5 лінійних рівнянь прикладів. Схема вирішення найпростіших лінійних рівнянь

У статті розглянемо принцип розв'язання таких рівнянь як лінійні рівняння. Запишемо визначення цих рівнянь, поставимо загальний вигляд. Розберемо всі умови знаходження рішень лінійних рівнянь, використовуючи, зокрема, практичні приклади.

Звернемо увагу, що матеріал нижче містить інформацію щодо лінійних рівнянь з однією змінною. Лінійні рівняння із двома змінними розглядаються в окремій статті.

Yandex.RTB R-A-339285-1

Що таке лінійне рівняння

Визначення 1

Лінійне рівняння- Це рівняння, запис якого такий:
a · x = b, де x- Змінна, aі b- Деякі числа.

Таке формулювання використано у підручнику алгебри (7 клас) Ю.М.Макаричова.

Приклад 1

Прикладами лінійних рівнянь будуть:

3 · x = 11(Рівняння з однією змінною xпри а = 5і b = 10);

− 3 , 1 · y = 0 (лінійне рівняння зі змінною y, де а = - 3, 1і b = 0);

x = − 4і − x = 5 , 37(лінійні рівняння, де число aзаписано у явному вигляді і дорівнює 1 і - 1 відповідно. Для першого рівняння b = - 4;для другого - b = 5, 37) і т.п.

У різних навчальних матеріалах можуть траплятися різні визначення. Наприклад, Віленкін Н.Я. до лінійних відносить також ті рівняння, які можна перетворити на вигляд a · x = bза допомогою перенесення доданків з однієї частини до іншої зі зміною знака та приведення подібних доданків. Якщо слідувати такому трактуванню, рівняння 5 · x = 2 · x + 6 -також лінійне.

А ось підручник алгебри (7 клас) Мордковіча А.Г. задає такий опис:

Визначення 2

Лінійне рівняння з однією змінною x – це рівняння виду a · x + b = 0, де aі b- Деякі числа, звані коефіцієнтами лінійного рівняння.

Приклад 2

Прикладом лінійних рівнянь такого виду можуть бути:

3 · x − 7 = 0 (a = 3 , b = − 7) ;

1, 8 · y + 7, 9 = 0 (a = 1, 8, b = 7, 9).

Але також наведено приклади лінійних рівнянь, які ми вже використовували вище: виду a · x = b, наприклад, 6 · x = 35.

Ми відразу домовимося, що в цій статті під лінійним рівнянням з однією змінною ми розумітимемо рівняння запису a · x + b = 0, де x- Змінна; a, b – коефіцієнти. Подібна форма лінійного рівняння нам бачиться найбільш виправданою, оскільки лінійні рівняння – це рівняння алгебри першого ступеня. А інші рівняння, зазначені вище, та рівняння, наведені рівносильними перетвореннями на вигляд a · x + b = 0, Визначимо, як рівняння, що зводяться до лінійних рівнянь.

За такого підходу рівняння 5 · x + 8 = 0 – лінійне, а 5 · x = − 8- Рівняння, що зводиться до лінійного.

Принцип розв'язання лінійних рівнянь

Розглянемо, як визначити, чи буде задане лінійне рівняння мати коріння і, якщо так, то скільки і як його визначити.

Визначення 3

Факт наявності коренів лінійного рівняння визначаться значеннями коефіцієнтів aі b.Запишемо ці умови:

  • при a ≠ 0лінійне рівняння має єдиний корінь x = - b a;
  • при a = 0і b ≠ 0лінійне рівняння не має коріння;
  • при a = 0і b = 0лінійне рівняння має безліч коренів. По суті, у цьому випадку будь-яке число може стати коренем лінійного рівняння.

Дамо пояснення. Нам відомо, що в процесі розв'язування рівняння можливо здійснювати перетворення заданого рівняння в рівносильне йому, а значить має те ж коріння, що вихідне рівняння, або також не має коріння. Ми можемо робити наступні рівносильні перетворення:

  • перенести доданок з однієї частини до іншої, змінивши знак на протилежний;
  • помножити або розділити обидві частини рівняння на те саме число, не рівне нулю.

Таким чином, перетворимо лінійне рівняння a · x + b = 0, перенісши доданок bз лівої частини у праву частину зі зміною знака. Отримаємо: a · x = − b.

Отже, виробляємо поділ обох частин рівняння на рівне нулю число а,отримавши в результаті рівність виду x = - b a. Тобто, коли a ≠ 0 ,вихідне рівняння a · x + b = 0рівносильно рівності x = - ba , в якому очевидний корінь - ba .

Методом від протилежного можна продемонструвати, що знайдений корінь - єдиний. Задамо позначення знайденого кореня - b a як х 1 .Висловимо припущення, що є ще один корінь лінійного рівняння з позначенням х 2 .І звичайно: x 2 ≠ x 1 ,а це, у свою чергу, спираючись на визначення рівних чисел через різницю, рівнозначне умові x 1 − x 2 ≠ 0 .З урахуванням вищесказаного ми можемо скласти такі рівності, підставивши коріння:
a · x 1 + b = 0і a · x 2 + b = 0.
Властивість числових рівностей дає можливість зробити почленное віднімання частин рівностей:

a · x 1 + b − (a · x 2 + b) = 0 − 0, звідси: a · (x 1 − x 2) + (b − b) = 0і далі a · (x 1 - x 2) = 0 .Рівність a · (x 1 − x 2) = 0є невірною, оскільки раніше умовою було поставлено, що a ≠ 0і x 1 − x 2 ≠ 0 .Отримана суперечність і служить доказом того, що при a ≠ 0лінійне рівняння a · x + b = 0має лише один корінь.

