Чому дорівнює загальний знаменник дробів? Робота зі змішаними числами

Множення «хрест-навхрест»

Метод спільних дільників

Завдання. Знайдіть значення виразів:

Завдання. Знайдіть значення виразів:

Щоб оцінити, наскільки колосальний виграш дає метод найменшого загального кратного, спробуйте обчислити ці приклади методом «хрест-навхрест».

Загальний знаменник дробів

Зрозуміло, без калькулятора. Думаю, після цього коментарі будуть зайвими.

Дивіться також:

Спочатку я хотів включити методи приведення до спільного знаменника до параграфу «Складання та віднімання дробів». Але інформації виявилося так багато, а важливість її така велика (адже спільні знаменники бувають не тільки у числових дробів), що краще вивчити це питання окремо.

Отже, нехай ми маємо два дроби з різними знаменниками. А ми хочемо зробити так, щоби знаменники стали однаковими. На допомогу приходить основна властивість дробу, яка, нагадаю, звучить так:

Дріб не зміниться, якщо її чисельник і знаменник помножити на те саме число, відмінне від нуля.

Таким чином, якщо правильно підібрати множники, знаменники у дробів зрівняються – цей процес називається. А числа, які «вирівнюють» знаменники, називаються.

Навіщо взагалі треба приводити дроби до спільного знаменника? Ось лише кілька причин:

  1. Складання та віднімання дробів з різними знаменниками. Інакше цю операцію не виконати;
  2. Порівняння дробів. Іноді приведення до спільного знаменника значно спрощує це завдання;
  3. Розв'язання завдань на частки та відсотки. Відсоткові співвідношення є, по суті, звичайними виразами, що містять дроби.

Є багато способів знайти числа, при множенні на які знаменники дробів стануть рівними. Ми розглянемо лише три з них – у порядку зростання складності та, у певному сенсі, ефективності.

Множення «хрест-навхрест»

Найпростіший і найнадійніший спосіб, який гарантовано вирівнює знаменники. Діятимемо «напролом»: множимо перший дріб на знаменник другого дробу, а другий – на знаменник першого. У результаті знаменники обох дробів стануть рівними добутку вихідних знаменників. Погляньте:

Завдання. Знайдіть значення виразів:

Як додаткові множники розглянемо знаменники сусідніх дробів. Отримаємо:

Так, так усе просто. Якщо ви тільки починаєте вивчати дроби, краще працюйте саме цим методом - так ви застрахуєте себе від багатьох помилок і гарантовано отримаєте результат.

Єдиний недолік даного методу – доводиться багато рахувати, адже знаменники множаться «напролом», і в результаті можуть вийти дуже великі числа. Такою є розплата за надійність.

Метод спільних дільників

Цей прийом допомагає набагато скоротити обчислення, але, на жаль, він застосовується досить рідко. Метод полягає в наступному:

  1. Перш, ніж діяти «напролом» (тобто методом «хрест-навхрест»), погляньте на знаменники. Можливо, один із них (той, який більше) ділиться на інший.
  2. Число, одержане в результаті такого поділу, буде додатковим множником для дробу з меншим знаменником.
  3. При цьому дріб із великим знаменником взагалі не треба ні на що множити – у цьому й полягає економія. Заодно різко знижується ймовірність помилки.

Завдання. Знайдіть значення виразів:

Зауважимо, що 84: 21 = 4; 72: 12 = 6. Оскільки в обох випадках один знаменник ділиться без залишку на інший, застосовуємо метод спільних множників. Маємо:

Зауважимо, що другий дріб взагалі ніде ні на що не множився. Фактично, ми скоротили обсяг обчислень вдвічі!

До речі, дроби у цьому прикладі я взяв не випадково. Якщо цікаво, спробуйте порахувати їх методом «хрест-навхрест». Після скорочення відповіді вийдуть такими самими, але роботи буде набагато більше.

У цьому полягає сила методу спільних дільників, але, повторюся, застосовувати його можна лише тому випадку, коли з знаменників ділиться на інший без залишку. Що буває досить рідко.

Метод найменшого загального кратного

Коли ми наводимо дроби до спільного знаменника, ми, по суті, намагаємося знайти таке число, яке ділиться на кожен із знаменників. Потім наводимо до цього знаменники обох дробів.

Таких чисел дуже багато, і найменше їх зовсім не обов'язково дорівнюватиме прямому твору знаменників вихідних дробів, як це передбачається в методі «хрест-навхрест».

Наприклад, для знаменників 8 та 12 цілком підійде число 24, оскільки 24: 8 = 3; 24: 12 = 2. Це число набагато менше за добуток 8 · 12 = 96.

Найменше число, яке ділиться на кожен із знаменників, називається їх (НОК).

Позначення: найменше загальне кратне чисел a та b позначається НОК(a; b). Наприклад, НОК(16; 24) = 48; НОК(8; 12) = 24.

Якщо вам вдасться знайти таке число, підсумковий обсяг обчислень буде мінімальним. Подивіться на приклади:

Як знайти найменший спільний знаменник

Знайдіть значення виразів:

Зауважимо, що 234 = 117 · 2; 351 = 117 · 3. Множники 2 та 3 взаємно прості (не мають спільних дільників, крім 1), а множник 117 – загальний. Тому НОК(234; 351) = 117 · 2 · 3 = 702.

Аналогічно, 15 = 5 · 3; 20 = 5 · 4. Множники 3 і 4 взаємно прості, а множник 5 – загальний. Тому НОК(15; 20) = 5 · 3 · 4 = 60.

