Подвесные мосты. Сборка вантовых и висячих мостов

Мост, в к-ром основной несущей конструкцией является гибкий элемент - кабель (проволочный кабель, стальные канаты, шарнирная цепь), а проезжая часть к нему подвешена. Висячие мосты бывают чаще всего трехпролетные.

Для того чтобы уменьшить деформацию проезжей части при движении нагрузки, в висячих мостах применяют фермы или балки жесткости, роль к-рых возрастает с уменьшением пролета, т. к. при значительных пролетах постоянная нагрузка (собственный вес кабеля, подвесок и проезжей части) настолько велика, по сравнению с подвижной нагрузкой, что перемещения последней мало влияют на форму кабеля. Концы кабеля на берегах заделываются в анкерные массивы, иногда составляющие одно целое с устоями. При наличии скалистых берегов анкеры могут быть заложены непосредственно в скале. Иногда кабели соединяются по концам с балкой жесткости, образуя т. н. висячее пролетное строение с воспринятым распором. Кабели висячих мостов проходят через сооруженные на опорах моста металлич. или железобетонные башни (пилоны), высота к-рых зависит от принятого отношения стрелы провеса кабеля к пролету (обычно 1:8-1:10). С увеличением этого отношения уменьшается усилие в кабеле и возрастает жесткость пролетного строения, но высота пилонов, а следовательно, и стоимость при этом увеличиваются.

Строительство висячих мостов на автомобильных дорогах экономически целесообразно при пролетах свыше 300 м. Пролеты крупнейших В. м. превышают 1000 м - мост через пролив Золотые Ворота в Сан-Франциско пролетом 1281 м (см. Металлический мост). В 1960 начато сооружение В. м. через пролив Нэрроус в Нью-Йорке со средним пролетом 1300 м. Пролеты В. м. в Европе также возрастают. В 1960 в Англии начато стр-во двух висячих мостов с центральными пролетами ок. 1000 м. При существующих сортах стали максим, практически возможный пролет прибл. равен 3000 м. Однако с увеличением пролетов висячего моста уменьшается отношение ширины моста и высоты балки жесткости к длине пролета, вследствие чего ухудшаются аэродинамич. свойства моста-способность сопротивляться действию ветра. Известно неск. случаев разрушения В.м.в 19в.; в 1940 при ветре, скорость к-рого составляла лишь V, от расчетной, вновь построенный Такомский мост (США) разрушился от колебаний.

Этот мост при среднем пролете 854 м имел ширину всего 11,9 м, а высоту балки жесткости 2,44 м. После этого случая во мн. странах и, в частности, в СССР были проведены большие аналитические и эксперимент, исследования аэродинамич. устойчивости В. м., в результате к-рых нек-рые существующие мосты были усилены, а жесткость вновь сооружаемых мостов значительно увеличена.

Вследствие того, что висячие мосты, как правило, строятся через большие реки или морские проливы, при очень большой глубине воды, наличии приливов и отливов, штормовых ветров, интенсивном судоходстве, требующем высоты до 65 ж, сооружение таких мостов (особенно опор) сложно.

Монтаж висячих мостов начинается с пилонов. Стальные пилоны, высота к-рых достигает 210 м, а вес 20 тыс. т, обычно собираются ползучим подъемным краном, поднимающимся по пилону по мере его возведения. Способ монтажа кабелей зависит от их конструкции. Существуют 2 типа конструкции кабеля. Кабель первого типа образуется из стальных канатов заводского изготовления. Каждый канат при помощи подвесной дороги протягивается от анкера одного берега через оба пилона к анкеру другого берега, где и закрепляется. После подвески всех канатов они объединяются хомутами в кабель. Кабель второго типа, применяемый в больших американских висячих мостов, прядут на месте работ из стальной холоднотянутой проволоки толщ. ок. 5 мм с пределом прочности до 200 кг/мм2. Петли из такой проволоки при помощи канатной дороги попеременно протягиваются с одного берега на другой и объединяются в пряди, образующие кабель, к-рый при помощи спец. машины обматывается тонкой проволокой. Каждый из двух кабелей висячего моста через пролив Золотые Ворота диаметром 914 мм был образован из 61 пряди по 452 проволоки в каждой и весил 9500 т. Средняя скорость прядения кабеля составляла 768 т в месяц. После окончания монтажа кабелей к ним подвешиваются подвески, балки жесткости и проезжая часть. К висячим мостам относятся вантовые мосты , система ферм к-рых обеспечивает работу всех элементов на растяжение, а также балочно-вантовые мосты

Лит .: Передерий Г . П ., Курс мостов , т . 1-3, 6 изд ., М ., 1944-51; Steinman D. В ., A practical treatise on suspension bridges, N.Y.-L., 1929.