Обґрунтуємо ще два пункти умов, що містять a = 0.

Коли a = 0лінійне рівняння a · x + b = 0запишеться як 0 · x + b = 0. Властивість множення числа на нуль дає нам право стверджувати, що яке б число не було взято як x, підставивши його на рівність 0 · x + b = 0отримаємо b = 0 . Рівність справедлива при b = 0; в інших випадках, коли b ≠ 0 ,рівність стає невірною.

Таким чином, коли a = 0та b = 0 , будь-яке число може стати коренем лінійного рівняння a · x + b = 0, оскільки при виконанні цих умов, підставляючи замість xбудь-яке число, отримуємо вірну числову рівність 0 = 0 . Коли ж a = 0і b ≠ 0лінійне рівняння a · x + b = 0зовсім не матиме коріння, оскільки при виконанні зазначених умов, підставляючи замість xбудь-яке число, отримуємо неправильну числову рівність b = 0.

Всі наведені міркування дають нам можливість записати алгоритм, що дає змогу знайти рішення будь-якого лінійного рівняння:

  • за видом запису визначаємо значення коефіцієнтів aі bта аналізуємо їх;
  • при a = 0і b = 0рівняння матиме нескінченно багато коренів, тобто. будь-яке число стане коренем заданого рівняння;
  • при a = 0і b ≠ 0
  • при a, відмінному від нуля, починаємо пошук єдиного кореня вихідного лінійного рівняння:
  1. перенесемо коефіцієнт bу праву частину зі зміною знака на протилежний, наводячи лінійне рівняння до виду a · x = − b;
  2. обидві частини отриманої рівності ділимо на число a, що дасть нам корінь заданого рівняння, що шукається: x = - b a .

Власне описана послідовність дій і є відповідь на питання, як знаходити рішення лінійного рівняння.

Насамкінець уточнимо, що рівняння виду a · x = bвирішуються за схожим алгоритмом з єдиною відмінністю, що число bу такому записі вже перенесено в потрібну частину рівняння, і при a ≠ 0можна відразу виконувати розподіл частин рівняння на число a.

Таким чином, щоб знайти рішення рівняння a · x = b,використовуємо такий алгоритм:

  • при a = 0і b = 0рівняння матиме нескінченно багато коренів, тобто. будь-яке число може стати його коренем;
  • при a = 0і b ≠ 0задане рівняння не матиме коріння;
  • при a, не рівному нулю, обидві частини рівняння поділяються на число a, що дає можливість знайти єдиний корінь, який дорівнює b a.

Приклади розв'язування лінійних рівнянь

Приклад 3

Необхідно вирішити лінійне рівняння 0 · x − 0 = 0.

Рішення

Після запису заданого рівняння бачимо, що a = 0і b = − 0(або b = 0,що те саме). Таким чином, задане рівняння може мати безліч коренів або будь-яке число.

Відповідь: x- Будь-яке число.

Приклад 4

Необхідно визначити, чи має коріння рівняння 0 · x + 2, 7 = 0.

Рішення

За записом визначаємо, що а = 0, b = 2, 7. Таким чином, задане рівняння не матиме коріння.

Відповідь:вихідне лінійне рівняння немає коренів.

Приклад 5

Задано лінійне рівняння 0 , 3 · x − 0 , 027 = 0 .Потрібно вирішити його.

Рішення

По запису рівняння визначаємо, що а = 0,3; b = - 0 , 027 що дозволяє нам стверджувати наявність єдиного кореня у заданого рівняння.

Наслідуючи алгоритм, переносимо b у праву частину рівняння, змінивши знак, отримуємо: 0,3 · x = 0,027.Далі розділимо обидві частини отриманої рівності на а = 0 3 тоді, x = 0 027 0 3 .

Здійснимо поділ десяткових дробів:

0,027 0,3 = 27 300 = 3 · 9 3 · 100 = 9 100 = 0, 09

Отриманий результат є коренем заданого рівняння.

Коротко рішення запишемо так:

0 , 3 · x - 0 , 027 = 0 , 0 , 3 · x = 0 , 027 , x = 0 , 027 0 , 3 , x = 0 , 09 .

Відповідь: x = 0,09.

Для наочності наведемо рішення рівняння запису a · x = b.

Приклад N

Задані рівняння: 1) 0 · x = 0; 2) 0 · x = − 9; 3) - 3 8 · x = - 3 3 4 . Потрібно вирішити їх.

Рішення

Усі задані рівняння відповідають запису a · x = b. Розглянемо по черзі.

У рівнянні 0 · x = 0, a = 0 і b = 0що означає: будь-яке число може бути коренем цього рівняння.

У другому рівнянні 0 · x = − 9: a = 0 і b = − 9 ,таким чином, це рівняння не матиме коріння.

