Коефіцієнти a і b мнк. Математика на пальцях: методи найменших квадратів

Він має безліч застосувань, оскільки дозволяє здійснювати наближене уявлення заданої функції іншими більш простими. МНК може виявитися надзвичайно корисним при обробці спостережень і його активно використовують для оцінки одних величин за результатами вимірювань інших, що містять випадкові помилки. З цієї статті ви дізнаєтеся, як реалізувати обчислення методом найменших квадратів в Excel.

Постановка задачі на конкретному прикладі

Припустимо, є два показники X і Y. Причому Y залежить від X. Так як МНК цікавить нас з погляду регресійного аналізу (в Excel його методи реалізуються за допомогою вбудованих функцій), то відразу ж перейти до розгляду конкретної задачі.

Отже, нехай X — торгова площа продовольчого магазину, яка вимірюється у квадратних метрах, а Y — річний товарообіг, який визначається мільйонами рублів.

Потрібно зробити прогноз, який товарообіг (Y) матиме магазин, якщо в нього та чи інша торгова площа. Очевидно, що функція Y = f(X) зростаюча, оскільки гіпермаркет продає більше товарів, ніж ларьок.

Декілька слів про коректність вихідних даних, що використовуються для передбачення

Припустимо, ми маємо таблицю, побудовану за даними для n магазинів.

Згідно з математичною статистикою, результати будуть більш-менш коректними, якщо досліджуються дані щодо хоча б 5-6 об'єктів. Крім того, не можна використовувати "аномальні" результати. Зокрема, невеликий елітний бутік може мати товарообіг у рази більший, ніж товарообіг великих торгових точок класу «масмаркет».

Суть методу

Дані таблиці можна зобразити на декартовій площині у вигляді точок M 1 (x 1 y 1), … M n (x n y n). Тепер розв'язання задачі зведеться до підбору апроксимуючої функції y = f(x), що має графік, що проходить якомога ближче до точок M1, M2,.. Mn.

Звичайно, можна використовувати багаточлен високого ступеня, але такий варіант не тільки важко реалізувати, але й просто некоректний, тому що не відображатиме основну тенденцію, яку і потрібно виявити. Найрозумнішим рішенням є пошук прямої у = ax + b, яка найкраще наближає експериментальні дані, a точніше, коефіцієнтів – a та b.

Оцінка точності

При будь-якій апроксимації особливої ​​важливості набуває оцінка її точності. Позначимо через e i різницю (відхилення) між функціональними та експериментальними значеннями для точки x i , тобто e i = y i - f (x i).

Очевидно, що для оцінки точності апроксимації можна використовувати суму відхилень, тобто при виборі прямої для наближеного уявлення залежності X від Y потрібно віддавати перевагу тій, у якої найменше значення суми e i у всіх точках. Однак, не все так просто, тому що поряд із позитивними відхиленнями практично будуть присутні і негативні.

Вирішити питання можна, використовуючи модулі відхилень або їх квадрати. Останній метод набув найбільш широкого поширення. Він використовується в багатьох областях, включаючи регресійний аналіз (в Excel його реалізація здійснюється за допомогою двох вбудованих функцій) і давно довів свою ефективність.

Метод найменших квадратів

В Excel, як відомо, існує вбудована функція автосуми, що дозволяє обчислити значення всіх значень, які розташовані у виділеному діапазоні. Таким чином, ніщо не завадить нам розрахувати значення виразу (e 1 2 + e 2 2 + e 3 2 + ... e n 2).

У математичному записі це має вигляд:

Оскільки спочатку було прийнято рішення про апроксимування за допомогою прямої, то маємо:

Таким чином, завдання знаходження прямої, яка найкраще описує конкретну залежність величин X та Y, зводиться до обчислення мінімуму функції двох змінних:

Для цього потрібно прирівняти до нуля приватні похідні за новими змінними a і b, і вирішити примітивну систему, що складається з двох рівнянь з двома невідомими видами:

Після нехитрих перетворень, включаючи поділ на 2 та маніпуляції із сумами, отримаємо:

Вирішуючи її, наприклад, методом Крамера, отримуємо стаціонарну точку з деякими коефіцієнтами a* та b*. Це і є мінімум, тобто для передбачення, який товарообіг буде у магазину при певній площі, підійде пряма y = a * x + b * , Що являє собою регресійну модель для прикладу, про який йдеться. Звичайно, вона не дозволить знайти точний результат, але допоможе одержати уявлення про те, чи окупиться покупка в кредит магазину конкретної площі.