Тепер наведемо дроби до спільних знаменників:

Зверніть увагу, наскільки корисним виявилося розкладання вихідних знаменників на множники:

  1. Виявивши однакові множники, ми одразу вийшли на найменше загальне кратне, що, власне кажучи, є нетривіальним завданням;
  2. З отриманого розкладання можна дізнатися, яких множників не вистачає кожного з дробів. Наприклад, 234 · 3 = 702, отже, для першого дробу додатковий множник дорівнює 3.

Не думайте, що таких складних дробів у прикладах не буде. Вони зустрічаються постійно, і наведені вище завдання – не межа!

Єдина проблема - як знайти цей НОК. Іноді все знаходиться за кілька секунд, буквально «на око», але загалом це складне обчислювальне завдання, яке потребує окремого розгляду. Тут ми цього не стосуватимемо.

Дивіться також:

Приведення дробів до спільного знаменника

Спочатку я хотів включити методи приведення до спільного знаменника до параграфу «Складання та віднімання дробів». Але інформації виявилося так багато, а важливість її така велика (адже спільні знаменники бувають не тільки у числових дробів), що краще вивчити це питання окремо.

Отже, нехай ми маємо два дроби з різними знаменниками. А ми хочемо зробити так, щоби знаменники стали однаковими. На допомогу приходить основна властивість дробу, яка, нагадаю, звучить так:

Дріб не зміниться, якщо її чисельник і знаменник помножити на те саме число, відмінне від нуля.

Таким чином, якщо правильно підібрати множники, знаменники у дробів зрівняються – цей процес називається. А числа, які «вирівнюють» знаменники, називаються.

Навіщо взагалі треба приводити дроби до спільного знаменника?

Загальний знаменник, поняття та визначення.

Ось лише кілька причин:

  1. Складання та віднімання дробів з різними знаменниками. Інакше цю операцію не виконати;
  2. Порівняння дробів. Іноді приведення до спільного знаменника значно спрощує це завдання;
  3. Розв'язання завдань на частки та відсотки. Відсоткові співвідношення є, по суті, звичайними виразами, що містять дроби.

Є багато способів знайти числа, при множенні на які знаменники дробів стануть рівними. Ми розглянемо лише три з них – у порядку зростання складності та, у певному сенсі, ефективності.

Множення «хрест-навхрест»

Найпростіший і найнадійніший спосіб, який гарантовано вирівнює знаменники. Діятимемо «напролом»: множимо перший дріб на знаменник другого дробу, а другий – на знаменник першого. У результаті знаменники обох дробів стануть рівними добутку вихідних знаменників. Погляньте:

Завдання. Знайдіть значення виразів:

Як додаткові множники розглянемо знаменники сусідніх дробів. Отримаємо:

Так, так усе просто. Якщо ви тільки починаєте вивчати дроби, краще працюйте саме цим методом - так ви застрахуєте себе від багатьох помилок і гарантовано отримаєте результат.

Єдиний недолік даного методу – доводиться багато рахувати, адже знаменники множаться «напролом», і в результаті можуть вийти дуже великі числа. Такою є розплата за надійність.

Метод спільних дільників

Цей прийом допомагає набагато скоротити обчислення, але, на жаль, він застосовується досить рідко. Метод полягає в наступному:

  1. Перш, ніж діяти «напролом» (тобто методом «хрест-навхрест»), погляньте на знаменники. Можливо, один із них (той, який більше) ділиться на інший.
  2. Число, одержане в результаті такого поділу, буде додатковим множником для дробу з меншим знаменником.
  3. При цьому дріб із великим знаменником взагалі не треба ні на що множити – у цьому й полягає економія. Заодно різко знижується ймовірність помилки.

Завдання. Знайдіть значення виразів:

Зауважимо, що 84: 21 = 4; 72: 12 = 6. Оскільки в обох випадках один знаменник ділиться без залишку на інший, застосовуємо метод спільних множників. Маємо:

Зауважимо, що другий дріб взагалі ніде ні на що не множився. Фактично, ми скоротили обсяг обчислень вдвічі!

До речі, дроби у цьому прикладі я взяв не випадково. Якщо цікаво, спробуйте порахувати їх методом «хрест-навхрест». Після скорочення відповіді вийдуть такими самими, але роботи буде набагато більше.

У цьому полягає сила методу спільних дільників, але, повторюся, застосовувати його можна лише тому випадку, коли з знаменників ділиться на інший без залишку. Що буває досить рідко.

Метод найменшого загального кратного

Коли ми наводимо дроби до спільного знаменника, ми, по суті, намагаємося знайти таке число, яке ділиться на кожен із знаменників. Потім наводимо до цього знаменники обох дробів.

Таких чисел дуже багато, і найменше їх зовсім не обов'язково дорівнюватиме прямому твору знаменників вихідних дробів, як це передбачається в методі «хрест-навхрест».

Наприклад, для знаменників 8 та 12 цілком підійде число 24, оскільки 24: 8 = 3; 24: 12 = 2. Це число набагато менше за добуток 8 · 12 = 96.

Найменше число, яке ділиться на кожен із знаменників, називається їх (НОК).

Позначення: найменше загальне кратне чисел a та b позначається НОК(a; b). Наприклад, НОК(16; 24) = 48; НОК(8; 12) = 24.

Якщо вам вдасться знайти таке число, підсумковий обсяг обчислень буде мінімальним. Подивіться на приклади:

Завдання. Знайдіть значення виразів:

Зауважимо, що 234 = 117 · 2; 351 = 117 · 3. Множники 2 та 3 взаємно прості (не мають спільних дільників, крім 1), а множник 117 – загальний. Тому НОК(234; 351) = 117 · 2 · 3 = 702.