Строительство вантовых мостов

Впоследние годы в России было построено несколько вантовых металлических мостов: через р. Неву в г. Санкт-Петербургепо проекту Гипростроймоста с пролетом 382 м, через р. Обь в г. Сургуте, с однопилонной схемой с пролетом 408 м, в г. Москве в районе Серебряного Бора

соригинальным пилоном арочного типа. Закончено строительство моста черезпроливБосфорВосточныйвг. Владивостокеспролетом1104 м.

Выдающиеся мосты вантовой системы построены во Франции и других странах Западной Европы, а также в Юго–ВосточнойАзии (Китай, Вьетнам, Малайзия).

Вантовые мосты были разработаны и внедрены около 50 лет назад в ФРГ. По своей статической работе они представляют собой неразрезные балки, усиленные вантами. Вантовые системы аэродинамически более устойчивы, чем висячие. Общие деформации пролетного вантового строения происходят с участием продольных деформаций вант, в то время как в висячих мостах деформации происходят за счет изменения формы кабеля. Таким образом, при колебаниях висячих мостов диссипация энергии колебаний значительно меньше, чем в вантовых мостах, и их аэродинамическая устойчивость значительно ниже. Кроме этого, ванты из набора отдельных канатов более технологичны, чем кабели висячих мостов.

Для вантовых ферм применяют:

Витые канаты из оцинкованной проволоки;

Канаты из параллельных проволок (они имеют стабильные модули деформации);

Ванты конструкции фирмы Фрейсине из семипроволочных ка-

Витые канаты возможно применять при малых пролетах вантовых мостов 100…400 м из-занизкого модуля деформации (до

1,2×106 кгс/см2).

Ванты из параллельных проволок применяли в СССР, в частности при строительстве моста через р. Днепр в г. Киеве. Достоинством таких вант является высокий и стабильный модуль деформаций.

Ванты из канатов системы фирмы «Фрейссине» нашли преимущественное применение во многих странах мира (рис. 9.2), по этой технологии построены сотни мостов. Конструкция вант (рис. 9.2, б) формируется из «монострендов» (рис. 9.2, в), в состав которых входит семипроволочный канат из оцинкованной проволоки с двойной антикоррозийной защитной оболочкой. «Моностренды» поставляют с завода на строительную площадку в полностью готовом виде. На концах вант располагается анкерно-опорнаяконструкция, в которой канаты анкеруют с помощью конусных анкеров. Концевые участки канатов располагают в защитном коробе, заполненномантикоррозийнымсоставом(рис. 9.2, а).

Расчетный срок службы вант составляет 100 лет, однако, по мнению строителей, ванты могут прослужить и 500 лет.

Балки жесткости вантовых мостов по материалу могут быть стальными, сталежелезобетонными и железобетонные (рис. 9.3).

Стальные балки жесткости (рис. 5.3, а,б) имеют преимущества по весу для больших пролетов. Однако при плохо обтекаемой аэродинамической форме может возникнуть аэроупругая неустойчивость под действием ветра. Поэтому для больших пролетов стальным балкам жесткости необходимо придавать хорошо обтекаемую форму (см. рис. 9.3, б). Они имеют легкую несущую проезжую часть из сварных ортотропных (ортогональноанизотропных) плит. Верхний (покрывающий) лист толщиной не менее 12...14 мм, продольные ребра простейшего плоского типа, приваренные с шагом поперек пролета 300...400 мм. Продольные ребра имеют пролет 2...5 м. Основным достоинством плоских продольных ребер является простота заводского изготовления и монтажных стыков. Закрытые ребра лучше работают на сжатие, однако они значительно сложнее в изготовленииимонтаже, априэксплуатациинемогутбытьпокрашеныизнутри.

Поперечные ребра, служащие опорами для продольных, имеют, как правило, двутавровое сечение, в котором верхним поясом служит покрывающий лист ортотропной плиты.

Поставляемые заводами плиты могут иметь продольное и поперечное членение, которое предпочтительнее по объему монтажных соединений.

Лист настила монтируют на стыковой сварке. Большие длины швов и их нижнее положение позволяют широко применять автоматическую сварку под слоем флюса. При толщинах листа 12 мм и более применяется V-образнаяразделка листа.

Первый этап сварки иногда выполняют вручную по меднофлюсовой подкладке, что дает возможность выполнения последующих проходок автоматом.

Для стыкования ребер из-замалой их протяженности невозможно применение автоматической сварки, поэтому используют стыки на высокопрочных болтах. При замкнутых ребрах применение болтовых соединений невозможно и монтажные стыки делают сварными с помощью ручной сварки, которая не поддается дефектоскопии.