Як реалізувати метод найменших квадратів в Excel

У "Ексель" є функція для розрахунку значення МНК. Вона має такий вигляд: «ТЕНДЕНЦІЯ» (відоме значення Y; відоме значення X; нові значення X; конст.). Застосуємо формулу розрахунку МНК Excel до нашої таблиці.

Для цього в комірку, в якій має бути відображено результат розрахунку за методом найменших квадратів в Excel, введемо знак = і виберемо функцію ТЕНДЕНЦІЯ. У вікні заповнимо відповідні поля, виділяючи:

  • діапазон відомих значень для Y (у разі дані для товарообігу);
  • діапазон x 1, … x n, тобто величини торгових площ;
  • і відомі, і невідомі значення x, для якого потрібно з'ясувати розмір товарообігу (інформацію про їхнє розташування на робочому аркуші див. далі).

Крім того, у формулі є логічна змінна «Конст». Якщо ввести у відповідне їй поле 1, це означатиме, що слід здійснити обчислення, вважаючи, що b = 0.

Якщо потрібно дізнатися прогноз більш ніж одного значення x, то після введення формули слід натиснути не на «Введення», а потрібно набрати на клавіатурі комбінацію «Shift» + «Control» + «Enter» («Введення»).

Деякі особливості

Регресійний аналіз може бути доступним навіть чайникам. Формула Excel для передбачення значення масиву невідомих змінних – «ТЕНДЕНЦІЯ» – може використовуватися навіть тими, хто ніколи не чув про метод найменших квадратів. Достатньо просто знати деякі особливості її роботи. Зокрема:

  • Якщо розташувати діапазон відомих значень змінної y в одному рядку або стовпці, то кожен рядок (стовпець) з відомими значеннями x сприйматиметься програмою як окрема змінна.
  • Якщо у вікні «ТЕНДЕНЦІЯ» не вказаний діапазон з відомими x, то у разі використання функції Excel програма буде розглядати його як масив, що складається з цілих чисел, кількість яких відповідає діапазону із заданими значеннями змінної y.
  • Щоб одержати на виході масив "передбачених" значень, вираз для обчислення тенденції потрібно вводити як формулу масиву.
  • Якщо не вказано нових значень x, то функція «ТЕНДЕНЦІЯ» вважає їх рівним відомим. Якщо вони не задані, то як аргумент береться масив 1; 2; 3; 4;…, який пропорційний діапазону з вже заданими параметрами y.
  • Діапазон, що містить нові значення x, повинен складатися з такої ж чи більшої кількості рядків або стовпців, як діапазон із заданими значеннями y. Іншими словами він має бути пропорційним незалежним змінним.
  • У масиві з відомими значеннями x може бути кілька змінних. Однак якщо йдеться лише про одну, то потрібно, щоб діапазони із заданими значеннями x та y були пропорційні. У разі кількох змінних потрібно, щоб діапазон із заданими значеннями y вміщався в одному стовпчику або в одному рядку.

Функція «ПЕРЕДСКАЗ»

Реалізується за допомогою кількох функцій. Одна з них називається «Предказ». Вона аналогічна «ТЕНДЕНЦІЇ», тобто видає результат обчислень методом найменших квадратів. Однак лише для одного X, для якого невідомо значення Y.

Тепер ви знаєте формули в Excel для чайників, що дозволяють спрогнозувати величину майбутнього значення того чи іншого показника згідно з лінійним трендом.

Яке знаходить найширше застосування у різних галузях науки та практичної діяльності. Це може бути фізика, хімія, біологія, економіка, соціологія, психологія і таке інше. Волею долі мені часто доводиться мати справу з економікою, і тому сьогодні я оформлю вам путівку до дивовижної країни під назвою Економетрика=) …Як це не хочете?! Там дуже добре – треба тільки наважитися! …Але ось те, що ви, напевно, точно хочете – так це навчитися вирішувати завдання методом найменших квадратів. І особливо старанні читачі навчаться вирішувати їх не тільки безпомилково, але ще й ДУЖЕ ШВИДКО;-) Але спочатку загальна постановка задачі+ супутній приклад:

Нехай у деякій предметної області досліджуються показники, які мають кількісне вираз. У цьому є підстави вважати, що показник залежить від показника . Це може бути як наукової гіпотезою, і грунтуватися на елементарному здоровому глузді. Залишимо, проте, науку осторонь і досліджуємо більш апетитні області - зокрема, продовольчі магазини. Позначимо через:

– торгову площу продовольчого магазину, кв.м.,
- Річний товарообіг продовольчого магазину, млн. руб.