По виду останнього рівняння - 3 8 · x = - 3 3 4 запишемо коефіцієнти: a = - 3 8, b = - 3 3 4, тобто. рівняння має єдиний корінь. Знайдемо його. Поділимо обидві частини рівняння на a отримаємо в результаті: x = - 3 3 4 - 3 8 . Спростимо дріб, застосувавши правило поділу негативних чисел з наступним переведенням змішаного числа в звичайний дріб і поділом звичайних дробів:

3 3 4 - 3 8 = 3 3 4 3 8 = 15 4 3 8 = 15 4 · 8 3 = 15 · 8 4 · 3 = 10

Коротко рішення запишемо так:

3 8 · x = - 3 3 4 , x = - 3 3 4 - 3 8 x = 10 .

Відповідь: 1) x– будь-яке число, 2) рівняння немає коренів, 3) x = 10 .

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter

І т.п., логічно познайомитися з рівняннями та іншими видами. Наступними по черзі йдуть лінійні рівняння, цілеспрямоване вивчення яких починається під час уроків алгебри у 7 класі.

Зрозуміло, спочатку треба пояснити, що таке лінійне рівняння, дати визначення лінійного рівняння, його коефіцієнтів, показати його загальний вигляд. Далі можна розбиратися, скільки розв'язків має лінійне рівняння в залежності від значень коефіцієнтів, і як знаходиться коріння. Це дозволить перейти до вирішення прикладів і тим самим закріпити вивчену теорію. У цій статті ми це зробимо: детально зупинимося на всіх теоретичних та практичних моментах, що стосуються лінійних рівнянь та їх вирішення.

Відразу скажемо, що тут ми розглядатимемо лише лінійні рівняння з однією змінною, а вже в окремій статті вивчатимемо принципи вирішення лінійних рівнянь із двома змінними.

Навігація на сторінці.

Що таке лінійне рівняння?

Визначення лінійного рівняння дається у вигляді його записи. Причому різних підручниках математики і алгебри формулювання визначень лінійних рівнянь мають деякі відмінності, які впливають суть питання.

Наприклад, у підручнику алгебри для 7 класу Ю. Н. Макарічева та ін. Лінійне рівняння визначається наступним чином:

Визначення.

Рівняння виду a x = bде x – змінна, a і b – деякі числа, називається лінійним рівнянням з однією змінною.

Наведемо приклади лінійних рівнянь, які відповідають озвученому визначенню. Наприклад, 5 x = 10 - це лінійне рівняння з однією змінною x тут коефіцієнт a дорівнює 5 а число b є 10 . Інший приклад: −2,3·y=0 – це також лінійне рівняння, але із змінною y , у якому a=−2,3 та b=0 . А в лінійних рівняннях x=−2 та −x=3,33 a не присутні у явному вигляді та дорівнюють 1 та −1 відповідно, при цьому у першому рівнянні b=−2 , а у другому - b=3,33 .

А роком раніше в підручнику математики Віленкіна Н. Я. лінійними рівняннями з одним невідомим крім рівнянь виду a x = b вважали і рівняння, які можна привести до такого виду за допомогою перенесення доданків з однієї частини рівняння в іншу з протилежним знаком, а також за допомогою приведення подібних доданків. Відповідно до цього визначення, рівняння виду 5 x = 2 x 6 і т.п. також лінійні.

У свою чергу у підручнику алгебри для 7 класів А. Г. Мордковича дається таке визначення:

Визначення.

Лінійне рівняння з однією змінною x- Це рівняння виду a x + b = 0, де a і b - деякі числа, звані коефіцієнтами лінійного рівняння.

Наприклад, лінійними рівняннями такого виду є 2·x−12=0 , тут коефіцієнт a дорівнює 2 , а b – дорівнює −12 і 0,2·y+4,6=0 з коефіцієнтами a=0,2 і b =4,6. Але в той же час там наводяться приклади лінійних рівнянь, що мають вигляд не x + b = 0, а x = b, наприклад, 3 x = 12 .

Давайте, щоб у нас надалі не було різночитань, під лінійним рівняннями з однією змінною x і коефіцієнтами a і b розумітимемо рівняння виду a x + b = 0 . Такий вид лінійного рівняння є найбільш виправданим, оскільки лінійні рівняння – це алгебраїчні рівнянняпершого ступеня. А всі інші вказані вище рівняння, а також рівняння, які за допомогою рівносильних перетворень наводяться до вигляду a x + b = 0, будемо називати рівняннями, що зводяться до лінійних рівнянь. При такому підході рівняння 2 · x + 6 = 0 - це лінійне рівняння, а 2 · x = -6 , 4 +25 · y = 6 + 24 · y, 4 · (x +5) = 12 і т.п. - Це рівняння, що зводяться до лінійних.

Як розв'язувати лінійні рівняння?

Тепер настав час розібратися, як вирішуються лінійні рівняння a x + b = 0 . Іншими словами, час дізнатися, чи має лінійне рівняння коріння, і якщо має, то скільки їх і як їх знайти.