Основные схемы сборки вантовых пролетных строений со стальными балками жесткости:

Схема 1. Навесная сборка с минимальным количеством временных опор (рис. 9.4, г).

Схема 2 . Продольная надвижка балок жесткости с аванбеком и шпренгелем (рис. 9.4, а, в).

Схема 3. Сборка на временных опорах (см. рис. 9.4, г).

При железобетонных балках жесткости в вантовых мостах снижается динамическая составляющая от действия ветра и под-

вижной нагрузки. Предварительно напряженные балки жесткости применяют при пролетах до 400…500 м во многих странах, например, во Вьетнаме. При больших пролетах применение железобетона в балках жесткости становится нецелесообразным.

Наиболее часто железобетонную балку жесткости вантовых мостов возводят методом навесного бетонирования (рис. 9.4, б).

9.3. Монтаж висячих мостов

Интенсивное строительство висячих мостов началось с 1860 г. в США, где для кабелей начали применять высокопрочную проволоку, а известный инженер Д, Роблинг (John Roebling) изобрел метод прядения кабеля (Aerial-Spinningmethod).

Впоследние десятилетия в области строительства висячих мостов в мировом мостостроении достигнуты большие успехи. В частности, построен мост Акаши в Японии (Akashi-KaikyoBridge), который соединяет острова Хонсю и Сикоку. Главный пролет моста 1991 м, полная длина моста 3911 м. В Китае построен висячий мост через р. Янцзы с пролетом 1500 м, а также через пролив в г. Гонконге.

ВРоссии висячие мосты строят неоправданно мало. Уже существующие возводились либо из архитектурных соображений, либо под пешеходное движение (Крымский мост в г. Москве по проекту профессора К.К. Якобсона, пешеходный мост через р. Десну в г. Брянске по проекту Г.М. Яновского и др.).

Недостатком висячих мостов является их значительная гибкость и аэродинамическая неустойчивость. За время, которое прошло после катастрофы в 1940 г. Такомского моста, в США проводились значительные исследования моделей в аэродинамических трубах, по результатам которых были разработаны рациональные аэродинамически устойчивые геометрические формы поперечных сечений балок жесткости, повышена жесткостьконструкцийпролетныхстроенийнакручение(рис. 9.5).

Схемы висячих мостов по фасадам могут быть:

1) однопролетными с прямыми оттяжками, заделанными в анкерных опорах или в скале;

2) трехпролетными с крайними пролетами, подвешенными к кабелю;

3) многопролетными.

Висячие мосты из-запониженной жесткости строят преимущественно под автомобильную или только под пешеходную нагрузку. Если вантовые мосты могут иметь железобетонные балки жесткости, то висячие мосты строят только со стальными балками жесткости.

Рис. 9.4. Схемы возведения вантовых систем: а - метод продольной надвижки

Балки жесткости могут иметь поперечное сечение:

1)из двух главных балок, по которым устроена ортотропная плита для пролетов до 100 м;

2)из двух главных ферм с ортотропной верхней плитой с мощными продольными верхними и нижними связями, поперечными связями (рис. 9.5, а);

3)коробчатую балку жесткости хорошо обтекаемой формы

(рис. 9.5, б).

Пилоны висячих мостов по конструкции аналогичны пилонам вантовых и могут быть стальными или железобетонными. Кабели закрепляют в массивных анкерных массивных опорах, которые воспринимают сдвигающие и отрывающие вертикально направленные вверх силы.

Кабели монтируют «методом прядения» из параллельных оцинкованных проволок диаметром 5…7 мм, защищенных оцинковкой. Кабели висячих мостов малых пролетов до 100 м (мост через р. Десну в г. Брянске) сформированы из витых канатов заводского изготовления из оцинкованныхпроволок, которыеимеютменьшийобщиймодульдеформации.

В последние годы кабели монтируют из заготовленных на заводах пучков из параллельных проволок (Prefabricated Parallel Wire Strand method).

Кабели висячих мостов больших пролетов защищают от коррозии обмоткой оцинкованной проволокой с последующей окраской; в последнее время применяются полиэтиленовые рубашки.

Вскрытие кабеля Бруклинского моста в г. Нью-Йоркепоказало идеальное их состояние после более, чем столетней эксплуатации (незначительнаякоррозияобнаружена лишьвместахрасположенияподвесок).

Последовательность строительства

При строительстве внеклассных висячих мостов в подготовительный период проводят комплексные изыскания и исследования, разрабатывают проект моста. Конструкция висячего моста обладает значительной гибкостью и поэтому обязательным этапом стало проведение исследований моделей в аэродинамических трубах. Для уникальных мостов строят специальные трубы «пограничного слоя», в рабочей части которых воспроизводят особенности ландшафта и режима местных ветров. Главным результатом аэродинамических исследований является разработка геометрической формы балки жесткости (см. рис. 9.5).