Аналогічно, 15 = 5 · 3; 20 = 5 · 4. Множники 3 і 4 взаємно прості, а множник 5 – загальний. Тому НОК(15; 20) = 5 · 3 · 4 = 60.

Тепер наведемо дроби до спільних знаменників:

Зверніть увагу, наскільки корисним виявилося розкладання вихідних знаменників на множники:

  1. Виявивши однакові множники, ми одразу вийшли на найменше загальне кратне, що, власне кажучи, є нетривіальним завданням;
  2. З отриманого розкладання можна дізнатися, яких множників не вистачає кожного з дробів. Наприклад, 234 · 3 = 702, отже, для першого дробу додатковий множник дорівнює 3.

Щоб оцінити, наскільки колосальний виграш дає метод найменшого загального кратного, спробуйте обчислити ці приклади методом «хрест-навхрест». Зрозуміло, без калькулятора. Думаю, після цього коментарі будуть зайвими.

Не думайте, що таких складних дробів у прикладах не буде. Вони зустрічаються постійно, і наведені вище завдання – не межа!

Єдина проблема - як знайти цей НОК. Іноді все знаходиться за кілька секунд, буквально «на око», але загалом це складне обчислювальне завдання, яке потребує окремого розгляду. Тут ми цього не стосуватимемо.

Дивіться також:

Приведення дробів до спільного знаменника

Спочатку я хотів включити методи приведення до спільного знаменника до параграфу «Складання та віднімання дробів». Але інформації виявилося так багато, а важливість її така велика (адже спільні знаменники бувають не тільки у числових дробів), що краще вивчити це питання окремо.

Отже, нехай ми маємо два дроби з різними знаменниками. А ми хочемо зробити так, щоби знаменники стали однаковими. На допомогу приходить основна властивість дробу, яка, нагадаю, звучить так:

Дріб не зміниться, якщо її чисельник і знаменник помножити на те саме число, відмінне від нуля.

Таким чином, якщо правильно підібрати множники, знаменники у дробів зрівняються – цей процес називається. А числа, які «вирівнюють» знаменники, називаються.

Навіщо взагалі треба приводити дроби до спільного знаменника? Ось лише кілька причин:

  1. Складання та віднімання дробів з різними знаменниками. Інакше цю операцію не виконати;
  2. Порівняння дробів. Іноді приведення до спільного знаменника значно спрощує це завдання;
  3. Розв'язання завдань на частки та відсотки. Відсоткові співвідношення є, по суті, звичайними виразами, що містять дроби.

Є багато способів знайти числа, при множенні на які знаменники дробів стануть рівними. Ми розглянемо лише три з них – у порядку зростання складності та, у певному сенсі, ефективності.

Множення «хрест-навхрест»

Найпростіший і найнадійніший спосіб, який гарантовано вирівнює знаменники. Діятимемо «напролом»: множимо перший дріб на знаменник другого дробу, а другий – на знаменник першого. У результаті знаменники обох дробів стануть рівними добутку вихідних знаменників.

Погляньте:

Завдання. Знайдіть значення виразів:

Як додаткові множники розглянемо знаменники сусідніх дробів. Отримаємо:

Так, так усе просто. Якщо ви тільки починаєте вивчати дроби, краще працюйте саме цим методом - так ви застрахуєте себе від багатьох помилок і гарантовано отримаєте результат.

Єдиний недолік даного методу – доводиться багато рахувати, адже знаменники множаться «напролом», і в результаті можуть вийти дуже великі числа. Такою є розплата за надійність.

Метод спільних дільників

Цей прийом допомагає набагато скоротити обчислення, але, на жаль, він застосовується досить рідко. Метод полягає в наступному:

  1. Перш, ніж діяти «напролом» (тобто методом «хрест-навхрест»), погляньте на знаменники. Можливо, один із них (той, який більше) ділиться на інший.
  2. Число, одержане в результаті такого поділу, буде додатковим множником для дробу з меншим знаменником.
  3. При цьому дріб із великим знаменником взагалі не треба ні на що множити – у цьому й полягає економія. Заодно різко знижується ймовірність помилки.

Завдання. Знайдіть значення виразів:

Зауважимо, що 84: 21 = 4; 72: 12 = 6. Оскільки в обох випадках один знаменник ділиться без залишку на інший, застосовуємо метод спільних множників. Маємо:

Зауважимо, що другий дріб взагалі ніде ні на що не множився. Фактично, ми скоротили обсяг обчислень вдвічі!

До речі, дроби у цьому прикладі я взяв не випадково. Якщо цікаво, спробуйте порахувати їх методом «хрест-навхрест». Після скорочення відповіді вийдуть такими самими, але роботи буде набагато більше.

У цьому полягає сила методу спільних дільників, але, повторюся, застосовувати його можна лише тому випадку, коли з знаменників ділиться на інший без залишку. Що буває досить рідко.

Метод найменшого загального кратного

Коли ми наводимо дроби до спільного знаменника, ми, по суті, намагаємося знайти таке число, яке ділиться на кожен із знаменників. Потім наводимо до цього знаменники обох дробів.

Таких чисел дуже багато, і найменше їх зовсім не обов'язково дорівнюватиме прямому твору знаменників вихідних дробів, як це передбачається в методі «хрест-навхрест».

Наприклад, для знаменників 8 та 12 цілком підійде число 24, оскільки 24: 8 = 3; 24: 12 = 2. Це число набагато менше за добуток 8 · 12 = 96.

Найменше число, яке ділиться на кожен із знаменників, називається їх (НОК).

