Як вирішується арифметична прогресія? Арифметична прогресія

Поняття числової послідовності має на увазі відповідність кожному натуральному числу деякого дійсного значення. Такий ряд чисел може бути як довільним, так і мати певні властивості - прогресія. У разі кожен наступний елемент (член) послідовності можна обчислити з допомогою попереднього.

Арифметична прогресія - послідовність числових значень, в якій її сусідні члени відрізняються між собою на однакове число (подібною властивістю мають всі елементи ряду, починаючи з другого). Це число - різниця між попереднім і наступним членом - постійно і називається різницею прогресії.

Різниця прогресії: визначення

Розглянемо послідовність, що складається з j значень A = a(1), a(2), a(3), a(4) … a(j), j належить множині натуральних чисел N. Арифметична прогресія, згідно свого визначення, – послідовність , в якій a(3) – a(2) = a(4) – a(3) = a(5) – a(4) = … = a(j) – a(j-1) = d. Величина d - потрібна різниця даної прогресії.

d = a(j) – a(j-1).

Виділяють:

  • Зростаючу прогресію, у разі d > 0. Приклад: 4, 8, 12, 16, 20, …
  • Зменшуючу прогресію, тоді d< 0. Пример: 18, 13, 8, 3, -2, …

Різниця прогресії та її довільні елементи

Якщо відомі 2 довільних члена прогресії (i-ий, k-ий), то встановити різницю для даної послідовності можна на основі співвідношення:

a(i) = a(k) + (i – k)*d, отже d = (a(i) – a(k))/(i-k).

Різниця прогресії та її перший член

Цей вираз допоможе визначити невідому величину лише у випадках, коли відомий номер елемента послідовності.

Різниця прогресії та її сума

Сума прогресії – це сума її членів. Для обчислення сумарного значення її перших j елементів скористайтеся відповідною формулою:

S(j) =((a(1) + a(j))/2)*j, але т.к. a(j) = a(1) + d(j – 1), то S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=(( 2a(1) + d(–1))/2)*j.

Сума арифметичної прогресії.

Сума арифметичної прогресії – штука проста. І за змістом, і за формулою. Але завдання з цієї теми бувають усілякі. Від елементарних до цілком солідних.

Спочатку розберемося із змістом та формулою суми. А потім і вирішуємо. На своє задоволення.) Сенс суми простий, як мукання. Щоб знайти суму арифметичної прогресії, треба просто акуратно скласти всі її члени. Якщо цих членів мало, можна складати без будь-яких формул. Але якщо багато, або дуже багато... додавання напружує.) У цьому випадку рятує формула.

Формула суми виглядає просто:

Розберемося, що за літери входять у формулу. Це багато чого прояснить.

S n - Сума арифметичної прогресії. Результат додавання всіхчленів, з першогопо останній.Це важливо. Складаються саме Усечлени поспіль, без перепусток та перескоків. І, саме, починаючи з першого.У завданнях типу знайти суму третього і восьмого членів, або суму членів з п'ятого по двадцятий - пряме застосування формули розчарує.)

a 1 - першийчлен прогресії. Тут все зрозуміло, це просто першеЧисло ряду.

a n- Останнійчлен прогресії. Остання кількість ряду. Не дуже звична назва, але, у застосуванні до суми, дуже годиться. Далі самі побачите.

n - Номер останнього члена. Важливо розуміти, що у формулі цей номер збігається з кількістю членів, що складаються.

Визначимося з поняттям останньогочлена a n. Питання на засипку: який член буде останнім,якщо дана нескінченнаарифметична прогресія?)

Для впевненої відповіді потрібно розуміти елементарний зміст арифметичної прогресії та... уважно читати завдання!)

У завданні на пошук суми арифметичної прогресії завжди фігурує (прямо чи опосередковано) останній член, яким слід обмежитися.Інакше кінцевої, конкретної суми просто не існує.Для вирішення не має значення, яка задана прогресія: кінцева, або нескінченна. Не має значення, як вона задана: поруч чисел, або формулою n-го члена.