Наявність коренів лінійного рівняння залежить від значень коефіцієнтів a і b. При цьому лінійне рівняння a x + b = 0 має

  • єдиний корінь при a≠0 ,
  • не має коріння при a=0 і b≠0 ,
  • має нескінченно багато коренів при a = 0 і b = 0, у цьому випадку будь-яке число є коренем лінійного рівняння.

Пояснимо, як було отримано ці результати.

Ми знаємо, що для вирішення рівнянь можна переходити від вихідного рівняння до рівносильних рівнянь , тобто до рівнянь з тими ж коренями або також як і вихідне, що не має коріння. Для цього можна використовувати такі рівносильні перетворення:

  • перенесення доданку з однієї частини рівняння до іншої з протилежним знаком,
  • а також множення або розподіл обидві частин рівняння на те саме відмінне від нуля число.

Отже, в лінійному рівнянні з однієї змінної виду a x + b = 0 ми можемо перенести доданок b з лівої частини в праву частину з протилежним знаком. При цьому рівняння набуде вигляду a x = − b .

А далі напрошується поділ обох частин рівняння на число a. Але є одне але: число a може дорівнювати нулю, в цьому випадку такий поділ неможливий. Щоб впоратися з цією проблемою, спочатку вважатимемо, що число a відмінне від нуля, а випадок рівного нулю a розглянемо окремо трохи пізніше.

Отже, коли a не дорівнює нулю, ми можемо обидві частини рівняння a·x=−b розділити на a , після цього воно перетворюється на вигляд x=(−b):a , цей результат можна записати з використанням дробової риси як .

Таким чином, при a≠0 лінійне рівняння a x + b = 0 рівносильне рівнянню , звідки видно його корінь .

Нескладно показати, що це коріння єдине, тобто, лінійне рівняння не має іншого коріння. Це дозволяє зробити метод протилежного.

Позначимо корінь як х 1 . Припустимо, існує ще один корінь лінійного рівняння, який позначимо x 2 , причому x 2 ≠x 1 , що в силу визначення рівних чисел через різницюеквівалентно умові x 1 −x 2 ≠0. Оскільки x 1 і x 2 коріння лінійного рівняння a x + b = 0, то мають місце числові рівності a x 1 + b = 0 і a x 2 + b = 0 . Ми можемо виконати віднімання відповідних частин цих рівностей, що нам дозволяють зробити властивості числових рівностей , маємо a x 1 +b−(a x 2 +b)=0−0 , звідки a x 1 x 2)+( b−b)=0 і далі a·(x 1 −x 2)=0 . А ця рівність неможлива, тому що і a≠0 і x 1 −x 2 ≠0 . Так ми дійшли суперечності, що доводить єдиність кореня лінійного рівняння a x + b = 0 при a≠0 .

Так ми вирішили лінійне рівняння a x + b = 0 при a≠0. Перший результат, наведений на початку цього пункту, є обґрунтованим. Залишилися ще два, які відповідають умові a = 0.

При a = 0 лінійне рівняння a x + b = 0 набуває вигляду 0 x + b = 0 . З цього рівняння і властивості множення чисел на нуль випливає, що яке б число ми не взяли як x, при його підстановці рівняння 0 x + b = 0 вийде числова рівність b = 0 . Це рівність правильне, коли b=0 , а інших випадках при b≠0 це рівність неправильне.

Отже, при a = 0 і b = 0 будь-яке число є коренем лінійного рівняння a x + b = 0 , так як за цих умов підстановка замість x будь-якого числа дає правильну числову рівність 0 = 0 . А при a = 0 і b ≠ 0 лінійне рівняння a x + b = 0 не має коренів, так як за цих умов підстановка замість x будь-якого числа призводить до невірної числової рівності b = 0 .

Наведені обґрунтування дозволяють сформувати послідовність дій, що дозволяє вирішити будь-яке лінійне рівняння. Отже, алгоритм вирішення лінійного рівняннятакий:

  • Спочатку по запису лінійного рівняння знаходимо значення коефіцієнтів a і b.
  • Якщо a=0 і b=0 , це рівняння має нескінченно багато коренів, саме, будь-яке число є коренем цього лінійного рівняння.
  • Якщо ж відмінно від нуля, то
    • коефіцієнт b переноситься в праву частину з протилежним знаком, при цьому лінійне рівняння перетворюється на вигляд a x = − b ,
    • після чого обидві частини отриманого рівняння діляться на відмінне від нуля число a, що дає шуканий корінь вихідного лінійного рівняння.

Записаний алгоритм є вичерпною відповіддю питанням, як вирішувати лінійні рівняння.

На закінчення цього пункту варто сказати, що схожий алгоритм застосовується для вирішення рівнянь виду a x = b. Його відмінність у тому, що з a≠0 відразу виконується розподіл обох частин рівняння цього числа, тут b вже у потрібної частини рівняння і потрібно здійснювати його перенесення.

Для вирішення рівнянь виду a x = b застосовується такий алгоритм:

  • Якщо a=0 і b=0 , то рівняння має безліч коренів, якими є будь-які числа.
  • Якщо a=0 і b≠0 то вихідне рівняння не має коренів.
  • Якщо ж a від нуля, то обидві частини рівняння діляться на відмінне від нуля число a , звідки перебуває єдиний корінь рівняння, рівний b/a .