Цілком зрозуміло, що чим більша площа магазину, тим у більшості випадків буде більшим його товарообіг.

Припустимо, що після проведення спостережень/дослідів/підрахунків/танців з бубном у нашому розпорядженні виявляються числові дані:

З гастрономами, гадаю, все зрозуміло: - це площа 1-го магазину, - його річний товарообіг, - площа 2-го магазину, - його річний товарообіг і т.д. До речі, зовсім не обов'язково мати доступ до секретних матеріалів – досить точну оцінку товарообігу можна отримати засобами математичної статистики. Втім, не відволікаємось, курс комерційного шпигунства – він уже платний =)

Табличні дані також можна записати у вигляді точок та зобразити у звичній для нас декартовій системі .

Відповімо на важливе питання: скільки точок потрібно якісного дослідження?

Чим більше тим краще. Мінімально допустимий набір складається з 5-6 пікселів. Крім того, при невеликій кількості даних у вибірку не можна включати «аномальні» результати. Так, наприклад, невеликий елітний магазин може рятувати на порядки більше «своїх колег», спотворюючи тим самим загальну закономірність, яку потрібно знайти!

Якщо дуже просто - нам потрібно підібрати функцію, графікякою проходить якомога ближче до точок . Таку функцію називають апроксимуючою (апроксимація – наближення)або теоретичною функцією . Взагалі кажучи, тут одразу з'являється очевидний «претендент» – багаточлен високого ступеня, графік якого проходить через всі точки. Але цей варіант складний, а часто й просто некоректний (т.к. графік буде весь час «петляти» і погано відображатиме головну тенденцію).

Таким чином, розшукувана функція повинна бути досить простою і в той же час відображати залежність адекватно. Як ви здогадуєтеся, один із методів знаходження таких функцій і називається методом найменших квадратів. Спочатку розберемо його суть у загальному вигляді. Нехай деяка функція наближає експериментальні дані:


Як оцінити точність наближення? Обчислимо і різниці (відхилення) між експериментальними та функціональними значеннями (Вивчаємо креслення). Перша думка, яка спадає на думку – це оцінити, наскільки велика сума, але проблема полягає в тому, що різниці можуть бути і негативні. (наприклад, ) та відхилення внаслідок такого підсумовування будуть взаємознищуватись. Тому як оцінка точності наближення напрошується прийняти суму модуліввідхилень:

або в згорнутому вигляді: (раптом хто не знає: – це значок суми, а – допоміжна змінна-«лічильник», яка набуває значення від 1 до ).

Наближаючи експериментальні точки різними функціями, ми отримуватимемо різні значення , і очевидно, де ця сума менша – та функція і точніше.

Такий метод існує і називається він методом найменших модулів. Однак на практиці набув значно більшого поширення метод найменших квадратів, В якому можливі негативні значення ліквідуються не модулем, а зведенням відхилень у квадрат:

, після чого зусилля спрямовані на підбір такої функції, щоб сума квадратів відхилень була якнайменше. Власне, звідси й назва методу.

І зараз ми повертаємося до іншого важливого моменту: як зазначалося вище, функція, що підбирається, повинна бути досить проста - але ж і таких функцій теж чимало: лінійна , гіперболічна, експоненційна, логарифмічна, квадратична і т.д. І, звичайно, тут одразу б хотілося «скоротити поле діяльності». Який клас функцій вибрати на дослідження? Примітивний, але ефективний прийом:

- Найпростіше зобразити точки на кресленні та проаналізувати їх розташування. Якщо вони мають тенденцію розташовуватися по прямій, слід шукати рівняння прямої з оптимальними значеннями та . Іншими словами, завдання полягає у знаходженні ТАКИХ коефіцієнтів – щоб сума квадратів відхилень була найменшою.

