Знаки косинуса синуса и тангенса по четвертям. Знаки тригонометрических функций

Тип урока: систематизации знаний и промежуточного контроля.

Оборудование: тригонометрический круг, тесты, карточки с заданиями.

Цели урока: систематизировать изученный теоретический материал по определениям синуса, косинуса, тангенса угла; проверить степень усвоения знаний по данной теме и применение на практике.

Задачи:

  • Обобщить и закрепить понятия синуса, косинуса и тангенса угла.
  • Формировать комплексное представление о тригонометрических функциях.
  • Способствовать выработке у учащихся желания и потребности изучения тригонометрического материала; воспитывать культуру общения, умение работать в группах и потребности в самообразовании.

«Кто смолоду делает и думает сам, тот
становится потом, надёжнее, крепче, умнее.

(В.Шукшин)

ХОД УРОКА

I. Организационный момент

Класс представлен тремя группами. В каждой группе консультант.
Учитель сообщает тему, цели и задачи урока.

II. Актуализация знаний (фронтальная работа с классом)

1) Работа в группах по заданиям:

1. Сформулировать определение sin угла.

– Какие знаки имеет sin α в каждой координатной четверти?
– При каких значениях имеет смысл, выражение sin α, и какие значения оно может принимать?

2. Вторая группа те – же вопросы для cos α.

3. Третья группа ответы готовит по тем же вопросам tg α и ctg α.

В это время трое учащихся самостоятельно работают у доски по карточкам (представители разных групп).

Карточка № 1.

Практическая работа.
С помощью единичной окружности вычислить для угла 50 , 210 и – 210 значения sin α, cos α и tg α.

Карточка № 2.

Определить знак выражения: tg 275; cos 370; sin 790; tg 4,1 и sin 2.

Карточка № 3.

1) Вычислить:
2) Сравнить: cos 60 и cos 2 30 – sin 2 30

2) Устно:

а) Предложен ряд чисел: 1; 1,2; 3; , 0, , – 1. Среди них есть лишние. Какое свойство sin α или cos α могут выражать эти числа (Может ли sin α или cos α принимать эти значения).
б) Имеет ли смысл выражение: cos (–); sin 2; tg 3: ctg (– 5); ; ctg0;
ctg (– π). Почему?
в) Существует ли наименьшее и наибольшее значение sin или cos, tg, ctg.
г) Верно ли?
1) α = 1000 является углом II четверти;
2) α = – 330 является углом IV четверти.
д) Числам соответствует одна и та же точка на единичной окружности.

3) Работа у доски

№ 567 (2; 4) – Найти значение выражения
№ 583 (1-3) Определить знак выражения

Домашнее задание: таблица в тетради. № 567(1, 3) № 578

III. Усвоение дополнительных знаний. Тригонометрия в ладони

Учитель: Оказывается, значения синусов и косинусов углов «находятся» на вашей ладони. Протяните руку (любую) и разведите как можно сильнее пальцы (как на плакате). Приглашается один ученик. Мы измеряем углы между нашими пальцами.
Берется треугольник, где есть угол в 30, 45 и 60 90 и прикладываем вершину угла к бугру Луны на ладони. Бугор Луны находится на пересечении продолжений мизинца и большого пальца. Одну сторону совмещаем с мизинцем, а другую сторону – с одним из остальных пальцев.
Оказывается между мизинцем и большим пальцем угол 90, между мизинцем и безымянным – 30, между мизинцем и средним – 45, между мизинцем и указательным – 60. И это у всех людей без исключения

мизинец № 0 – соответствует 0,
безымянный № 1 – соответствует 30,
средний № 2 – соответствует 45,
указательный № 3 – соответствует 60,
большой № 4 – соответствует 90.

Таким образом, у нас на руке 4 пальца и запомним формулу:

№ пальца

Угол

Значение

Это просто мнемическое правило. Вообще значение sin α или cos α надо знать наизусть, но иногда это правило поможет в трудную минуту.
Придумайте правило для cos (углы без изменения, а отсчета от большого пальца). Физическая пауза, связанная со знаками sin α или cos α.

IV. Проверка усвоений ЗУН

Самостоятельная работа с обратной связью

Каждый ученик получает тест (4 варианта) и лист с ответами для всех одинаковый.

Тест

Вариант 1

1) При каком угле поворота радиус займет то же положение, что и при повороте на угол 50.
2) Найдите значение выражения: 4cos 60 – 3sin 90.
3) Какое из чисел меньше нуля: sin 140, cos 140, sin 50, tg 50.