Позначення: найменше загальне кратне чисел a та b позначається НОК(a; b). Наприклад, НОК(16; 24) = 48; НОК(8; 12) = 24.

Якщо вам вдасться знайти таке число, підсумковий обсяг обчислень буде мінімальним. Подивіться на приклади:

Завдання. Знайдіть значення виразів:

Зауважимо, що 234 = 117 · 2; 351 = 117 · 3. Множники 2 та 3 взаємно прості (не мають спільних дільників, крім 1), а множник 117 – загальний. Тому НОК(234; 351) = 117 · 2 · 3 = 702.

Аналогічно, 15 = 5 · 3; 20 = 5 · 4. Множники 3 і 4 взаємно прості, а множник 5 – загальний. Тому НОК(15; 20) = 5 · 3 · 4 = 60.

Тепер наведемо дроби до спільних знаменників:

Зверніть увагу, наскільки корисним виявилося розкладання вихідних знаменників на множники:

  1. Виявивши однакові множники, ми одразу вийшли на найменше загальне кратне, що, власне кажучи, є нетривіальним завданням;
  2. З отриманого розкладання можна дізнатися, яких множників не вистачає кожного з дробів. Наприклад, 234 · 3 = 702, отже, для першого дробу додатковий множник дорівнює 3.

Щоб оцінити, наскільки колосальний виграш дає метод найменшого загального кратного, спробуйте обчислити ці приклади методом «хрест-навхрест». Зрозуміло, без калькулятора. Думаю, після цього коментарі будуть зайвими.

Не думайте, що таких складних дробів у прикладах не буде. Вони зустрічаються постійно, і наведені вище завдання – не межа!

Єдина проблема - як знайти цей НОК. Іноді все знаходиться за кілька секунд, буквально «на око», але загалом це складне обчислювальне завдання, яке потребує окремого розгляду. Тут ми цього не стосуватимемо.

Дивіться також:

Приведення дробів до спільного знаменника

Спочатку я хотів включити методи приведення до спільного знаменника до параграфу «Складання та віднімання дробів». Але інформації виявилося так багато, а важливість її така велика (адже спільні знаменники бувають не тільки у числових дробів), що краще вивчити це питання окремо.

Отже, нехай ми маємо два дроби з різними знаменниками. А ми хочемо зробити так, щоби знаменники стали однаковими. На допомогу приходить основна властивість дробу, яка, нагадаю, звучить так:

Дріб не зміниться, якщо її чисельник і знаменник помножити на те саме число, відмінне від нуля.

Таким чином, якщо правильно підібрати множники, знаменники у дробів зрівняються – цей процес називається. А числа, які «вирівнюють» знаменники, називаються.

Навіщо взагалі треба приводити дроби до спільного знаменника? Ось лише кілька причин:

  1. Складання та віднімання дробів з різними знаменниками. Інакше цю операцію не виконати;
  2. Порівняння дробів. Іноді приведення до спільного знаменника значно спрощує це завдання;
  3. Розв'язання завдань на частки та відсотки. Відсоткові співвідношення є, по суті, звичайними виразами, що містять дроби.

Є багато способів знайти числа, при множенні на які знаменники дробів стануть рівними. Ми розглянемо лише три з них – у порядку зростання складності та, у певному сенсі, ефективності.

Множення «хрест-навхрест»

Найпростіший і найнадійніший спосіб, який гарантовано вирівнює знаменники. Діятимемо «напролом»: множимо перший дріб на знаменник другого дробу, а другий – на знаменник першого. У результаті знаменники обох дробів стануть рівними добутку вихідних знаменників. Погляньте:

Завдання. Знайдіть значення виразів:

Як додаткові множники розглянемо знаменники сусідніх дробів. Отримаємо:

Так, так усе просто. Якщо ви тільки починаєте вивчати дроби, краще працюйте саме цим методом - так ви застрахуєте себе від багатьох помилок і гарантовано отримаєте результат.

Єдиний недолік даного методу – доводиться багато рахувати, адже знаменники множаться «напролом», і в результаті можуть вийти дуже великі числа.

Приведення дробів до спільного знаменника

Такою є розплата за надійність.

Метод спільних дільників

Цей прийом допомагає набагато скоротити обчислення, але, на жаль, він застосовується досить рідко. Метод полягає в наступному:

  1. Перш, ніж діяти «напролом» (тобто методом «хрест-навхрест»), погляньте на знаменники. Можливо, один із них (той, який більше) ділиться на інший.
  2. Число, одержане в результаті такого поділу, буде додатковим множником для дробу з меншим знаменником.
  3. При цьому дріб із великим знаменником взагалі не треба ні на що множити – у цьому й полягає економія. Заодно різко знижується ймовірність помилки.

Завдання. Знайдіть значення виразів:

Зауважимо, що 84: 21 = 4; 72: 12 = 6. Оскільки в обох випадках один знаменник ділиться без залишку на інший, застосовуємо метод спільних множників. Маємо:

Зауважимо, що другий дріб взагалі ніде ні на що не множився. Фактично, ми скоротили обсяг обчислень вдвічі!

До речі, дроби у цьому прикладі я взяв не випадково. Якщо цікаво, спробуйте порахувати їх методом «хрест-навхрест». Після скорочення відповіді вийдуть такими самими, але роботи буде набагато більше.

У цьому полягає сила методу спільних дільників, але, повторюся, застосовувати його можна лише тому випадку, коли з знаменників ділиться на інший без залишку. Що буває досить рідко.

Метод найменшого загального кратного

Коли ми наводимо дроби до спільного знаменника, ми, по суті, намагаємося знайти таке число, яке ділиться на кожен із знаменників. Потім наводимо до цього знаменники обох дробів.