Найголовніше - розуміти, що формула працює з першого члена прогресії до члена з номером n.Власне, повна назва формули виглядає так: сума n перших членів арифметичної прогресії.Кількість цих перших членів, тобто. n, Визначається виключно завданням. У завданні вся ця цінна інформація часто зашифровується, так ... Але нічого, в прикладах нижче ми ці секрети розкриваємо.)

Приклади завдань у сумі арифметичної прогресії.

Насамперед, корисна інформація:

Основна складність у завданнях на суму арифметичної прогресії полягає у правильному визначенні елементів формули.

Ці елементи укладачі завдань шифрують з безмежною фантазією.) Тут головне - не боятися. Розуміючи суть елементів, просто їх розшифрувати. Докладно розберемо кілька прикладів. Почнемо із завдання на основі реального ДІА.

1. Арифметична прогресія задана умовою: an = 2n-3,5. Знайдіть суму перших 10 її членів.

Гарне завдання. Легке.) Нам визначення суми за формулою чого треба знати? Перший член a 1, останній член a n, та номер останнього члена n.

Де взяти номер останнього члена n? Та там же, за умови! Там сказано: знайти суму перших 10 членів.Ну і з яким номером буде останній,десятий член?) Ви не повірите, його номер - десятий!) Отже, замість a nу формулу будемо підставляти a 10, а замість n- десятку. Повторюю, номер останнього члена збігається з кількістю членів.

Залишилось визначити a 1і a 10. Це легко вважається за формулою n-го члена, яка дана за умови завдання. Чи не знаєте, як це зробити? Завітайте до попереднього уроку, без цього - ніяк.

a 1= 2 · 1 - 3,5 = -1,5

a 10= 2 · 10 - 3,5 = 16,5

S n = S 10.

Ми з'ясували значення всіх елементів формули суми арифметичної прогресії. Залишається підставити їх, та порахувати:

Ось і всі справи. Відповідь: 75.

Ще завдання з урахуванням ГИА. Трохи складніше:

2. Дана арифметична прогресія (a n), різниця якої дорівнює 3,7; a 1 = 2,3. Знайти суму перших 15 її членів.

Відразу пишемо формулу суми:

Ця формулка дозволяє нам знайти значення будь-якого члена за його номером. Шукаємо простою підстановкою:

a 15 = 2,3 + (15-1) · 3,7 = 54,1

Залишилося підставити всі елементи у формулу суми арифметичної прогресії та порахувати відповідь:

Відповідь: 423.

До речі, якщо у формулу суми замість a nпросто підставимо формулу n-го члена, отримаємо:

Наведемо подібні, отримаємо нову формулу суми членів арифметичної прогресії:

Як бачимо, тут не потрібно n-й член a n. У деяких завданнях ця формула чудово рятує, так... Можна цю формулу запам'ятати. А можна в потрібний момент просто вивести її, як тут. Адже формулу суми і формулу n-го члена треба пам'ятати.)

Тепер завдання у вигляді короткого шифрування):

3. Знайти суму всіх позитивних двоцифрових чисел, кратних трьом.

ВО як! Ні тобі першого члена, ні останнього, ні прогресії взагалі... Як жити?

Прийде думати головою і витягати з умови всі елементи суми арифметичної прогресії. Що таке двоцифрові числа - знаємо. З двох циферок складаються.) Яке двозначне число буде першим? 10, треба думати.) А останнєдвоцифрове число? 99, зрозуміло! За ним уже тризначні підуть...

Кратні трьом... Гм... Це такі числа, які діляться на три націло, ось! Десятка не ділиться на три, 11 не ділиться... 12... ділиться! Так, дещо вимальовується. Вже можна записати ряд за умовою завдання:

12, 15, 18, 21, ... 96, 99.

Чи буде цей ряд арифметичною прогресією? Звичайно! Кожен член відрізняється від попереднього на трійку. Якщо члену додати 2, чи 4, скажімо, результат, тобто. нове число, що вже не поділиться націло на 3. До купи можна відразу і різницю арифметичної прогресії визначити: d=3.Стане в нагоді!)

Отже, можна сміливо записати деякі параметри прогресії:

А який буде номер nостаннього члена? Той, хто думає, що 99 – фатально помиляється... Номери – вони завжди поспіль йдуть, а члени у нас – через трійку перескакують. Чи не збігаються вони.