Вариант 2

1) При каком угле поворота радиус займет тоже положении, что и при повороте на угол 10.
2) Найти значение выражения: 4cos 90 – 6sin 30.
3) Какое из чисел больше нуля: sin 340, cos 340, sin 240, tg (– 240).

Вариант 3

1) Найдите значение выражения: 2ctg 45 – 3cos 90.
2) Какое из чисел меньше нуля: sin 40, cos (– 10), tg 210, sin 140.
3) Углом какой четверти является угол α, если sin α > 0, cos α < 0.

Вариант 4

1) Найдите значение выражения: tg 60 – 6ctg 90.
2) Какое из чисел меньше нуля: sin(– 10), cos 140, tg 250, cos 250.
3) Углом какой четверти является угол α, если ctg α< 0, cos α> 0.

А
0

Б
Sin50

В
1

Г
– 350

Д
– 1

Е
Cos (– 140)

Ж
3

З
310

И
Cos 140

Л
350

М
2

Н
Cos 340

О
– 3

П
Cos 250

Р

С
Sin 140

Т
– 310

У
– 2

Ф
2

Х
Tg 50

Ш
Tg 250

Ю
Sin 340

Я
4

(слово – тригонометрия ключевое)

V. Сведения из истории тригонометрии

Учитель: Тригонометрия – это достаточно важный раздел математики для жизни человека. Современный вид тригонометрии придал крупнейший математик 18 столетия Леонард Эйлер – швейцарец по происхождению долгие годы работавший в России и являвшийся членом Петербургской академии наук. Он ввел известные определения тригонометрических функций сформулировал и доказал известные формулы, мы их учить будем позже. Жизнь Эйлера очень интересна и я советую познакомиться с ней по книге Яковлева «Леонард Эйлер».

(Сообщение ребят по данной теме)

VI. Подведение итогов урока

Игра «Крестики – нолики»

Участвуют двое учащихся самых активных. Их поддерживают группы. Решение заданий записывается в тетрадь.

Задания

1) Найти ошибку

а) sin 225 = – 1,1 в) sin 115 < О
б) cos 1000 = 2 г) cos (– 115) > 0

2) Выразите в градусах угол
3) Выразите в радианах угол 300
4) Какое наибольшее и наименьшее значение может иметь выражение: 1+ sin α;
5) Определите знак выражения: sin 260, cos 300.
6) В какой четверти числовой окружности расположена точка
7) Определите знаки выражения: cos 0,3π, sin 195, ctg 1, tg 390
8) Вычислите:
9) Сравнить: sin 2 и sin 350

VII. Рефлексия урока

Учитель: Где мы можем встретиться с тригонометрией?
На каких уроках в 9 классе, да и сейчас вы применяете понятия sin α, cos α; tg α; ctg α и с какой целью?

Позволяют установить ряд характерных результатов – свойств синуса, косинуса, тангенса и котангенса . В этой статье мы рассмотрим три основных свойства. Первое из них указывает знаки синуса, косинуса, тангенса и котангенса угла α в зависимости от того, углом какой координатной четверти является α . Дальше мы рассмотрим свойство периодичности, устанавливающее неизменность значений синуса, косинуса, тангенса и котангенса угла α при изменении этого угла на целое число оборотов. Третье свойство выражает зависимость между значениями синуса, косинуса, тангенса и котангенса противоположных углов α и −α .

Если же Вас интересуют свойства функций синуса, косинуса, тангенса и котангенса, то их можно изучить в соответствующем разделе статьи .

Навигация по странице.

Знаки синуса, косинуса, тангенса и котангенса по четвертям

Ниже в этом пункте будет встречаться фраза «угол I , II , III и IV координатной четверти». Объясним, что же это за углы.

Возьмем единичную окружность , отметим на ней начальную точку А(1, 0) , и повернем ее вокруг точки O на угол α , при этом будем считать, что мы попадем в точку A 1 (x, y) .

Говорят, что угол α является углом I , II , III , IV координатной четверти , если точка А 1 лежит в I , II , III , IV четверти соответственно; если же угол α таков, что точка A 1 лежит на любой из координатных прямых Ox или Oy , то этот угол не принадлежит ни одной из четырех четвертей.

Для наглядности приведем графическую иллюстрацию. На чертежах ниже изображены углы поворота 30 , −210 , 585 и −45 градусов, которые являются углами I , II , III и IV координатных четвертей соответственно.

Углы 0, ±90, ±180, ±270, ±360, … градусов не принадлежат ни одной из координатных четвертей.

Теперь разберемся, какие знаки имеют значения синуса, косинуса, тангенса и котангенса угла поворота α в зависимости от того, углом какой четверти является α .

Для синуса и косинуса это сделать просто.