Таких чисел дуже багато, і найменше їх зовсім не обов'язково дорівнюватиме прямому твору знаменників вихідних дробів, як це передбачається в методі «хрест-навхрест».

Наприклад, для знаменників 8 та 12 цілком підійде число 24, оскільки 24: 8 = 3; 24: 12 = 2. Це число набагато менше за добуток 8 · 12 = 96.

Найменше число, яке ділиться на кожен із знаменників, називається їх (НОК).

Позначення: найменше загальне кратне чисел a та b позначається НОК(a; b). Наприклад, НОК(16; 24) = 48; НОК(8; 12) = 24.

Якщо вам вдасться знайти таке число, підсумковий обсяг обчислень буде мінімальним. Подивіться на приклади:

Завдання. Знайдіть значення виразів:

Зауважимо, що 234 = 117 · 2; 351 = 117 · 3. Множники 2 та 3 взаємно прості (не мають спільних дільників, крім 1), а множник 117 – загальний. Тому НОК(234; 351) = 117 · 2 · 3 = 702.

Аналогічно, 15 = 5 · 3; 20 = 5 · 4. Множники 3 і 4 взаємно прості, а множник 5 – загальний. Тому НОК(15; 20) = 5 · 3 · 4 = 60.

Тепер наведемо дроби до спільних знаменників:

Зверніть увагу, наскільки корисним виявилося розкладання вихідних знаменників на множники:

  1. Виявивши однакові множники, ми одразу вийшли на найменше загальне кратне, що, власне кажучи, є нетривіальним завданням;
  2. З отриманого розкладання можна дізнатися, яких множників не вистачає кожного з дробів. Наприклад, 234 · 3 = 702, отже, для першого дробу додатковий множник дорівнює 3.

Щоб оцінити, наскільки колосальний виграш дає метод найменшого загального кратного, спробуйте обчислити ці приклади методом «хрест-навхрест». Зрозуміло, без калькулятора. Думаю, після цього коментарі будуть зайвими.

Не думайте, що таких складних дробів у прикладах не буде. Вони зустрічаються постійно, і наведені вище завдання – не межа!

Єдина проблема - як знайти цей НОК. Іноді все знаходиться за кілька секунд, буквально «на око», але загалом це складне обчислювальне завдання, яке потребує окремого розгляду. Тут ми цього не стосуватимемо.

Спочатку я хотів включити методи приведення до спільного знаменника до параграфу «Складання та віднімання дробів». Але інформації виявилося так багато, а важливість її така велика (адже спільні знаменники бувають не тільки у числових дробів), що краще вивчити це питання окремо.

Отже, нехай ми маємо два дроби з різними знаменниками. А ми хочемо зробити так, щоби знаменники стали однаковими. На допомогу приходить основна властивість дробу, яка, нагадаю, звучить так:

Дріб не зміниться, якщо її чисельник і знаменник помножити на те саме число, відмінне від нуля.

Таким чином, якщо правильно підібрати множники, знаменники у дробів зрівняються – цей процес називається приведенням до спільного знаменника. А числа, які «вирівнюють» знаменники, називаються додатковими множниками.

Навіщо взагалі треба приводити дроби до спільного знаменника? Ось лише кілька причин:

  1. Складання та віднімання дробів з різними знаменниками. Інакше цю операцію не виконати;
  2. Порівняння дробів. Іноді приведення до спільного знаменника значно спрощує це завдання;
  3. Розв'язання завдань на частки та відсотки. Відсоткові співвідношення є, по суті, звичайними виразами, що містять дроби.

Є багато способів знайти числа, при множенні на які знаменники дробів стануть рівними. Ми розглянемо лише три з них – у порядку зростання складності та, у певному сенсі, ефективності.

Множення «хрест-навхрест»

Найпростіший і найнадійніший спосіб, який гарантовано вирівнює знаменники. Діятимемо «напролом»: множимо перший дріб на знаменник другого дробу, а другий – на знаменник першого. У результаті знаменники обох дробів стануть рівними добутку вихідних знаменників. Погляньте:

Як додаткові множники розглянемо знаменники сусідніх дробів. Отримаємо:

Так, так усе просто. Якщо ви тільки починаєте вивчати дроби, краще працюйте саме цим методом - так ви застрахуєте себе від багатьох помилок і гарантовано отримаєте результат.

Єдиний недолік даного методу – доводиться багато рахувати, адже знаменники множаться «напролом», і в результаті можуть вийти дуже великі числа. Такою є розплата за надійність.

Метод спільних дільників

Цей прийом допомагає набагато скоротити обчислення, але, на жаль, він застосовується досить рідко. Метод полягає в наступному:

  1. Перш, ніж діяти «напролом» (тобто методом «хрест-навхрест»), погляньте на знаменники. Можливо, один із них (той, який більше) ділиться на інший.
  2. Число, одержане в результаті такого поділу, буде додатковим множником для дробу з меншим знаменником.
  3. При цьому дріб із великим знаменником взагалі не треба ні на що множити – у цьому й полягає економія. Заодно різко знижується ймовірність помилки.

Завдання. Знайдіть значення виразів:

Зауважимо, що 84: 21 = 4; 72: 12 = 6. Оскільки в обох випадках один знаменник ділиться без залишку на інший, застосовуємо метод спільних множників. Маємо:

Зауважимо, що другий дріб взагалі ніде ні на що не множився. Фактично, ми скоротили обсяг обчислень вдвічі!

До речі, дроби у цьому прикладі я взяв не випадково. Якщо цікаво, спробуйте порахувати їх методом «хрест-навхрест». Після скорочення відповіді вийдуть такими самими, але роботи буде набагато більше.