Якщо ж точки розташовані, наприклад, по гіперболі, то свідомо зрозуміло, що лінійна функція даватиме погане наближення. У цьому випадку шукаємо найбільш «вигідні» коефіцієнти для рівняння гіперболи – ті, що дають мінімальну суму квадратів .

А тепер зверніть увагу, що в обох випадках мова йде про функції двох змінних, аргументами якої є параметри залежностей, що розшукуються:

І по суті нам потрібно вирішити стандартне завдання – знайти мінімум функції двох змінних.

Згадаймо про наш приклад: припустимо, що «магазинні» точки мають тенденцію розташовуватись по прямій лінії і є всі підстави вважати наявність лінійної залежностітоварообігу від торгової площі Знайдемо ТАКІ коефіцієнти «а» та «бе», щоб сума квадратів відхилень була найменшою. Все як завжди - спочатку приватні похідні 1-го порядку. Згідно правилу лінійностідиференціювати можна прямо під значком суми:

Якщо хочете використовувати дану інформацію для реферату або курсовика - буду дуже вдячний за посилання в списку джерел, такі докладні викладки знайдете мало де:

Складемо стандартну систему:

Скорочуємо кожне рівняння на «двійку» і, крім того, «розвалюємо» суми:

Примітка : самостійно проаналізуйте, чому «а» та «бе» можна винести за значок суми. До речі, формально це можна зробити і із сумою

Перепишемо систему у «прикладному» вигляді:

після чого починає промальовуватися алгоритм розв'язання нашого завдання:

Координати точок ми знаємо? Знаємо. Суми знайти можемо? Легко. Складаємо найпростішу систему двох лінійних рівнянь із двома невідомими(«а» та «бе»). Систему вирішуємо, наприклад, методом Крамера, у результаті отримуємо стаціонарну точку . Перевіряючи достатня умова екстремумуможна переконатися, що в даній точці функція досягає саме мінімуму. Перевірка пов'язана з додатковими викладками і тому залишимо її за кадром (при необхідності кадр, що бракує, можна подивитися ). Робимо остаточний висновок:

Функція найкращим чином (принаймні, порівняно з будь-якою іншою лінійною функцією)наближає експериментальні точки . Грубо кажучи, її графік відбувається максимально близько до цих точок. У традиціях економетрикиотриману апроксимуючу функцію також називають рівнянням парної лінійної регресії .

Розглянуте завдання має велике практичне значення. У ситуації з нашим прикладом, рівняння дозволяє прогнозувати, який товарообіг («Ігрек»)буде біля магазину при тому чи іншому значенні торгової площі (Тому чи іншому значенні «ікс»). Так, отриманий прогноз буде лише прогнозом, але у багатьох випадках він виявиться досить точним.

Я розберу лише одне завдання з «реальними» числами, оскільки жодних труднощів у ній немає – всі обчислення на рівні шкільної програми 7-8 класу. У 95 відсотків випадків вам буде запропоновано знайти саме лінійну функцію, але в самому кінці статті я покажу, що нітрохи не складніше знайти рівняння оптимальної гіперболи, експоненти та деяких інших функцій.

По суті, залишилося роздати обіцяні плюшки – щоб ви навчилися вирішувати такі приклади не лише безпомилково, а ще й швидко. Уважно вивчаємо стандарт:

Завдання

В результаті дослідження взаємозв'язку двох показників отримані такі пари чисел:

Методом найменших квадратів знайти лінійну функцію, яка найкраще наближає емпіричні (досвідчені)дані. Зробити креслення, на якому в декартовій прямокутній системі координат побудувати експериментальні точки та графік апроксимуючої функції . Знайти суму квадратів відхилень між емпіричними та теоретичними значеннями. З'ясувати, чи буде функція кращою (з погляду методу найменших квадратів)наближати експериментальні точки.

Зауважте, що «іксові» значення – натуральні, і це має характерний змістовний зміст, про який я розповім трохи згодом; але вони, зрозуміло, можуть і дробовими. Крім того, залежно від змісту того чи іншого завдання як «іксові», так і «ігрові» значення повністю або частково можуть бути негативними. Ну а у нас дане «безлике» завдання, і ми починаємо його Рішення:

Коефіцієнти оптимальної функції знайдемо як розв'язання системи:

З метою більш компактного запису змінну-«лічильник» можна опустити, оскільки і так зрозуміло, що підсумовування здійснюється від 1 до .