Приклади розв'язування лінійних рівнянь

Переходимо до практики. Розберемо, як застосовується алгоритм розв'язання лінійних рівнянь. Наведемо рішення характерних прикладів, що відповідають різним значенням коефіцієнтів лінійних рівнянь.

приклад.

Розв'яжіть лінійне рівняння 0·x−0=0 .

Рішення.

У цьому лінійному рівнянні a=0 і b=−0 , що саме, b=0 . Отже, це рівняння має безліч коренів, будь-яке число є коренем цього рівняння.

Відповідь:

x – будь-яке число.

приклад.

Чи має рішення лінійне рівняння 0 x + 2,7 = 0?

Рішення.

У разі коефіцієнт a дорівнює нулю, а коефіцієнт b цього лінійного рівняння дорівнює 2,7 , тобто, відмінний від нуля. Тому лінійне рівняння не має коріння.

Лінійні рівняння. Рішення, приклади.

Увага!
До цієї теми є додаткові
матеріали у розділі 555.
Для тих, хто сильно "не дуже..."
І для тих, хто "дуже навіть...")

Лінійні рівняння.

Лінійні рівняння – не найскладніша тема шкільної математики. Але є там свої фішки, які можуть спантеличити навіть підготовленого учня. Розберемося?)

Зазвичай лінійне рівняння визначається як рівняння виду:

ax + b = 0 де а та b- Будь-які числа.

2х + 7 = 0. Тут а=2, b=7

0,1 х - 2,3 = 0 Тут а=0,1, b=-2,3

12х + 1/2 = 0 Тут а=12, b=1/2

Нічого складного, правда? Особливо, якщо не помічати слова: "де а і b – будь-які числа"... А якщо помітити, та необережно замислитись?) Адже, якщо а=0, b=0(будь-які числа можна?), то виходить кумедний вираз:

Але це ще не все! Якщо, скажімо, а=0,а b=5,виходить зовсім щось несусвітне:

Що напружує та підриває довіру до математики, так...) Особливо на іспитах. Але ж із цих дивних виразів ще й ікс знайти треба! Якого немає взагалі. І що дивно, цей ікс дуже просто знаходиться. Ми навчимося це робити. У цьому уроці.

Як дізнатися лінійне рівняння на вигляд? Це, дивлячись якийсь зовнішній вигляд.) Фішка в тому, що лінійними рівняннями називаються не тільки рівняння виду ax + b = 0 , але й будь-які рівняння, які перетвореннями та спрощеннями зводяться до цього виду. А хто ж його знає, зводиться воно чи ні?)

Чітко розпізнати лінійне рівняння можна у деяких випадках. Скажімо, якщо перед нами рівняння, в яких є лише невідомі в першому ступені та числа. Причому в рівнянні немає дробів з розподілом на невідоме , це важливо! А розподіл на число,або дріб числовий – це будь ласка! Наприклад:

Це лінійне рівняння. Тут є дроби, але немає іксів у квадраті, кубі і т.д., і немає іксів у знаменниках, тобто. ні поділу на ікс. А ось рівняння

не можна назвати лінійним. Тут ікси все в першому ступені, але є розподіл на вираз з іксом. Після спрощень та перетворень може вийти і лінійне рівняння, і квадратне, і все, що завгодно.

Виходить, що дізнатися лінійне рівняння в якомусь мудрому прикладі не можна, поки його майже не вирішиш. Це засмучує. Але у завданнях, як правило, не питають про вид рівняння, правда? У завданнях велять рівняння вирішувати.Це радує.)

Розв'язання лінійних рівнянь. приклади.

Все рішення лінійних рівнянь складається з тотожних перетворень рівнянь. До речі, ці перетворення (цілі два!) лежать в основі рішень всіх рівнянь математики.Іншими словами, рішення будь-якогорівняння починається з цих самих перетворень. Що стосується лінійних рівнянь, воно (рішення) цих перетвореннях і закінчується повноцінним відповіддю. Має сенс за посиланням сходити, правда?) Тим більше, там теж приклади розв'язання лінійних рівнянь є.

Для початку розглянемо найпростіший приклад. Без будь-яких підводних каменів. Нехай нам потрібно вирішити таке рівняння.

х - 3 = 2 - 4х

Це лінійне рівняння. Ікси все в першому ступені, поділу на ікс немає. Але, власне, нам все одно, яке це рівняння. Нам його вирішувати треба. Схема тут проста. Зібрати все, що з іксами в лівій частині рівності, все, що без іксів (числа) – у правій.

Для цього потрібно перенести - 4х у ліву частину, зі зміною знака, зрозуміло, а - 3 - У праву. До речі, це і є перше тотожне перетворення рівнянь.Здивовані? Значить, за посиланням не ходили, а дарма...) Отримаємо:

х + 4х = 2 + 3

Наводимо подібні, вважаємо:

Що нам не вистачає на повне щастя? Та щоб ліворуч чистий ікс був! П'ятірка заважає. Позбавляємося п'ятірки за допомогою другого тотожного перетворення рівнянь.А саме - ділимо обидві частини рівняння на 5. Отримуємо готову відповідь:

Приклад елементарний, ясна річ. Це для розминки.) Не дуже зрозуміло, чого я тут тотожні перетворення згадував? Ну добре. Беремо бика за роги.) Вирішимо щось солідніше.