У цьому полягає сила методу спільних дільників, але, повторюся, застосовувати його можна лише тому випадку, коли з знаменників ділиться на інший без залишку. Що буває досить рідко.

Метод найменшого загального кратного

Коли ми наводимо дроби до спільного знаменника, ми, по суті, намагаємося знайти таке число, яке ділиться на кожен із знаменників. Потім наводимо до цього знаменники обох дробів.

Таких чисел дуже багато, і найменше їх зовсім не обов'язково дорівнюватиме прямому твору знаменників вихідних дробів, як це передбачається в методі «хрест-навхрест».

Наприклад, для знаменників 8 та 12 цілком підійде число 24, оскільки 24: 8 = 3; 24: 12 = 2. Це число набагато менше від твору 8 · 12 = 96 .

Найменше число, яке ділиться кожен із знаменників, називається їх найменшим загальним кратним (НОК).

Позначення: найменше загальне кратне чисел a і b позначається НОК (a; b). Наприклад, НОК(16; 24) = 48; НОК(8; 12) = 24 .

Якщо вам вдасться знайти таке число, підсумковий обсяг обчислень буде мінімальним. Подивіться на приклади:

Завдання. Знайдіть значення виразів:

Зауважимо, що 234 = 117 · 2; 351 = 117 · 3 . Численні 2 і 3 взаємно прості (не мають спільних дільників, крім 1), а множник 117 - загальний. Тому НОК(234; 351) = 117 · 2 · 3 = 702.

Аналогічно, 15 = 5 · 3; 20 = 5 · 4. Численні 3 і 4 взаємно прості, а множник 5 - загальний. Тому НОК(15; 20) = 5 · 3 · 4 = 60.

Тепер наведемо дроби до спільних знаменників:

Зверніть увагу, наскільки корисним виявилося розкладання вихідних знаменників на множники:

  1. Виявивши однакові множники, ми одразу вийшли на найменше загальне кратне, що, власне кажучи, є нетривіальним завданням;
  2. З отриманого розкладання можна дізнатися, яких множників не вистачає кожного з дробів. Наприклад, 234 · 3 = 702, отже, для першого дробу додатковий множник дорівнює 3.

Щоб оцінити, наскільки колосальний виграш дає метод найменшого загального кратного, спробуйте обчислити ці приклади методом «хрест-навхрест». Зрозуміло, без калькулятора. Думаю, після цього коментарі будуть зайвими.

Не думайте, що таких складних дробів у прикладах не буде. Вони зустрічаються постійно, і наведені вище завдання – не межа!

Єдина проблема - як знайти цей НОК. Іноді все знаходиться за кілька секунд, буквально «на око», але загалом це складне обчислювальне завдання, яке потребує окремого розгляду. Тут ми цього не стосуватимемо.

На цьому уроці ми розглянемо приведення дробів до спільного знаменника та розв'яжемо завдання з цієї теми. Дамо визначення поняття загального знаменника та додаткового множника, згадаємо про взаємно прості числа. Дамо визначення поняттю найменший загальний знаменник (НОЗ) і вирішимо низку завдань з його перебування.

Тема: Складання та віднімання дробів з різними знаменниками

Урок: Приведення дробів до спільного знаменника

Повторення. Основна властивість дробу.

Якщо чисельник і знаменник дробу помножити або розділити на те саме натуральне число, то вийде рівний їй дріб.

Наприклад, чисельник і знаменник дробу можна поділити на 2. Отримаємо дріб . Цю операцію називають скороченням дробу. Можна виконати і зворотне перетворення, помноживши чисельник і знаменник дробу на 2. І тут кажуть, що ми привели дріб до нового знаменника. Число 2 називають додатковим множником.

Висновок.Дроб можна привести до будь-якого знаменника кратного знаменника даного дробу. Для того щоб привести дріб до нового знаменника, його чисельник та знаменник множать на додатковий множник.

1. Наведіть дріб до знаменника 35.

Число 35 кратно 7, тобто 35 ділиться на 7 без залишку. Отже, це перетворення можливо. Знайдемо додатковий множник. Для цього розділимо 35 на 7. Отримаємо 5. Помножимо на 5 чисельник та знаменник вихідного дробу.

2. Наведіть дріб до знаменника 18.

Знайдемо додатковий множник. І тому розділимо новий знаменник на вихідний. Отримаємо 3. Помножимо на 3 чисельник та знаменник даного дробу.

3. Наведіть дріб до знаменника 60.

Розділивши 60 на 15, отримаємо додатковий множник. Він дорівнює 4. Помножимо чисельник і знаменник на 4.

4. Наведіть дріб до знаменника 24

У нескладних випадках приведення до нового знаменника виконують у думці. Прийнято тільки вказувати додатковий множник за дужкою трохи правіше і вище від вихідного дробу.

Дроб можна привести до знаменника 15 і дріб можна привести до знаменника 15. У дробів і загальний знаменник 15.

Спільним знаменником дробів може бути будь-яке спільне кратне їх знаменників. Для простоти дробу призводять до найменшого спільного знаменника. Він дорівнює найменшому загальному кратному знаменників цих дробів.

приклад. Привести до найменшого спільного знаменника дробу та .

Спочатку знайдемо найменше загальне кратне знаменників цих дробів. Це число 12. Знайдемо додатковий множник для першого і другого дробу. Для цього 12 розділимо на 4 і на 6. Три – це додатковий множник для першого дробу, а два – для другого. Наведемо дроби до знаменника 12.

Ми привели дроби і до спільного знаменника, тобто ми знайшли рівні їм дроби, у яких один і той самий знаменник.