Тут два шляхи вирішення. Один шлях – для надпрацьовитих. Можна розписати прогресію, весь ряд чисел, і порахувати пальчиком кількість членів. Другий шлях - для вдумливих. Потрібно згадати формулу n-го члена. Якщо формулу застосувати до нашого завдання, то отримаємо, що 99 - це тридцятий член прогресії. Тобто. n = 30.

Дивимося на формулу суми арифметичної прогресії:

Дивимося, і радіємо.) Ми витягли з умови завдання все необхідне розрахунку суми:

a 1= 12.

a 30= 99.

S n = S 30.

Залишається елементарна арифметика. Підставляємо числа у формулу та вважаємо:

Відповідь: 1665

Ще один тип популярних завдань:

4. Дана арифметична прогресія:

-21,5; -20; -18,5; -17; ...

Знайти суму членів із двадцятого по тридцять четвертий.

Дивимося на формулу суми і... засмучуємось.) Формула, нагадаю, вважає суму з першогочлена. А в завданні треба рахувати суму з двадцятого...Чи не спрацює формула.

Можна, звичайно, розписати всю прогресію до ряду, та поскладувати члени з 20 по 34. Але... якось тупо і довго виходить, правда?)

Є елегантніше рішення. Розіб'ємо наш ряд на дві частини. Перша частина буде з першого члена до дев'ятнадцятого.Друга частина - з двадцятого до тридцять четвертого.Зрозуміло, що якщо ми порахуємо суму членів першої частини S 1-19, та складемо із сумою членів другої частини S 20-34, отримаємо суму прогресії з першого члена по тридцять четвертий S 1-34. Ось так:

S 1-19 + S 20-34 = S 1-34

Звідси видно, що знайти суму S 20-34можна простим відніманням

S 20-34 = S 1-34 - S 1-19

Обидві суми у правій частині вважаються з першогочлена, тобто. до них цілком застосовна стандартна формула суми. Приступаємо?

Витягуємо з умови завдання парметри прогресії:

d = 1,5.

a 1= -21,5.

Для розрахунку сум перших 19 та перших 34 членів нам потрібні будуть 19-й та 34-й члени. Вважаємо їх за формулою n-го члена, як у задачі 2:

a 19= -21,5 + (19-1) · 1,5 = 5,5

a 34= -21,5 + (34-1) · 1,5 = 28

Залишається нічого. Від суми 34 членів відібрати суму 19 членів:

S 20-34 = S 1-34 - S 1-19 = 110,5 - (-152) = 262,5

Відповідь: 262,5

Одне важливе зауваження! У вирішенні цього завдання є дуже корисна фішка. Замість прямого розрахунку того, що потрібно (S 20-34),ми порахували те, що, здавалося б, не потрібне - S 1-19 .А вже потім визначили і S 20-34, Відкинувши від повного результату непотрібне. Такий "фінт вухами" часто рятує в злих завданнях.)

У цьому уроці ми розглянули завдання, на вирішення яких достатньо розуміти сенс суми арифметичної прогресії. Ну і пару формул знати треба.)

Практична порада:

При вирішенні будь-якого завдання на суму арифметичної прогресії рекомендую відразу виписувати дві основні формули цієї теми.

Формулу n-го члена:

Ці формули одразу підкажуть, що потрібно шукати, у якому напрямку думати, щоб вирішити завдання. Допомагає.

А тепер – завдання для самостійного вирішення.

5. Знайти суму всіх двоцифрових чисел, які не діляться націло на три.

Круто?) Підказка прихована у зауваженні до завдання 4. Та й завдання 3 допоможе.

6. Арифметична прогресія задана умовою: a 1 = -5,5; an+1 = an+0,5. Знайдіть суму перших 24 її членів.

Незвично?) Це рекурентна формула. Про неї можна прочитати у попередньому уроці. Не ігноруйте посилання, такі завдання в ДПА часто зустрічаються.

7. Вася накопичив до Свята грошей. Цілих 4550 рублів! І вирішив подарувати найулюбленішій людині (собі) кілька днів щастя). Пожити гарно, ні в чому не відмовляючи. Витратити в перший день 500 рублів, а кожного наступного дня витрачати на 50 рублів більше, ніж у попередній! Поки не скінчиться запас грошей. Скільки днів щастя вийшло у Васі?