Розрахунок потрібних сум зручніше оформити у табличному вигляді:


Обчислення можна провести на мікрокалькуляторі, але краще використовувати Ексель - і швидше, і без помилок; дивимося короткий відеоролик:

Таким чином, отримуємо наступну систему:

Тут можна помножити друге рівняння на 3 та від 1-го рівняння почленно відняти 2-е. Але це везіння - на практиці системи частіше не подарункові, і в таких випадках рятує метод Крамера:
Отже, система має єдине рішення.

Виконаємо перевірку. Розумію, що не хочеться, але навіщо пропускати помилки там, де їх можна стовідсотково не пропустити? Підставимо знайдене рішення в ліву частину кожного рівняння системи:

Отримано праві частини відповідних рівнянь, отже система вирішена правильно.

Таким чином, шукана апроксимуюча функція: – з всіх лінійних функційекспериментальні дані найкраще наближає саме вона.

На відміну від прямий залежності товарообігу магазину від його площі, знайдена залежність є зворотній (Принцип «що більше – тим менше»), і цей факт відразу виявляється по негативному кутовому коефіцієнту. Функція повідомляє нам про те, що зі збільшення якогось показника на 1 одиницю значення залежного показника зменшується в середньомуна 0,65 одиниць. Як то кажуть, що вище ціна на гречку, то менше її продано.

Для побудови графіка апроксимуючої функції знайдемо два її значення:

і виконаємо креслення:


Побудована пряма називається лінією тренду (а саме – лінією лінійного тренду, тобто у загальному випадку тренд – це не обов'язково пряма лінія). Всім знайомий вислів «бути в тренді», і, гадаю, що цей термін не потребує додаткових коментарів.

Обчислимо суму квадратів відхилень між емпіричними та теоретичними значеннями. Геометрично – це сума квадратів довжин «малинових» відрізків (два з яких настільки малі, що їх навіть не видно).

Обчислення зведемо до таблиці:


Їх можна знову ж таки провести вручну, про всяк випадок наведу приклад для 1-ї точки:

але набагато ефективніше вчинити вже відомим чином:

Ще раз повторимо: у чому сенс отриманого результату?З всіх лінійних функційу функції показник є найменшим, тобто у своїй родині це найкраще наближення. І тут, до речі, невипадкове заключне питання завдання: а раптом запропонована експоненційна функція краще наближати експериментальні точки?

Знайдемо відповідну суму квадратів відхилень – щоб розрізняти, я позначу їх літерою «епсілон». Техніка така сама:


І знову на будь-який пожежний обчислення для 1-ї точки:

В Екселі користуємося стандартною функцією EXP (Синтаксис можна подивитися в екселевський Довідці).

Висновок: , отже, експоненційна функція наближає експериментальні точки гірше, ніж пряма .

Але тут слід зазначити, що «гірше» – це ще не означає, що погано. Зараз збудував графік цієї експоненційної функції – і він теж проходить близько до точок - Так, що без аналітичного дослідження і сказати важко, яка функція точніше.

На цьому рішення закінчено, і я повертаюся до питання про натуральні значення аргументу. У різних дослідженнях, зазвичай, економічних чи соціологічних, натуральними «іксами» нумерують місяці, роки чи інші рівні часові проміжки. Розглянемо, наприклад, таке завдання.

приклад.

Експериментальні дані про значення змінних хі унаведено у таблиці.

В результаті їх вирівнювання отримано функцію

Використовуючи метод найменших квадратів, апроксимувати ці дані лінійною залежністю y=ax+b(Знайти параметри аі b). З'ясувати, яка з двох ліній краще (у сенсі способу менших квадратів) вирівнює експериментальні дані. Зробити креслення.

Суть методу найменших квадратів (МНК).

Завдання полягає у знаходженні коефіцієнтів лінійної залежності, при яких функція двох змінних аі b набуває найменшого значення. Тобто, за даними аі bсума квадратів відхилень експериментальних даних від знайденої прямої буде найменшою. У цьому суть методу найменших квадратів.

Таким чином, рішення прикладу зводиться до знаходження екстремуму функції двох змінних.

Висновок формул знаходження коефіцієнтів.

Складається та вирішується система із двох рівнянь із двома невідомими. Знаходимо приватні похідні функції змінних аі b, Прирівнюємо ці похідні до нуля.