Правило.Щоб привести дроби до найменшого спільного знаменника, треба

По-перше, знайти найменше загальне кратне знаменників цих дробів, воно і буде їх найменшим спільним знаменником;

По-друге, розділити найменший спільний знаменник на знаменники цих дробів, тобто знайти для кожного дробу додатковий множник.

По-третє, помножити чисельник і знаменник кожного дробу на його додатковий множник.

а) Привести до спільного знаменника дробу та .

Найменший загальний знаменник дорівнює 12. Додатковий множник для першого дробу – 4, для другого – 3. Наводимо дроби до знаменника 24.

б) Привести до спільного знаменника дробу та .

Найменший загальний знаменник дорівнює 45. Розділивши 45 на 9 на 15 отримаємо, відповідно, 5 і 3. Наводимо дроби до знаменника 45.

в) Привести до спільного знаменника дробу та .

Загальний знаменник – 24. Додаткові множники, відповідно, – 2 та 3.

Іноді буває важко підібрати усно найменше загальне кратне знаменників цих дробів. Тоді загальний знаменник та додаткові множники знаходять за допомогою розкладання на прості множники.

Привести до спільного знаменника дробу та .

Розкладемо числа 60 та 168 на прості множники. Випишемо розкладання числа 60 і додамо множники 2 і 7 з другого розкладання. Помножимо 60 на 14 і отримаємо загальний знаменник 840. Додатковий множник для першого дробу – це 14. Додатковий множник для другого дробу – 5. Приведемо дроби до спільного знаменника 840.

Список літератури

1. Віленкін Н.Я., Жохов В.І., Чесноков А.С. та ін Математика 6. – К.: Мнемозіна, 2012.

2. Мерзляк А.Г., Полонський В.В., Якір М.С. Математика 6 клас. – Гімназія, 2006.

3. Депман І.Я., Віленкін Н.Я. За сторінками підручника з математики. – Просвітництво, 1989.

4. Рурукін О.М., Чайковський І.В. Завдання з курсу математики 5-6 клас. – ЗШ МІФІ, 2011.

5. Рурукін А.М., Сочілов С.В., Чайковський К.Г. Математика 5-6. Посібник для учнів 6-х класів заочної школи МІФІ. – ЗШ МІФІ, 2011.

6. Шеврін Л.М., Гейн А.Г., Коряков І.О. та ін Математика: Підручник-співрозмовник для 5-6 класів середньої школи. Бібліотека вчителя математики. – Просвітництво, 1989.

Можна завантажити книги, зазначені у п.1.2. цього уроку.

Домашнє завдання

Віленкін Н.Я., Жохов В.І., Чесноков А.С. та ін Математика 6. - М.: Мнемозіна, 2012. (Посилання див. 1.2)

Домашнє завдання: №297, №298, №300.

Інші завдання: №270, №290

Для вирішення прикладів із дробами необхідно вміти знаходити найменший спільний знаменник. Нижче наведено докладну інструкцію.

Як знайти найменший спільний знаменник – поняття

Найменший загальний знаменник (НОЗ) простими словами – це мінімальне число, яке ділиться на знаменники всіх дробів цього прикладу. Тобто його називають Найменшим Загальним Кратним (НОК). НОЗ використовують лише у тому випадку, якщо знаменники у дробів різні.

Як знайти найменший спільний знаменник – приклади

Розглянемо приклади знаходження НОЗ.

Обчислити: 3/5+2/15.

Рішення (Послідовність дій):

  • Дивимося на знаменники дробів, переконуємось, що вони різні та вирази максимально скорочені.
  • Знаходимо найменше число, яке ділиться і на 5 і на 15. Таким числом буде 15. Таким чином, 3/5 + 2/15 = ?/15.
  • Зі знаменником розібралися. Що буде в чисельнику? Допомогти з'ясувати це допоможе додатковий множник. Додатковий множник - це число, що вийшло при розподілі НОЗ на знаменник конкретного дробу. Для 3/5 додатковий множник дорівнює 3, тому що 15/5 = 3. Для другого дробу додатковим множником буде 1, оскільки 15/15 = 1.
  • З'ясувавши додатковий множник, множимо його на чисельники дробів і складаємо значення. 3/5 + 2/15 = (3 * 3 +2 * 1) / 15 = (9 +2) / 15 = 11/15.


Відповідь: 3/5 + 2/15 = 11/15.

Якщо прикладі складаються чи віднімаються не 2, а 3 чи більше дробів, то НОЗ потрібно шукати вже стільки дробів, скільки дано.

Обчислити: 1/2 – 5/12 + 3/6

Рішення (послідовність дій):

  • Знаходимо найменший спільний знаменник. Мінімальним числом, що ділиться на 2, 12 та 6 буде 12.
  • Отримаємо: 1/2 - 5/12 + 3/6 =? /12.
  • Шукаємо додаткові множники. Для 1/2 – 6; для 5/12 – 1; для 3/6 - 2.
  • Помножуємо на чисельники та приписуємо відповідні знаки: 1/2 – 5/12 + 3/6 = (1*6 – 5*1 + 2*3)/12 = 7/12.

Відповідь: 1/2 - 5/12 + 3/6 = 7/12.


Матеріал цієї статті пояснює, як знайти найменший спільний знаменникі як привести дроби до спільного знаменника. Спочатку дано визначення спільного знаменника дробів та найменшого спільного знаменника, а також показано, як знайти спільний знаменник дробів. Далі наведено правило приведення дробів до спільного знаменника та розглянуто приклади застосування цього правила. На закінчення розібрано приклади приведення трьох і більшої кількості дробів до спільного знаменника.