По определению синус угла α - это ордината точки А 1 . Очевидно, что в I и II координатных четвертях она положительна, а в III и IV четвертях – отрицательна. Таким образом, синус угла α имеет знак плюс в I и II четвертях, а знак минус – в III и VI четвертях.

В свою очередь косинус угла α - это абсцисса точки A 1 . В I и IV четвертях она положительна, а во II и III четвертях – отрицательна. Следовательно, значения косинуса угла α в I и IV четвертях положительны, а во II и III четвертях – отрицательны.


Чтобы определить знаки по четвертям тангенса и котангенса нужно вспомнить их определения: тангенс – это отношение ординаты точки A 1 к абсциссе, а котангенс – отношение абсциссы точки A 1 к ординате. Тогда из правил деления чисел с одинаковыми и разными знаками следует, что тангенс и котангенс имеют знак плюс, когда знаки абсциссы и ординаты точки A 1 одинаковые, и имеют знак минус – когда знаки абсциссы и ординаты точки A 1 различны. Следовательно, тангенс и котангенс угла имеют знак + в I и III координатных четвертях, и знак минус – во II и IV четвертях.

Действительно, например, в первой четверти и абсцисса x , и ордината y точки A 1 положительны, тогда и частное x/y , и частное y/x – положительно, следовательно, тангенс и котангенс имеют знаки + . А во второй четверти абсцисса x – отрицательна, а ордината y – положительна, поэтому и x/y , и y/x – отрицательны, откуда тангенс и котангенс имеют знак минус.


Переходим к следующему свойству синуса, косинуса, тангенса и котангенса.

Свойство периодичности

Сейчас мы разберем, пожалуй, самое очевидное свойство синуса, косинуса, тангенса и котангенса угла. Оно состоит в следующем: при изменении угла на целое число полных оборотов значения синуса, косинуса, тангенса и котангенса этого угла не изменяются.

Это и понятно: при изменении угла на целое число оборотов мы из начальной точки А всегда будем попадать в точку А 1 на единичной окружности, следовательно, значения синуса, косинуса, тангенса и котангенса остаются неизменными, так как неизменны координаты точки A 1 .

С помощью формул рассматриваемое свойство синуса, косинуса, тангенса и котангенса можно записать так: sin(α+2·π·z)=sinα , cos(α+2·π·z)=cosα , tg(α+2·π·z)=tgα , ctg(α+2·π·z)=ctgα , где α - угол поворота в радианах, z – любое , абсолютная величина которого указывает количество полных оборотов, на которые изменяется угол α , а знак числа z указывает направление поворота.

Если же угол поворота α задан в градусах, то указанные формулы перепишутся в виде sin(α+360°·z)=sinα , cos(α+360°·z)=cosα , tg(α+360°·z)=tgα , ctg(α+360°·z)=ctgα .

Приведем примеры использования этого свойства. Например, , так как , а . Вот еще пример: или .

Это свойство вместе с формулами приведения очень часто используется при вычислении значений синуса, косинуса, тангенса и котангенса «больших» углов.

Рассмотренное свойство синуса, косинуса, тангенса и котангенса иногда называют свойством периодичности.

Свойства синусов, косинусов, тангенсов и котангенсов противоположных углов

Пусть А 1 – точка, полученная в результате поворота начальной точки А(1, 0) вокруг точки O на угол α , а точка А 2 – это результат поворота точки А на угол −α , противоположный углу α .

Свойство синусов, косинусов, тангенсов и котангенсов противоположных углов базируется на достаточно очевидном факте: упомянутые выше точки А 1 и А 2 либо совпадают (при ), либо располагаются симметрично относительно оси Ox . То есть, если точка A 1 имеет координаты (x, y) , то точка А 2 будет иметь координаты (x, −y) . Отсюда по определениям синуса, косинуса, тангенса и котангенса записываем равенства и .
Сопоставляя их, приходим к соотношениям между синусами, косинусами, тангенсами и котангенсами противоположных углов α и −α вида .
Это и есть рассматриваемое свойство в виде формул.

Приведем примеры использования этого свойства. Например, справедливы равенства и .

Остается лишь заметить, что свойство синусов, косинусов, тангенсов и котангенсов противоположных углов, как и предыдущее свойство, часто используется при вычислении значений синуса, косинуса, тангенса и котангенса, и позволяет полностью уйти от отрицательных углов.

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Синусом числа а называется ордината точки, изображающей это число на числовой окружности. Синусом угла в а радиан называется синус числа а .

