы правы. Но сначала разберёмся в его конструкции. Рассмотрим произвольную -окрестность точки («чёрная» окрестность) . По мотивам предыдущего параграфа, запись означает, что некоторое значение функции находится внутри «эпсилон»-окрестности.

Теперь найдём -окрестность, которая соответствует заданной -окрестности (мысленно проводим чёрные пунктирные линии слева направо и затем сверху вниз) . Обратите внимание, что значение выбирается по длине меньшего отрезка, в данном случае – по длине более короткого левого отрезка. Более того, «малиновую» -окрестность точки можно даже уменьшить, поскольку в нижеследующем определении важен сам факт существования этой окрестности. И, аналогично, запись означает, что некоторое значение находится внутри «дельта»-окрестности.

Предел функции по Коши : число называется пределом функции в точке , если для любой заранее выбранной окрестности (сколь угодно малой) , существует -окрестность точки , ТАКАЯ , что: КАК ТОЛЬКО значения (принадлежащие ) входят в данную окрестность: (красные стрелки) – ТАК СРАЗУ соответствующие значения функции гарантированно зайдут в -окрестность: (синие стрелки) .

Должен предупредить, что в целях бОльшей доходчивости я немного сымпровизировал, поэтому не злоупотребляйте =)

Короткая запись: , если

В чём суть определения? Образно говоря, бесконечно уменьшая -окрестность, мы «сопровождаем» значения функции до своего предела, не оставляя им альтернативы приближаться куда-то ещё. Довольно необычно, но опять же строго! Чтобы как следует проникнуться идеей, перечитайте формулировку ещё раз.

! Внимание : если вам потребуется сформулировать только определение по Гейне или только определение по Коши , пожалуйста, не забывайте о существенном предварительном комментарии: «Рассмотрим функцию , которая определена на некотором промежутке за исключением, возможно, точки » . Я обозначил это единожды в самом начале и каждый раз не повторял.

Согласно соответствующей теореме математического анализа, определения по Гейне и по Коши эквивалентны, однако наиболее известен второй вариант (ещё бы!) , который также называют «предел на языке »:

Пример 4

Используя определение предела, доказать, что

Решение : функция определена на всей числовой прямой кроме точки . Используя определение , докажем существование предела в данной точке.

Примечание : величина «дельта»-окрестности зависит от «эпсилон», отсюда и обозначение

Рассмотрим произвольную -окрестность. Задача состоит в том, чтобы по этому значению проверить, существует ли -окрестность, ТАКАЯ , что из неравенства следует неравенство .

Предполагая, что , преобразуем последнее неравенство:
(разложили квадратный трёхчлен )



Последние материалы раздела:

SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение
SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко...

Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи
Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи

Учебно-методический комплект "Вертоград" включает Конспекты учителя, Рабочие Тетради и Сборники тестов по следующим предметам:1. ХРАМОВЕДЕНИЕ...

Перемещение Определить величину перемещения тела
Перемещение Определить величину перемещения тела

Когда мы говорим о перемещении, важно помнить, что перемещение зависит от системы отсчета, в которой рассматривается движение. Обратите внимание...