Навігація на сторінці.

Що називають приведенням дробів до спільного знаменника?

Тепер ми можемо сказати, що таке приведення дробів до спільного знаменника. Приведення дробів до спільного знаменника– це множення чисельників та знаменників даних дробів на такі додаткові множники, що в результаті виходять дроби з однаковими знаменниками.

Загальний знаменник, визначення, приклади

Тепер настав час дати визначення спільного знаменника дробів.

Іншими словами, загальним знаменником деякого набору звичайних дробів є будь-яке натуральне число, яке ділиться на всі знаменники цих дробів.

З озвученого визначення випливає, що даний набір дробів має нескінченно багато спільних знаменників, оскільки існує безліч спільних кратних всіх знаменників вихідного набору дробів.

Визначення спільного знаменника дробів дозволяє знаходити спільні знаменники цих дробів. Нехай, наприклад, дано дроби 1/4 і 5/6 їх знаменники рівні 4 і 6 відповідно. Позитивними загальними кратними чисел 4 та 6 є числа 12, 24, 36, 48, … Будь-яке з цих чисел є спільним знаменником дробів 1/4 та 5/6.

Для закріплення матеріалу розглянемо рішення наступного прикладу.

приклад.

Чи можна дроби 2/3, 23/6 та 7/12 привести до спільного знаменника 150?

Рішення.

Для відповіді на поставлене запитання нам потрібно з'ясувати, чи є число 150 загальним кратним знаменників 3 , 6 та 12 . Для цього перевіримо, чи ділиться 150 націло на кожне з цих чисел (при необхідності дивіться правила та приклади поділу натуральних чисел, а також правила та приклади поділу натуральних чисел із залишком): 150:3=50, 150:6=25, 150: 12 = 12 (зуп. 6) .

Отже, 150 не ділиться націло на 12, отже, 150 не є загальним кратним чисел 3, 6 та 12 . Отже, число 150 може бути загальним знаменником вихідних дробів.

Відповідь:

Не можна.

Найменший спільний знаменник, як його знайти?

У багатьох чисел, що є загальними знаменниками даних дробів, існує найменше натуральне число , яке називають найменшим загальним знаменником. Сформулюємо визначення найменшого спільного знаменника цих дробів.

Визначення.

Найменший спільний знаменник– це найменше, зі всіх спільних знаменників цих дробів.

Залишилося розібратися із питанням, як знайти найменший спільний дільник.

Оскільки є найменшим позитивним загальним дільником даного набору чисел, то НОК знаменників даних дробів є найменшим загальним знаменником даних дробів.

Таким чином, знаходження найменшого спільного знаменника дробів зводиться до знаменників цих дробів. Розберемо рішення прикладу.

приклад.

Знайдіть найменший загальний знаменник дробів 3/10 та 277/28.

Рішення.

Знаменники даних дробів дорівнюють 10 і 28 . Найменший загальний знаменник, що шукається, знаходиться як НОК чисел 10 і 28 . У нашому випадку легко : оскільки 10 = 2 · 5, а 28 = 2 · 2 · 7 , то НОК (15, 28) = 2 · 2 · 5 · 7 = 140 .

Відповідь:

140 .

Як привести дроби до спільного знаменника? Правило, приклади, рішення

Зазвичай прості дроби призводять до найменшого спільного знаменника. Зараз ми запишемо правило, яке пояснює, як привести дроби до найменшого спільного знаменника.

Правило приведення дробів до найменшого спільного знаменникаскладається з трьох кроків:

  • По-перше, є найменший загальний знаменник дробів.
  • По-друге, кожному дробу обчислюється додатковий множник, навіщо найменший загальний знаменник ділиться на знаменник кожної дроби.
  • По-третє, чисельник та знаменник кожного дробу множиться на його додатковий множник.

Застосуємо озвучене правило для вирішення наступного прикладу.

приклад.

Приведіть дроби 5/14 та 7/18 до найменшого спільного знаменника.

Рішення.

Виконаємо всі кроки алгоритму приведення дробів до найменшого спільного знаменника.

Спочатку знаходимо найменший загальний знаменник, який дорівнює найменшому загальному кратному чисел 14 та 18 . Оскільки 14=2·7 і 18=2·3·3 , то НОК(14, 18)=2·3·3·7=126 .

Тепер обчислюємо додаткові множники, за допомогою яких дроби 5/14 та 7/18 будуть приведені до знаменника 126 . Для дробу 5/14 додатковий множник дорівнює 126:14=9, а для дробу 7/18 додатковий множник дорівнює 126:18=7.

Залишилося помножити чисельники та знаменники дробів 5/14 та 7/18 на додаткові множники 9 та 7 відповідно. Маємо і .

Отже, приведення дробів 5/14 та 7/18 до найменшого спільного знаменника завершено. У результаті вийшли дроби 45/126 та 49/126.



Останні матеріали розділу:

Отримання нітросполук нітруванням
Отримання нітросполук нітруванням

Електронна будова нітрогрупи характеризується наявність семи полярного (напівполярного) зв'язку: Нітросполуки жирного ряду – рідини, що не...

Хроміт, їх відновлювальні властивості
Хроміт, їх відновлювальні властивості

Окисно-відновні властивості сполук хрому з різним ступенем окиснення. Хром. Будова атома. Можливі ступені окислення.

Чинники, що впливають на швидкість хімічної реакції
Чинники, що впливають на швидкість хімічної реакції

Питання №3 Від яких чинників залежить константа швидкості хімічної реакції? Константа швидкості реакції (питома швидкість реакції) - коефіцієнт...