Складно?) Допоможе додаткова формула із завдання 2.

Відповіді (безладно): 7, 3240, 6.

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

Арифметичною прогресієюназивають послідовність чисел (членів прогресії)

У якій кожен наступний член відрізняється від попереднього на постійне доданок, яке ще називають кроком чи різницею прогресії.

Таким чином, задаючи крок прогресії та її перший член можна знайти будь-який її елемент за формулою

Властивості арифметичної прогресії

1) Кожен член арифметичної прогресії, починаючи з другого номера, є середнім арифметичним від попереднього та наступного члена прогресії

Зворотне твердження також є вірним. Якщо середнє арифметичне сусідніх непарних (парних) членів прогресії дорівнює члену, який стоїть між ними, то дана послідовність чисел є арифметичною прогресією. За цим твердженням дуже просто перевірити будь-яку послідовність.

Також за якістю арифметичної прогресії, наведену вище формулу можна узагальнити до наступної

У цьому легко переконатися, якщо розписати доданки праворуч від знака рівності

Її часто застосовують на практиці для спрощення обчислень у завданнях.

2) Сума n перших членів арифметичної прогресії обчислюється за такою формулою

Запам'ятайте добре формулу суми арифметичної прогресії, вона незамінна при обчисленнях і часто зустрічається в простих життєвих ситуаціях.

3) Якщо потрібно знайти не всю суму, а частину послідовності починаючи з k-го її члена, то Вам знадобиться наступна формула суми

4) Практичний інтерес представляє відшукання суми n членів арифметичної прогресії починаючи з k-го номера. Для цього використовуйте формулу

На цьому теоретичний матеріал закінчується і переходимо до вирішення поширених на практиці завдань.

Приклад 1. Знайти сороковий член арифметичної прогресії 4; 7;

Рішення:

Згідно з умовою маємо

Визначимо крок прогресії

За відомою формулою знаходимо сороковий член прогресії

Приклад2. Арифметична прогресія задана третім та сьомим її членом. Знайти перший член прогресії та суму десяти.

Рішення:

Розпишемо задані елементи прогресії за формулами

Від другого рівняння віднімемо перше, в результаті знайдемо крок прогресії

Знайдене значення підставляємо у будь-яке з рівнянь для відшукання першого члена арифметичної прогресії

Обчислюємо суму перших десяти членів прогресії

Не застосовуючи складних обчислень ми знайшли всі шукані величини.

Приклад 3. Арифметичну прогресію задано знаменником та одним із її членів. Знайти перший член прогресії, суму 50 її членів, починаючи з 50 і суму 100 перших.

Рішення:

Запишемо формулу сотого елемента прогресії

і знайдемо перший

На основі першого знаходимо 50 член прогресії

Знаходимо суму частини прогресії

та суму перших 100

Сума прогресії дорівнює 250.

приклад 4.

Знайти число членів арифметичної прогресії, якщо:

а3-а1 = 8, а2 + а4 = 14, Sn = 111.

Рішення:

Запишемо рівняння через перший член та крок прогресії та визначимо їх

Отримані значення підставляємо у формулу суми для визначення кількості членів у сумі

Виконуємо спрощення

і розв'язуємо квадратне рівняння

Зі знайдених двох значень умові задачі підходить лише число 8 . Таким чином, сума перших восьми членів прогресії становить 111.

Приклад 5.

Вирішити рівняння

1+3+5+...+х=307.

Рішення: Це рівняння є сумою арифметичної прогресії. Випишемо перший її член та знайдемо різницю прогресії

При вивченні алгебри в загальноосвітній школі (9 клас) однією з важливих тем є вивчення числових послідовностей, до яких належать прогресії – геометрична та арифметична. У цій статті розглянемо арифметичну прогресію та приклади з рішеннями.

Що являє собою арифметична прогресія?

Щоб це зрозуміти, необхідно дати визначення прогресії, що розглядається, а також навести основні формули, які далі будуть використані при вирішенні завдань.