Наприклад, ось це рівняння:

З чого почнемо? З іксами – вліво, без іксів – вправо? Можна і так. Маленькими кроками довгою дорогою. А можна відразу, універсальним та потужним способом. Якщо, звичайно, у вашому арсеналі є тотожні перетворення рівнянь.

Задаю вам ключове питання: що вам найбільше не подобається у цьому рівнянні?

95 осіб зі 100 дадуть відповідь: дроби ! Відповідь правильна. От і давайте їх позбудемося. Тому починаємо відразу зі другого тотожного перетворення. На що потрібно помножити дріб зліва, щоб знаменник скоротився геть? Правильно, на 3. А справа? 4. Але математика дозволяє нам множити обидві частини на те саме число. Як викрутимося? А помножимо обидві частини на 12! Тобто. загальний знаменник. Тоді і трійка скоротиться і четвірка. Не забуваймо, що множити треба кожну частину повністю. Ось як виглядає перший крок:

Розкриваємо дужки:

Зверніть увагу! Чисельник (х+2)я взяв у дужки! Це тому, що при множенні дробів, чисельник множиться весь, цілком! А тепер дроби і скоротити можна:

Розкриваємо дужки, що залишилися:

Не приклад, а суцільне задоволення!) Ось тепер згадуємо заклинання з молодших класів: з іксом – ліворуч, без ікса – праворуч!І застосовуємо це перетворення:

Наводимо такі:

І ділимо обидві частини 25, тобто. знову застосовуємо друге перетворення:

От і все. Відповідь: х=0,16

Беремо на замітку: щоб привести вихідне замороченого рівняння до приємного вигляду, ми використовували два (всього два!) тотожні перетворення- Перенесення вліво-вправо зі зміною знака і множення-розподіл рівняння на те саме число. Це універсальний спосіб! Працювати таким чином ми будемо з будь-якими рівняннями! Цілком будь-якими. Саме тому я про ці тотожні перетворення постійно занудно повторюю.)

Як бачимо, принцип розв'язання лінійних рівнянь простий. Беремо рівняння та спрощуємо його за допомогою тотожних перетворень до отримання відповіді. Основні проблеми тут у обчисленнях, а не в принципі вирішення.

Але... Зустрічаються в процесі розв'язання найелементарніших лінійних рівнянь такі сюрпризи, що можуть і у сильний ступор увігнати...) На щастя, таких сюрпризів може бути лише два. Назвемо їх особливими випадками.

Особливі випадки під час вирішення лінійних рівнянь.

Сюрприз перший.

Припустимо, трапилося вам найелементарніше рівняння, що-небудь, типу:

2х +3 = 5х +5 - 3х - 2

Злегка нудна, переносимо з іксом вліво, без ікса - вправо... Зі зміною знака, все чин-чинарем... Отримуємо:

2х-5х +3х = 5-2-3

Вважаємо, і... опаньки! Отримуємо:

Сама собою ця рівність не викликає заперечень. Нуль справді дорівнює нулю. Але ж ікс пропав! А ми зобов'язані записати у відповіді, чому дорівнює ікс.Інакше, рішення не вважається, так ...) Тупик?

Спокій! У таких сумнівних випадках рятують найзагальніші правила. Як розв'язувати рівняння? Що означає розв'язати рівняння? Це означає, знайти всі значення ікса, які, при підстановці у вихідне рівняння, дадуть нам правильну рівність.

Але вірна рівність у нас вжевийшло! 0=0, куди вже вірніше? Залишається збагнути, за яких іксів це виходить. Які значення ікса можна підставляти в вихіднерівняння, якщо ці ікси все одно скорочуються на повний нуль?Ну ж бо?)

Так! Ікси можна підставляти будь-які!Які бажаєте. Хоч 5, хоч 0,05, хоч -220. Вони все одно скоротяться. Якщо не вірите - можете перевірити.) Підставляйте будь-які значення ікса в вихіднерівняння та порахуйте. Весь час виходитиме чиста правда: 0=0, 2=2, -7,1=-7,1 і так далі.

Ось вам і відповідь: х – будь-яке число.

Відповідь можна записати різними математичними значками, суть не змінюється. Це абсолютно правильна і повноцінна відповідь.

Сюрприз другий.

Візьмемо те саме елементарне лінійне рівняння і змінимо в ньому лише одне число. Ось таке вирішуватимемо:

2х +1 = 5х +5 - 3х - 2

Після тих самих тотожних перетворень ми отримаємо щось інтригуюче:

Ось так. Вирішували лінійне рівняння, здобули дивну рівність. Говорячи математичною мовою, ми отримали неправильна рівність.А говорячи простою мовою, неправда це. Маячня. Але тим не менш, це марення - цілком вагома основа для правильного вирішення рівняння.)

Знову міркуємо, виходячи із загальних правил. Які ікси при підстановці у вихідне рівняння дадуть нам вірнерівність? Та ніякі! Немає таких іксів. Чого не підставляй, все скоротиться, залишиться марення.)

Ось вам і відповідь: рішень немає.