Синус - функция числа x . Ее область определения

Область значений синуса - отрезок от -1 до 1 , так как любое число этого отрезка на оси ординат является проекцией какой-либо точки окружности, но никакая точка вне этого отрезка не является проекцией какой-либо из этих точек.

Период синуса

Знак синуса:

1. синус равен нулю при , где n - любое целое число;

2. синус положителен при , где n - любое целое число;

3. синус отрицателен при

Где n - любое целое число.

Синус - функция нечетная x и -x , то их ординаты - синусы - окажутся также противоположными. То есть для любого x .

1. Синус возрастает на отрезках , где n - любое целое число.

2. Cинус убывает на отрезке , где n - любое целое число.

При ;

при .

Косинус

Косинусом числа а называется абсцисса точки, изображающей это число на числовой окружности. Косинусом угла в а радиан называется косинус числа а .

Косинус - функция числа. Ее область определения - множество всех чисел, так как у любого числа можно найти ординату изображающей его точки.

Область значений косинуса - отрезок от -1 до 1 , так как любое число этого отрезка на оси абсцисс является проекцией какой-либо точки окружности, но никакая точка вне этого отрезка не является проекцией какой-либо из этих точек.

Период косинуса равен . Ведь через каждые положение точки, изображающей число, в точности повторяется.

Знак косинуса:

1. косинус равен нулю при , где n - любое целое число;

2. косинус положителен при , где n - любое целое число;

3. косинус отрицателен при , где n - любое целое число.

Косинус - функция четная . Во-первых, область определения этой функции есть множество всех чисел, а значит, симметрична относительно начала отсчета. А во-вторых, если отложить от начала два противоположных числа: x и -x , то их абсциссы - косинусы - окажутся равными. То есть

для любого x .

1. Косинус возрастает на отрезках , где n - любое целое число.

2. Косинус убывает на отрезках , где n - любое целое число.

при ;

при .

Тангенс

Тангенсом числа называется отношение синуса этого числа к косинусу этого числа: .

Тангенсом угла в а радиан называется тангенс числа а .

Тангенс - функция числа. Ее область определения - множество всех чисел, у которых косинус не равен нулю, так как никаких других ограничений в определении тангенса нет. И так как косинус равен нулю при , то , где .

Область значений тангенса

Период тангенса x (не равные ), отличающиеся друг от друга на , и провести через них прямую, то эта прямая пройдет через начало координат и пересечет линию тангенсов в некоторой точке t . Вот и получится, что , то есть число является периодом тангенса.

Знак тангенса: тангенс - отношение синуса к косинусу. Значит, он

1. равен нулю, когда синус равен нулю, то есть при , где n - любое целое число.

2. положителен, когда синус и косинус имеют одинаковые знаки. Это бывает только в первой и в третьей четвертях, то есть при , где а - любое целое число.

3. отрицателен, когда синус и косинус имеют разные знаки. Это бывает только во второй и в четвертой четвертях, то есть при , где а - любое целое число.

Тангенс - функция нечетная . Во-первых, область определения этой функции симметрична относительно начала отсчета. А во-вторых, . В силу нечетности синуса и четности косинуса, числитель полученной дроби равен , а ее знаменатель равен , а значит, сама эта дробь равна .

Вот и получилось, что .

Значит, тангенс возрастает на каждом участке своей области определения , то есть на всех интервалах вида , где а - любое целое число.

Котангенс

Котангенсом числа называется отношение косинуса этого числа к синусу этого числа: . Котангенсом угла в а радиан называется котангенс числа а . Котангенс - функция числа. Ее область определения - множество всех чисел, у которых синус не равен нулю, так как никаких других ограничений в определении котангенса нет. И так как синус равен нулю при , то , где

Область значений котангенса - множество всех действительных чисел.

Период котангенса равен . Ведь если взять любые два допустимые значения x (не равные ), отличающиеся друг от друга на , и провести через них прямую, то эта прямая пройдет через начало координат и пересечет линию котангенсов в некоторой точке t . Вот и получится, что , то есть, что число является периодом котангенса.



Последние материалы раздела:

Изменение вида звездного неба в течение суток
Изменение вида звездного неба в течение суток

Тема урока «Изменение вида звездного неба в течение года». Цель урока: Изучить видимое годичное движение Солнца. Звёздное небо – великая книга...

Развитие критического мышления: технологии и методики
Развитие критического мышления: технологии и методики

Критическое мышление – это система суждений, способствующая анализу информации, ее собственной интерпретации, а также обоснованности...

Онлайн обучение профессии Программист 1С
Онлайн обучение профессии Программист 1С

В современном мире цифровых технологий профессия программиста остается одной из самых востребованных и перспективных. Особенно высок спрос на...