Строительство висячего моста проводится по стадиям:

1)возведение анкерных (береговых) опор;

2)возведение фундаментов под пилоны и монтаж пилонов;

3)монтаж временных висячих подмостей для проведения монтажных работ по возведению несущего кабеля из параллельных проволок;

4)монтаж балки жесткости и подвесок.

Сложность монтажных работ заключается в необходимости перекрытия больших пролетов с расположением конструкций на

очень большой высоте, с пониженной жесткостью конструкций, необходимостью проведения искусственного регулирования в процессе монтажа (подтяжки подвесок).

Анкерные опоры воспринимают значительные сдвигающие и отрывающие усилия. Они имеют массивную конструкцию и должны быть надежно заделаны в грунт. В их конструкции в специальных доступных для осмотра камерах располагают специальные анкерные устройства для несущих кабелей моста. В этих камерах для уникальных мостов предусмотрены помещения, где расположены приборы для проведения мониторинга состояния конструкций в процессе эксплуатации и фиксации амплитуд колебаний сооружения.

В зависимости от геологического строения фундаменты анкер-

ных опор могут быть свайными на забивных сваях , на буровых сваях , на опускных колодцах или в виде замкнутой стены в грунте .

Глубина заложения подошвы фундаментов доходит при неблагоприятных геологических условиях до 60 м. При значительном обводнении грунтов применяется глубинное замораживание.

Фундаменты под пилоны могут иметь конструкцию аналогичную анкерным опорам. При большой глубине за рубежом используют опускные колодцы, подаваемые к месту опускания на плаву. Они могут иметь круглое или прямоугольное сечение, снизу имеются ножи. Тело кессона имеет двойные стенки, которые объединены сквозными связями. Кессоны изготавливают вблизи от строительной площадки, транспортируют на место опускания, закрепляют с помощью якорей. Далее проводится опускание колодца и подводное бетонирование внутренней полости. После укладки подводного бетона (underwater concrete) бетонируется верхняя плита. Так, кессон моста Akashi в Японии имеет диаметр 80 м и заложен на глубину 60 м. При бетонировании используют специальные бетонные заводы, расположенные на баржах. При бетонировании подводным способом применяют бетонолитные трубы, которыми подают бетон в отдельные отсеки между двойными стенками. Внутреннее ядро бетонируют на полное сечение с подачей смеси одновременно через большое количество бетонолитных труб. Используют цемент с низкой экзотермией. Бетонирование проводится непрерывно со скоростью 5 см/ч. Для верхней покрывающей плиты в сложных условиях (мосты через морские проливы) используют фибробетон и полимерные добавки

для исключения карбонизации. Верхняя поверхность плиты покрывается также полимерным материалом против карбонизации.

Монтаж пилонов. Основными трудностями монтажа являются:

Обеспечение точности изготовления и монтажа;

Колебания конструкции под действием ветра;

Необходимость обеспечения безопасности и скорости монтажа.

Впроцессе сборки необходимо обеспечивать точность по длине элементов ±1 мм, перпендикулярность 1/10000. Подавление колебаний осуществляют с помощь специальных гасителей, проводя предварительные испытания в аэродинамической трубе.

Для висячих мостов малых пролетов сборку пилонов можно провести в горизонтальном положении, а затем поднять конструкцию в проектное положение поворотом.

Монтаж кабелей. Существуют два метода монтажа кабелей из параллельных проволок висячих мостов больших пролетов:

Метод «прядения» кабеля из отдельных проволок (AerialSpinning method);

Метод монтажа из предварительно заготовленных канатов из па-

раллельных проволок (Prefabricated Parallel Wire Strand method).

Прядение кабелей имеет 150-летнююисторию и заключается в протяжке проволок с помощью специального прядильного колеса. Для прядения вначале устраивают рабочие подмости на вспомогательных канатах, подвешиваемых на пилонах. Эти подмости располагают по очертанию несущих кабелей, но несколько ниже их. Затем вдоль оси каждого кабеля подвешивают бесконечный канат для перемещения прядильных колес (рис. 9.6).

На анкерных опорах располагают бухты с проволокой. Между анкерными башмаками кабеля на устоях протягивают направляющую проволоку, регулируют ее длину и положение в пролетах. По ней уже без регулировки укладываются все последующие проволоки. Затем работы проводят по стадиям:

1.Конец проволоки с барабана обводят вокруг прядильного колеса и закрепляют конец на устое (эта операция одновременно проводится на обоих берегах).