Це також цілком повноцінна відповідь. У математиці такі відповіді часто зустрічаються.

Ось так. Зараз, сподіваюся, зникнення іксів у процесі вирішення будь-якого (не тільки лінійного) рівняння вас анітрохи не збентежить. Справа вже знайома.)

Тепер, коли ми розібралися з усіма підводними каменями в лінійних рівняннях, має сенс їх вирішувати.

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

Навчитися вирішувати рівняння - це одне з головних завдань, які ставить алгебра перед учнями. Починаючи з найпростішого, коли воно складається з однієї невідомої, і переходячи до складніших. Якщо не засвоєно дій, які потрібно виконати з рівняннями з першої групи, буде важко розібратися з іншими.

Для продовження розмови потрібно домовитись про позначення.

Загальний вид лінійного рівняння з однією невідомою та принцип його вирішення

Будь-яке рівняння, яке може призвести до запису такого виду:

а * х = в,

називається лінійним. Це загальна формула. Але часто у завданнях лінійні рівняння записані у неявному вигляді. Тоді потрібно виконати тотожні перетворення, щоб отримати загальноприйнятий запис. До цих дій належать:

  • розкриття дужок;
  • переміщення всіх доданків зі змінною величиною в ліву частину рівності, а інших - у праву;
  • приведення подібних доданків.

Якщо невідома величина стоїть у знаменнику дробу, потрібно визначити її значення, у яких вираз нічого очікувати мати сенсу. Інакше кажучи, потрібно дізнатися область визначення рівняння.

Принцип, яким вирішуються все лінійні рівняння, зводиться до того що, щоб розділити значення правої частини рівності на коефіцієнт перед змінної. Тобто «х» дорівнюватиме в/а.

Приватні випадки лінійного рівняння та їх вирішення

Під час міркувань можуть бути такі моменти, коли лінійні рівняння приймають одне із особливих видів. Кожен із них має конкретне рішення.

У першій ситуації:

а * х = 0, причому а ≠ 0.

Вирішенням такого рівняння завжди буде х = 0.

У другому випадку «а» набуває значення дорівнює нулю:

0 * х = 0.

Відповіддю такого рівняння буде будь-яке число. Тобто має нескінченну кількість коренів.

Третя ситуація виглядає так:

0 * х = в, де у ≠ 0.

Це рівняння немає сенсу. Тому що коріння, яке задовольняє йому, не існує.

Загальний вигляд лінійного рівняння із двома змінними

З його назви стає зрозумілим, що невідомих величин у ньому вже дві. Лінійні рівняння із двома зміннимивиглядають так:

а * х + в * у = с.

Оскільки в записі зустрічаються дві невідомі, то відповідь буде виглядати як пара чисел. Тобто недостатньо вказати лише одне значення. Це буде неповна відповідь. Пара величин, у яких рівняння перетворюється на тотожність, є рішенням рівняння. Причому у відповіді завжди першою записують ту змінну, яка йде раніше за абеткою. Іноді кажуть, що ці числа йому задовольняють. Причому таких пар може бути безліч.

Як вирішити лінійне рівняння із двома невідомими?

Для цього потрібно просто підібрати будь-яку пару чисел, яка виявиться правильною. Для простоти можна прийняти одну з невідомих рівної будь-якому простому числу,а потім знайти другу.

При вирішенні часто доводиться виконувати дії спрощення рівняння. Вони називаються тотожними перетвореннями. Причому для рівнянь завжди справедливі такі властивості:

  • кожне доданок можна перенести на протилежну частину рівності, замінивши в нього знак на протилежний;
  • ліву та праву частини будь-якого рівняння дозволено ділити на одне й те саме число, якщо воно не дорівнює нулю.

Приклади завдань із лінійними рівняннями

Перше завдання.Розв'язати лінійні рівняння: 4х = 20, 8 (х - 1) + 2х = 2 (4 - 2х); (5х + 15) / (х + 4) = 4; (5х + 15)/(х + 3) = 4.

У рівнянні, яке йде в цьому списку першим, досить просто виконати поділ 20 на 4. Результат дорівнюватиме 5. Це і є відповідь: х=5.

Третє рівняння вимагає, щоб було виконано тотожне перетворення. Воно полягатиме у розкритті дужок та приведенні подібних доданків. Після першої дії рівняння набуде вигляду: 8х - 8 + 2х = 8 - 4х. Потім треба перенести всі невідомі до лівої частини рівності, а решта — до правої. Рівняння виглядатиме так: 8х + 2х + 4х = 8 + 8. Після приведення подібних доданків: 14х = 16. Тепер воно виглядає так само, як і перше, і рішення його легко. Відповіддю буде х = 8/7. Але в математиці потрібно виділяти цілу частину з неправильного дробу.Тоді результат перетвориться, і «х» дорівнюватиме одній цілій і одній сьомій.

У решті прикладів змінні перебувають у знаменнику. Це означає, що спочатку потрібно дізнатися, за яких значень рівняння визначені. Для цього потрібно виключити числа, за яких знаменники звертаються до нуля. У першому прикладі це «-4», у другому воно «-3». Тобто ці значення слід виключити з відповіді. Після цього потрібно помножити обидві частини рівності на вирази у знаменнику.