Вирішуємо отриману систему рівнянь будь-яким методом (наприклад методом підстановкиабо ) і отримуємо формули для знаходження коефіцієнтів методом найменших квадратів (МНК).

За даними аі bфункція набуває найменшого значення. Доказ цього факту наведено.

Ось і весь спосіб найменших квадратів. Формула для знаходження параметра aмістить суми , , , та параметр n- Кількість експериментальних даних. Значення цих сум рекомендуємо обчислювати окремо. Коефіцієнт bзнаходиться після обчислення a.

Настав час згадати про вихідний приклад.

Рішення.

У нашому прикладі n=5. Заповнюємо таблицю для зручності обчислення сум, що входять до формул шуканих коефіцієнтів.

Значення у четвертому рядку таблиці отримані множенням значень 2-го рядка на значення 3-го рядка для кожного номера i.

Значення у п'ятому рядку таблиці отримані зведенням у квадрат значень другого рядка для кожного номера i.

Значення останнього стовпця таблиці – це суми значень рядків.

Використовуємо формули методу найменших квадратів для знаходження коефіцієнтів аі b. Підставляємо у них відповідні значення з останнього стовпця таблиці:

Отже, y = 0.165x+2.184- пряма апроксимуюча.

Залишилося з'ясувати, яка з ліній y = 0.165x+2.184або краще апроксимує вихідні дані, тобто провести оцінку шляхом найменших квадратів.

Оцінка похибки способу менших квадратів.

Для цього потрібно обчислити суми квадратів відхилень вихідних даних від цих ліній і менше значення відповідає лінії, яка краще в сенсі методу найменших квадратів апроксимує вихідні дані.

Оскільки , то пряма y = 0.165x+2.184краще наближає вихідні дані.

Графічна ілюстрація методу найменших квадратів (МНК).

На графіках все чудово видно. Червона лінія – це знайдена пряма y = 0.165x+2.184, синя лінія – це , Рожеві точки - це вихідні дані.

Навіщо це потрібно, до чого всі ці апроксимації?

Я особисто використовую для вирішення завдань згладжування даних, задач інтерполяції та екстраполяції (у вихідному прикладі могли б попросити знайти значення спостережуваної величини yпри x=3або при x=6методом МНК). Але докладніше поговоримо про це пізніше в іншому розділі сайту.

Доведення.

Щоб при знайдених аі bфункція приймала найменше значення, необхідно, щоб у цій точці матриця квадратичної форми диференціала другого порядку для функції була позитивно визначеною. Покажемо це.

Метод найменших квадратів (МНК, англ. Ordinary Least Squares, OLS)- математичний метод, застосовуваний на вирішення різних завдань, заснований на мінімізації суми квадратів відхилень деяких функцій від шуканих змінних. Він може використовуватися для «вирішення» перевизначених систем рівнянь (коли кількість рівнянь перевищує кількість невідомих), для пошуку рішення у разі звичайних (не перевизначених) нелінійних систем рівнянь, для апроксимації точкових значень певної функції. МНК є одним з базових методів регресійного аналізу для оцінки невідомих параметрів регресійних моделей за вибірковими даними.

Енциклопедичний YouTube

    1 / 5

    ✪ Метод найменших квадратів. Тема

    ✪ Мітін І. В. - Обробка результатів фіз. експерименту - Метод найменших квадратів (Лекція 4)

    ✪ Метод найменших квадратів, урок 1/2. Лінійна функція

    ✪ Економетрика. Лекція 5. Метод найменших квадратів

    ✪ Метод найменших квадратів. Відповіді

    Субтитри

Історія

На початок ХІХ ст. вчені не мали певних правил для вирішення системи рівнянь, в якій число невідомих менше, ніж число рівнянь; до цього часу використовувалися приватні прийоми, що залежали від виду рівнянь і від дотепності обчислювачів, і тому різні обчислювачі, виходячи з тих самих даних спостережень, приходили до різних висновків. Гаусс (1795) належить перше застосування методу, а Лежандр (1805) незалежно відкрив і опублікував його під сучасною назвою (фр. Méthode des moindres quarrés). Лаплас пов'язав метод з теорією ймовірностей, а американський математик Едрейн (1808) розглянув його теоретико-імовірнісні додатки. Метод поширений і вдосконалений подальшими дослідженнями Енке, Бесселя, Ганзена та інших.