2.Бесконечный канат тянет навстречу друг другу по две или более проволоки.

3.Когда прядильные колеса доходят до устоев, канат останавливают, проволоку снимают с колес и надевают на анкерный башмак.

4.Циклы прядения продолжают до момента, когда будет уложено расчетное количество проволок для образования пряди. Все смонтированные проволоки подтягивают и выравнивают с направляющей проволокой.

5.Все пряди объединяют в один кабель с помощью специального кольцевого пресса.

Метод монтажа из заранее приготовленных прядей более эффективен. При этом используется проволока оцинкованная с пределом прочности 1800 Н/мм2.

Монтаж балок жесткости осуществляют по схеме, зависящей от конструкции моста, пролета, режима реки и других факторов. В первую очередь монтируют подвески. Для пролетов до 100 м и небольшой глубине воды балку жесткости собирают на сплошных подмостях или временных опорах. При больших пролетах применяют навесную сборку.

При навесной сборке порядок монтажа балки жесткости выбирают таким, при котором деформации несущих кабелей по мере возрастания нагрузки в течение всей сборки будут иметь наименьшую величину. С этой целью сборку ведут от середины к концам пролета или с концов к середине.

Для больших пролетов балку жесткости целесообразно монтировать крупными блоками с подачей их на плаву. В мировой практике мостостроения стала популярной схема навесного монтажа, впервые примененная для Севернского висячего моста в Великобритании. Балка жесткости хорошо обтекаемой формы (рис. 9.5, б) сварной ортотропной конструкции разделяется на отдельные блоки длиной около 20 м.

На первой стадии на сборочной площадке на берегу из плоских элементовосуществляютукрупнительнуюсбокублоковбалкижесткости.

На второй стадии блоки балки жесткости герметизируют специальными заглушками в диафрагмах и подают к месту монтажа с помощью буксиров.

На третьей стадии методом навесной сборки специальными подъемниками блоки устанавливают в проектное положение.

Этот метод был использован при строительстве висячего моста через р. Иртыш в Казахстане с главным пролетом 750 м. Работы по строительству были выполнены японской фирмой в1998-2000гг.

Список литературы


3 января 1870 года в Нью-Йорке началось строительство Бруклинского моста , ставшего через три года самым длинным висячим мостом в мире. Это сложнейшая конструкция, которая задала пример всем последующим подобным инженерным сооружениям. И сегодня в нашем обзоре пойдет речь о десятке самых выдающихся и известных висячих мостов со всех уголков планеты, каждый из которых является рекордсменом или был таковым в прошлом.




Висячий мост через пролив Менай в британской провинции Уэльс считают первым по-настоящему великим подвесным мостом в истории Европы. Он открылся в 1826 году. До этого в Старом Свете строили лишь простые цепные висячие переходы, эта же конструкция была для своего времени невероятно сложной и полезной в инфраструктурном плане. Основной пролет этого моста имеет длину 176 метров.



Клифтонский подвесной мост через реку Эйвон в Бристоле является одним из самых известных сооружений города и всей Великобритании в целом. Это инженерное сооружение с висячим пролетом длиной 214 метров было сдано в эксплуатацию в 1864 году и быстро стало символом английской промышленной мощи. Интересен факт, что именно здесь 1 апреля 1979 года был совершен первый в мире банджи-прыжок.



В течение несколько десятилетий два крупных города на берегах пролива Ист-Ривер, Нью-Йорк и Бруклин не имели никакого другого сообщения, кроме как лодочного. Инженеры и власти этих населенных пунктов долго спорили, что лучше и дешевле построить: мост или тоннель, пока не остановились на первом варианте. В 1870 году началось строительство Бруклинского моста, ставшего в 1883 самым длинным подвесным сооружением в мире (длина пролета – 486 метров). Сейчас это один из символов Нью-Йорка, не меньший, чем небоскреб Эмпайр-стейт-билдинг или статуя Свободы.



Подвесной мост Амбассадор не зря имеет такое нарицательное имя (переводится с английского как «посол»). Ведь он соединяет не просто два берега реки Детройт, а два государства – Соединенные Штаты Америки и Канаду. Более того, через него проходит 25 процентов торговых перевозок между этими странами. Длина самого длинного пролета этого моста составляет 564 метра. Открыто данное сооружение в 1929 году.



Золотые Ворота являются самым известным и в США, если даже не во всем мире. Это сооружение с длиной пролета 1280 метров было построено в 1937 году, став рекордсменом по данному параметру на целых двадцать семь лет. Интересно, что сейчас этот мост является самым популярным на планете местом для совершения самоубийств. Считается, что прыжок с него стал причиной смерти более 1200 человек.