Розкривши дужки та навівши подібні доданки, у першому з цих рівнянь вийде: 5х + 15 = 4х + 16, а у другому 5х + 15 = 4х + 12. Після перетворень рішенням першого рівняння буде х = -1. Друге виявляється рівним "-3", це означає, що останнє рішень не має.

Друге завдання.Розв'язати рівняння: -7х + 2у = 5.

Припустимо, що перша невідома х = 1, тоді рівняння набуде вигляду -7 * 1 + 2у = 5. Перенісши в праву частину рівності множник «-7» і змінивши у нього знак на плюс, вийде, що 2у = 12. Значить, у =6. Відповідь: одне з розв'язків рівняння х = 1, у = 6.

Загальний вигляд нерівності з однією змінною

Усі можливі ситуації для нерівностей представлені тут:

  • а * х > в;
  • а*х< в;
  • а * х ≥в;
  • а * х ≤ ст.

Загалом воно виглядає як найпростіше лінійне рівняння, тільки знак рівності замінений на нерівність.

Правила тотожних перетворень нерівності

Так само як лінійні рівняння та нерівності можна видозмінювати за певними законами. Вони зводяться до наступного:

  1. до лівої та правої частин нерівності можна додати будь-яке буквене або числове вираз, причому знак нерівності залишиться тим самим;
  2. також можна і помножити або розділити на те саме позитивне число, від цього знову знак не змінюється;
  3. при множенні чи розподілі одне і те негативне число рівність залишиться вірним за умови зміни знака нерівності на протилежний.

Загальний вигляд подвійних нерівностей

У завданнях можуть бути такі варіанти нерівностей:

  • в< а * х < с;
  • в ≤ а * х< с;
  • в< а * х ≤ с;
  • у ≤ а * х ≤ с.

Подвійними воно називається, тому що обмежене знаками нерівності із двох сторін. Воно вирішується з допомогою тих самих правил, як і звичайні нерівності. І знаходження відповіді зводиться до низки тотожних перетворень. Поки що не буде отримано найпростіше.

Особливості вирішення подвійних нерівностей

Першою є його зображення на координатної осі. Використовувати цей спосіб для простих нерівностей немає потреби. А ось у складних випадках він може бути необхідним.

Для зображення нерівності слід зазначити на осі всі точки, які вийшли під час міркувань. Це і неприпустимі значення, що позначаються виколотими точками, і значення з нерівностей, що вийшло після перетворень. Тут також важливо правильно намалювати крапки. Якщо нерівність сувора, тобто< или >, то ці значення виколоті. У несуворих нерівностях точки потрібно зафарбовувати.

Потім слід позначити сенс нерівностей. Це можна зробити за допомогою штрихування або дуг. Їхнє перетинання вкаже відповідь.

Друга особливість пов'язані з його записом. Тут пропонується два варіанти. Перший – це остаточна нерівність. Другий – у вигляді проміжків. Ось із ним буває, що виникають труднощі. Відповідь проміжками завжди виглядає як змінна зі знаком приналежності та дужок із числами. Іноді проміжків виходить кілька, тоді між дужками потрібно написати символ "і". Ці знаки виглядають так: ∈ та ∩. Дужки проміжків теж грають свою роль. Кругла ставиться тоді, коли точку виключено із відповіді, а прямокутна включає це значення. Знак нескінченності завжди стоїть у круглій дужці.

Приклади розв'язання нерівностей

1. Вирішити нерівність 7 - 5х ≥ 37.

Після нескладних перетворень виходить: -5х ≥ 30. Розділивши на «-5» можна отримати такий вираз: х ≤ -6. Це вже відповідь, але її можна записати і по-іншому: х∈(-∞;-6).

2. Розв'яжіть подвійну нерівність -4< 2x + 6 ≤ 8.

Спочатку потрібно скрізь відняти 6. Вийде: -10< 2x ≤ 2. Теперь нужно разделить на 2. Неравенство примет вид: -5 < x ≤ 1. Изобразив ответ на числовой оси, сразу можно понять, что результатом будет промежуток от -5 до 1. Причем первая точка исключена, а вторая включена. То есть ответ у неравенства такой: х ∈ (-5; 1].



Останні матеріали розділу:

Федір Ємельяненко розкритикував турнір у грізному за бої дітей Омеляненко висловився про бої в чечні
Федір Ємельяненко розкритикував турнір у грізному за бої дітей Омеляненко висловився про бої в чечні

Заява уславленого спортсмена та президента Союзу ММА Росії Федора Омеляненка про неприпустимість дитячих боїв після бою дітей Рамзана Кадирова...

Саша пивоварова - біографія, інформація, особисте життя
Саша пивоварова - біографія, інформація, особисте життя

Ті часи, коли моделлю обов'язково мала бути дівчина з ляльковим личком, суворо відповідна параметрам 90-60-90, давно минули.

Міфологічні картини.  Головні герої та символи.  Картини на сюжет з історії стародавньої греції.
Міфологічні картини. Головні герої та символи. Картини на сюжет з історії стародавньої греції.

Вік вищого розквіту скульптури в період класики був і віком розквіту грецького живопису. Саме до цього часу відноситься чудове...