Відомо, що в деякій алгебраїчній прогресії 1-й член дорівнює 6, а 7-й член дорівнює 18. Необхідно знайти різницю і відновити цю послідовність до 7 члена.

Скористаємося формулою визначення невідомого члена: a n = (n - 1) * d + a 1 . Підставимо до неї відомі дані з умови, тобто числа a 1 і a 7 маємо: 18 = 6 + 6 * d. З цього виразу можна легко обчислити різницю: d = (18 - 6) / 6 = 2. Отже, відповіли першу частину завдання.

Щоб відновити послідовність до 7 члена, слід скористатися визначенням прогресу алгебри, тобто a 2 = a 1 + d, a 3 = a 2 + d і так далі. У результаті відновлюємо всю послідовність: a 1 = 6, a 2 = 6 + 2 = 8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14, a 6 = 14 + 2 = 16, а 7 = 18.

Приклад №3: складання прогресії

Ускладнимо ще сильніша умова завдання. Тепер необхідно відповісти на питання, як знаходити арифметичну прогресію. Можна навести наступний приклад: дано два числа, наприклад, - 4 і 5. Необхідно скласти алгебраїчну прогресію так, щоб між цими містилося ще три члени.

Перш ніж розпочинати вирішувати це завдання, необхідно зрозуміти, яке місце займатимуть задані числа у майбутній прогресії. Оскільки між ними будуть ще три члени, тоді a 1 = -4 і a 5 = 5. Встановивши це, переходимо до завдання, яке аналогічне попередньому. Знову для n-го члена скористаємося формулою, отримаємо: a 5 = a 1 + 4*d. Звідки: d = (a 5 - a 1) / 4 = (5 - (-4)) / 4 = 2,25. Тут отримали не ціле значення різниці, проте воно є раціональним числом, тому формули для прогресу алгебри залишаються тими ж самими.

Тепер додамо знайдену різницю до a 1 і відновимо члени прогресії, що бракують. Отримуємо: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 = 2,75 + 2,25 = 5, що збіглося з умовою задачі.

Приклад №4: перший член прогресії

Продовжимо наводити приклади арифметичної прогресії із рішенням. У всіх попередніх завданнях було відоме перше число прогресу алгебри. Тепер розглянемо завдання іншого типу: нехай дані два числа, де a 15 = 50 і a 43 = 37. Необхідно знайти, з якого числа починається ця послідовність.

Формули, якими користувалися досі, припускають знання a 1 і d. За умови завдання про ці числа нічого невідомо. Проте випишемо вирази для кожного члена, про який є інформація: a 15 = a 1 + 14 * d і a 43 = a 1 + 42 * d. Отримали два рівняння, у яких 2 невідомі величини (a 1 та d). Це означає, що завдання зводиться до розв'язання системи лінійних рівнянь.

Вказану систему найпростіше вирішити, якщо виразити у кожному рівнянні a 1 , а потім порівняти отримані вирази. Перше рівняння: a 1 = a 15 - 14 * d = 50 - 14 * d; друге рівняння: a 1 = a 43 - 42 * d = 37 - 42 * d. Прирівнюючи ці вирази, отримаємо: 50 - 14 * d = 37 - 42 * d, звідки різниця d = (37 - 50) / (42 - 14) = - 0,464 (наведено лише 3 знаки точності після коми).

Знаючи d, можна скористатися будь-яким із 2 наведених вище виразів для a 1 . Наприклад, першим: a 1 = 50 - 14 * d = 50 - 14 * (- 0,464) = 56,496.

Якщо виникають сумніви в отриманому результаті, можна його перевірити, наприклад, визначити член прогресії, який заданий в умові. Отримаємо: a 43 = a 1 + 42 * d = 56,496 + 42 * (- 0,464) = 37,008. Невелика похибка пов'язані з тим, що з обчисленнях використовувалося округлення до тисячних часток.

Приклад №5: сума

Тепер розглянемо кілька прикладів із рішеннями на суму арифметичної прогресії.

Нехай дано числова прогресія наступного виду: 1, 2, 3, 4, ...,. Як розрахувати суму 100 цих чисел?