В России не так уж и много больших водных преград, ради преодоления которых можно было бы строить подвесные мосты. А потому самым известным подобным сооружением в стране является относительно небольшая конструкция, Крымский мост в Москве, открытый в 1938 году. Длина его висячего пролета составляет 168 метров.



В 1973 году случилось историческое событие для всей Евразии – в Стамбуле был открыт первый мост через Босфор. Он наконец-то соединил европейский и азиатский берега этого пролива, о чем мечтали местные властители на протяжении последнего тысячелетия. Общая длина этого сооружения составляет 1560 метров, а подвесного пролета в нем – 1074. Пешеходам доступ на него полностью запрещен – власти Стамбула не хотят отнимать у Сан-Франзиско титул «столицы самоубийц».



В 1998 году между островами Хонсю и Авадзи был открыт мост Акаси-Кайкё, ставший самым длинным подобным подвесным сооружением в мире. И уже более пятнадцати лет он удерживает это почетное звание. Длина крупнейшего висячего пролета в нем составляет 1991 метр. Если растянуть все его стальные нити, то получится единый трос, способный опоясать Земной шар более семи раз.



Длина самого крупного подвесного пролета моста Большой Бельт в Дании составляет 1624 метра. Это не самый большой показатель в мире (в этом его более чем на 300м опережает японский Акаси-Кайкё), зато рекордный в Европе. Открыто рекордное для Старого Света инженерное сооружение в 1998 году.



У моста через реку Сыдухэ в китайской провинции Хубэй длина крупнейшего висячего пролета составляет и того меньше – «всего» 900 метров. Однако это сооружение является самым высоким подвесным мостом в мире. Высочайшая его точка над уровнем земли расположена на отметке 496 метров. Объект функционирует с 2009 года.

В висячих металлических мостах главными несущими элемен­тами служат кабели или ванты, работающие на растяжение.

Кабели изготавливают из крученых проволочных канатов, а при особо больших пролетах - из мощного пучка параллельных про­волок. Кабель, имеющий в пролете (по фасаду моста) криволиней­ное очертание, проходит над вершинами пилонов и в виде оттяжек закрепляется концами в устоях. К. кабелю с помощью подвесов подвешивают балки жесткости с конструкцией проезжей части моста. В вантовых мостах балки жесткости поддерживаются пря­молинейными наклонными оттяжками, закрепленными.на пилонах. Эти наклонные элементы из стальных крученых проволочных канатов или параллельных высокопрочных проволок называют ван­тами. Бывают также мосты с Байтовыми фермами, образо­ванными из прямолинейных отрезков стальных канатов, соединен­ных между собой в узлах. Схема и геометрические размеры вантовой фермы должны быть выбраны так, чтобы при любых воздей­ствиях расчетных нагрузок все ее элементы работали только на растяжение.

Крученые канаты для кабелей и вантов висячих мостов делают из стальной холоднотянутой оцинкованной проволоки с пределом прочности 1500-1800 МПа. Благодаря высокой прочности сталь­ных проволочных канатов вес висячих мостов получается наимень­шим, что дает возможность перекрывать ими очень большие про­леты. Наибольший по пролету висячий мост с кабелем, построен­ный в 1964 г. в Нью-Йорке, перекрывает пролет в 1300 м. Пролеты мостов с вантами достигают 300 м и более.

Висячие мосты с кабелем. . Наивыгоднейшая величина стрелы обычно составляет около 1 / 8 - 1 / 9 пролета.

При различных положениях временной нагрузки кабель меняет свое геометрическое очертание. Например, при загружении вре­менной нагрузкой левой половины пролета (рис. 19.4, а) кабель сильно провисает в этом полупролете за счет правого. В резуль­тате пролетное строение значительно прогибается в загруженной.половине пролета вниз и в незагруженной вверх, образуя двухволновую (S-образную) форму линии прогиба моста. Чтобы умень­шить большие прогибы, вызываемые деформациями кабеля, уст­раивают балки (или фермы) жесткости (см. рис. 19.4, а). Чем больше высота балки жесткости, тем меньше прогибы висячего моста под временной нагрузкой.

Известны и другие способы увеличения жесткости висячих мостов, например прикрепление кабеля в середине пролета к балке жесткости или же устройство. наклонных подвесок, превращающих систему в своеобразную фер­му (рис. 19.4, в).

Висячие мосты в зависимости от способа закрепления концов " кабеля разделяют на распорные и безраспорные. В распорных мостах усилия оттяжек (см. рис. 19.4, а) и концов кабеля (см. рис. 19.4, б) передаются на грунт или на массивные устои. В безраспорных мостах, называемых также висячими мостами с воспринятым распором, горизонтальные слагающие Н усилия в оттяжка и концевых частях кабеля (рис. 19.4, б) передаются балке жест­кости и только вертикальные слагающие требуют закрепления в устоях. Из-за передачи распора на балки жесткости возрастает затрата на них металла, но зато устои имеют меньший объем, чем в распорных мостах. Поэтому безраспорные висячие мосты приме­няют для сравнительно небольших пролетов не более 200-300-м в случае, когда из-за плохих грунтов желательно освободить устои от передачи им распора.



В висячих мостах на кабель передают всю постоянную нагруз­ку пролетного строения, включая вес балок жесткости с конструк­цией проезжей части. Для этого применяют специальные способы монтажа и конструктивные меры.

Используемые для кабелей стальные проволочные канаты обыч­но имеют крестовую свивку, при которой проволоки в прядях и сами пряди навиты в противоположные стороны (рис. 19.5, а). Толщина проволок в канатах составляет 3-5 мм. Против ржав­ления проволоки покрывают оцинковкой и, кроме того, заполняют промежутки между проволоками, прядями и канатами (в кабеле) антикоррозионной смазкой. Применяют также плотные или за­крытые канаты, в которых наружные слои имеют проволоки фасонного сечения (рис. 19.5, б), предохраняющие внутренние про­волоки от проникания к ним влаги.

Кабели образуют из нескольких, рядов канатов, стянутых стальными хомутами (рис. 19.5, в), к которым прикрепляют под­вески из стальных тяжей или крученых проволочных канатов. В мостах особо больших пролетов кабель часто делают из большого числа параллельных проволок. Кабель изготавливают на месте, постепенно навешивая последовательные нити проволоки с по­мощью движущихся вдоль кабеля прядильных колес. Такой спо­соб называют прядением кабеля. Навешенные проволоки обжи­мают, обматывая мягкой проволокой и обычно покрывают еще за­щитной оболочкой.

Пилоны современных висячих мостов возводят металлическими или, реже, железобетонными. Пилоны представляют собой мощные стойки, шарнирно опертые или защемленные нижним концом на опорах. Пилоны, шарнирно опертые нижним концом, принято на­зывать качающимися. Кабель проходит над вершинами пилонов и опирается на них с помощью стальных литых подушек.

В поперечном направлении стойки пилонов связывают между собой распорками (рис. 19.5, г), а при большой высоте - систем поперечных элементов. Иногда стойкам пилона придают наклон в поперечном направлении (рис. 19.5, д). В некоторых случаях находят применение пилоны в виде отдельно стоящих стоек.

Концы кабелей или оттяжек закрепляют в массивных бетонных или железобетонных устоях; при прочном скальном грунте возмож­но непосредственное закрепление в нем концов кабелей. Стальные канаты, составляющие кабель, обычно разводят веерообразно и закрепляют каждый с помощью анкерных стаканов (рис. Л9.5, е).. Для этого конец каждого каната расплетают, заводя в полость анкерного стакана и заливают расплавленным цинковым, алю­миниевым или другим сплавом. В безраспорных висячих мостах кабель закрепляют на конце балки жесткости (рис. 19.5, ж) или обводят через торец балки и закрепляют в кладке устоя.

Балки жесткости висячих мостов могут быть в виде балок со сплошной стенкой, решетчатых ферм и коробчатой конструкции.

В зависимости от схемы висячего моста балки жесткости мо­гут быть разрезными (см. рис. 19.4, а) и неразрезными (см. рис. 19.4, б, в). Балки располагают в плоскостях кабелей (рис. 19.5,з), или принимают другое их расположение, исходя из конструктив­ных соображений. Подвески прикрепляют непосредственно к балкамжесткости, к поперечным балкам проезжей части и к их ко 1 " солям. Между балками жесткости устанавливают ветровые связи. В новейших мостах балку жесткости устраивают в виде единой коробчатой конструкции с обтекаемым очертанием для уменьше­ния воздействия ветра (рис. 19.5, и).

Байтовые мосты. Эти мосты с балкой жесткости, поддержива­емой системой наклонных вантов, опирающихся на пилоны, как разновидность висячих мостов получили за последние годы широ­кое распространение.

В вантовых мостах балку жесткости изготавливают неразрез­ной, а ванты располагают симметрично по обе стороны пилонов. Крайние ванты в береговых пролетах закрепляют нижними кон­цами, над. опорами с тем, чтобы вертикальные-слагающие усилий этих вантов передавались непосредственно опорам. Горизонталь­ные слагающие усилий всех вантов передаются балке жесткости.