Завдяки розвитку комп'ютерних технологій можна це завдання вирішити, тобто послідовно скласти всі числа, що обчислювальна машина зробить відразу ж, як людина натисне клавішу Enter. Однак завдання можна вирішити в умі, якщо звернути увагу, що представлений ряд чисел є алгебраїчною прогресією, причому її різниця дорівнює 1. Застосовуючи формулу для суми, отримуємо: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100)/2 = 5050.

Цікаво відзначити, що це завдання носить назву "гаусової", оскільки на початку XVIII століття знаменитий німецький ще у віці всього 10 років, зміг вирішити її в умі за кілька секунд. Хлопчик не знав формули для суми алгебраїчної прогресії, але він помітив, що якщо складати попарно числа, що знаходяться на краях послідовності, то виходить завжди один результат, тобто 1 + 100 = 2 + 99 = 3 + 98 = ..., а оскільки цих сум буде рівно 50 (100/2), то для отримання правильної відповіді достатньо помножити 50 на 101.

Приклад №6: сума членів від n до m

Ще одним типовим прикладом суми арифметичної прогресії є наступний: дано такий чисел ряд: 3, 7, 11, 15, ..., потрібно знайти, чому дорівнюватиме сума його членів з 8 по 14.

Завдання вирішується двома способами. Перший передбачає перебування невідомих членів з 8 по 14, а потім їх послідовне підсумовування. Оскільки доданків небагато, такий спосіб не є досить трудомістким. Проте пропонується вирішити це завдання другим методом, який є більш універсальним.

Ідея полягає в отриманні формули для суми прогресу алгебри між членами m і n, де n > m - цілі числа. Випишемо для обох випадків два вирази для суми:

  1. S m = m*(a m + a 1)/2.
  2. S n = n*(a n + a 1)/2.

Оскільки n > m, то очевидно, що 2 сума включає першу. Останній висновок означає, що якщо взяти різницю між цими сумами, і додати до неї член a m (у разі взяття різниці він віднімається із суми S n), то отримаємо необхідну відповідь на завдання. Маємо: S mn = S n - S m + a m = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m = a 1 * (n - m) / 2 + a n * n / 2 + a m * (1-m/2). У цей вираз необхідно підставити формули для a n і a m. Тоді отримаємо: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d * (3 * m - m 2 - 2) / 2.

Отримана формула є дещо громіздкою, проте сума S mn залежить від n, m, a 1 і d. У нашому випадку a 1 = 3, d = 4, n = 14, m = 8. Підставляючи ці числа отримаємо: S mn = 301.

Як видно з наведених рішень, всі завдання ґрунтуються на знанні виразу для n-го члена та формули для суми набору перших доданків. Перед тим як приступити до вирішення будь-якого з цих завдань, рекомендується уважно прочитати умову, ясно зрозуміти, що потрібно знайти, і потім приступати до вирішення.

Ще одна порада полягає у прагненні до простоти, тобто якщо можна відповісти на питання, не застосовуючи складні математичні викладки, то необхідно чинити саме так, оскільки в цьому випадку ймовірність припуститися помилки менше. Наприклад, у прикладі арифметичної прогресії з рішенням №6 можна було б зупинитися на формулі S mn = n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m і розбити загальне завдання на окремі завдання (у разі спочатку знайти члени a n і a m).

Якщо виникають сумніви в отриманому результаті, то рекомендується перевіряти, як це було зроблено в деяких наведених прикладах. Як знаходити арифметичну прогресію, з'ясували. Якщо розібратися, це не так складно.



Останні матеріали розділу:

Чому неприйнятні уроки статевого «освіти» у школах?
Чому неприйнятні уроки статевого «освіти» у школах?

Статеве виховання в російській школі: чи потрібний нам досвід Америки? Р.Н.Федотова, Н.А.Самарец Малюки ростуть на очах, і, не встигнувши озирнутися, ми,...

Що таке психологія як наука визначення
Що таке психологія як наука визначення

наука про закономірності розвитку та функціонування психіки як особливої ​​форми життєдіяльності, заснована на явленості у самоспостереженні особливих...

Визначення психології як науки
Визначення психології як науки

Останнім часом вивчення психології людини стало дуже популярним. На заході консультаційна практика фахівців цієї галузі існує...