Ванты могут быть закреплены на пилонах различно. Если они веерообразно спускаются от вершины пилона к балке жесткости (рис. 19.6, а), то система будет радиальной. Если ванты оперты на пилоны в нескольких точках по их высоте и располагаются па­раллельно друг другу, то систему называют «арфа» (рис. 19.6, б). Мост с вантами может иметь только один пилон (рис. 19.6, в). В поперечном сечении моста обычно устраивают две плоскости ван-тов и пилонов (см. рис. 19.6, а). На дорогах с разделительной полосой могут быть.применены одностоечные пилоны, установлен­ные по продольной оси моста. В этом случае ванты располагают тоже в осевой плоскости (ем. рис. 19.6, б) или направляют их от вершин пилонов наклонно к краям моста (см. рис. 19.6, в).

Соотношение пролетов в трехпролетных вантовых мостах обычно составляет 1: 2,5: 1, а в двухпролетных - 1: 1,5-4-1: 2. Достоинство мостов с балкой жесткости и вантами- большая их жесткость по сравнению с кабельными мостами.

В вантовых мостах с балкой жесткости ванты делают из кру­ченых проволочных канатов тех же видов, которые применяют для кабелей. Каждый вант образуют из пучка канатов, закрепленных нижними концами с помощью анкерных стаканов к балкам жест­кости. На пилонах ванты обычно проходят непрерывно и переда­ют на них свои усилия с помощью опорных частей.

При опирании на пилон нескольких вантов на разной высоте (система «арфа») один из них, обычно верхний, закрепляют не­подвижно, обводя его по. седловидной подушке. Остальные ванты опирают с помощью продольно подвижных опорных, чаете или шарнирно.поворачивающегося балансира (рис. 19.6, г).

Мост – одно из самых древних изобретений человечества. Мосты стали своеобразным символом самоутверждения человека и преодоления сил природы. Благодаря им сокращаются временные затраты на дорогу, а торговое и стратегическое значение становится просто колоссальным.

По своей пропускной нагрузке мосты делятся на железнодорожные, пешеходные, автомобильные и комбинированные. По статической схеме мосты могут быть балочными, понтонными, распорными или ферменными. TravelAsk представляет 10 наиболее длинных висячих мостов, входящих в категорию распорных систем. Главной отличительной особенностью таких мостов является их несущая конструкция, которая сделана из гибких растяжек. Благодаря ей проезжая часть может находиться в так называемом подвешенном состоянии.

Мост Макинак (или "Большой Мак")

Мост находится в Америке и пролегает над проливом Макино, объединяющим озера Гурон и Мичиган. Длина его основного пролета – 1158 метров.

Мост Хёгакустенброн

Швейцарский мост, пересекающий реку Онгерманэльвен. Длина основного пролета – 1210 метров.


Мост Золотые Ворота

Мост Золотые Ворота построен в . Он соединяет Сан-Франциско на севере полуострова с южной частью округа Марин. Его основной пролет имеет длину 1280 метров.

Мост Верразано

Еще один американский мост. Соединяет районы Нью-Йорка Бруклин и Статен-Айленд. Длина основного пролета равняется 1298 метрам.


Мост Цинма

Мост Цинма расположен в Гонконге и служит соединением между островом Цинг-И на востоке и островом Ма-Ван на западе. Имеет основной пролет в 1377 метров.


Мост Хамбер

Этот однопролетный подвесной мост находится в Великобритании. Он соединяет Восточный Йоркшир и Северный Линкольншир. Длина основного пролета – 1410 метров.

Мост Жуньян

Основной пролет у этого китайского моста равен 1490 метрам. Он соединяет два старинных города – Янчжоу и Чжэньцзян.


Мост Большой Бельт

Мост Большой Бельт в Дании и правда большой – его основной пролёт составляет в длину 1624 метра. Он пересекает одноименный пролив и соединяет острова Фюн и Зеландия.

Мост Сихоумэнь

Китайцы сильно постарались и построили второй по длине мост в мире, основной пролет которого равен 1650 метрам. Мост соединяет остров Цзиньтан и острова Цэцзы.



Последние материалы раздела:

SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение
SA. Парообразование. Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары Испарение и конденсация в природе сообщение

Все газы явл. парами какого-либо вещества, поэтому принципиальной разницы между понятиями газ и пар нет. Водяной пар явл. реальным газом и широко...

Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи
Программа и учебные пособия для воскресных школ А тех, кто вокруг, не судить за грехи

Учебно-методический комплект "Вертоград" включает Конспекты учителя, Рабочие Тетради и Сборники тестов по следующим предметам:1. ХРАМОВЕДЕНИЕ...

Перемещение Определить величину перемещения тела
Перемещение Определить величину перемещения тела

Когда мы говорим о перемещении, важно помнить, что перемещение зависит от системы отсчета, в которой рассматривается движение. Обратите внимание...