Сутність методу найменших квадратів

Нехай x (\displaystyle x)- набір n (\displaystyle n)невідомих змінних (параметрів), f i (x) (\displaystyle f_(i)(x)), , m > n (\displaystyle m>n)- Сукупність функцій від цього набору змінних. Завдання полягає у підборі таких значень x (\displaystyle x), щоб значення цих функцій були максимально близькими до деяких значень y i (\displaystyle y_(i)). Фактично йдеться про «вирішенні» перевизначеної системи рівнянь f i (x) = y i (\displaystyle f_(i)(x)=y_(i)), i = 1, …, m (\displaystyle i=1,\ldots,m)у вказаному сенсі максимальної близькості лівої та правої частин системи. Сутність МНК полягає у виборі як «заходи близькості» суми квадратів відхилень лівих і правих частин | f i (x) − y i | (\displaystyle |f_(i)(x)-y_(i)|). Таким чином, сутність МНК може бути виражена таким чином:

∑ i e i 2 = ∑ i (y i − fi (x)) 2 → min x (\displaystyle \sum _(i)e_(i)^(2)=\sum _(i)(y_(i)-f_( i)(x))^(2)\rightarrow \min _(x)).

Якщо система рівнянь має рішення, то мінімум суми квадратів дорівнюватиме нулю і можуть бути знайдені точні рішення системи рівнянь аналітично або, наприклад, різними чисельними методами оптимізації. Якщо система перевизначена, тобто, кажучи нестрого, кількість незалежних рівнянь більша за кількість шуканих змінних, то система не має точного рішення і метод найменших квадратів дозволяє знайти деякий «оптимальний» вектор x (\displaystyle x)у сенсі максимальної близькості векторів y (\displaystyle y)і f(x) (\displaystyle f(x))або максимальної близькості вектора відхилень e (\displaystyle e)нанівець (близькість розуміється у сенсі евклідова відстані).

Приклад - система лінійних рівнянь

Зокрема, метод найменших квадратів може використовуватися для вирішення системи лінійних рівнянь

A x = b (\displaystyle Ax = b),

де A (\displaystyle A)прямокутна матриця розміру m × n , m > n (\displaystyle m\times n,m>n)(тобто число рядків матриці A більше кількості шуканих змінних).

Така система рівнянь у випадку немає решения. Тому цю систему можна «вирішити» лише у сенсі вибору такого вектора. x (\displaystyle x), щоб мінімізувати відстань між векторами A x (\displaystyle Ax)і b (\displaystyle b). Для цього можна застосувати критерій мінімізації суми квадратів різниць лівої та правої частин рівнянь системи, тобто (A x − b) T (A x − b) → min (\displaystyle (Ax-b)^(T)(Ax-b)\rightarrow \min ). Неважко показати, що вирішення цього завдання мінімізації призводить до вирішення наступної системи рівнянь

x = (A T A) − 1 A T b (\displaystyle A^(T)Ax=A^(T)b\Rightarrow x=(A^(T)A)^(-1)A^ (T)b).

МНК у регресійному аналізі (апроксимація даних)

Нехай є n (\displaystyle n)значень деякої змінної y (\displaystyle y)(це можуть бути результати спостережень, експериментів тощо) та відповідних змінних x (\displaystyle x). Завдання полягає в тому, щоб взаємозв'язок між y (\displaystyle y)і x (\displaystyle x)апроксимувати деякою функцією, відомою з точністю до деяких невідомих параметрів b (\displaystyle b), тобто фактично визначити найкращі значення параметрів b (\displaystyle b), що максимально наближають значення f (x, b) (\displaystyle f(x,b))до фактичних значень y (\displaystyle y). Фактично це зводиться до випадку «вирішення» перевизначеної системи рівнянь щодо b (\displaystyle b):

F (x t , b) = y t , t = 1 , … , n (\displaystyle f(x_(t),b)=y_(t),t=1,\ldots ,n).

У регресійному аналізі та зокрема в економетриці використовуються ймовірнісні моделі залежності між змінними

Y t = f (x t , b) + ε t (\displaystyle y_(t)=f(x_(t),b)+\varepsilon _(t)),

де ε t (\displaystyle \varepsilon _(t))- так звані випадкові помилкимоделі.

Відповідно, відхилення значень, що спостерігаються y (\displaystyle y)від модельних f (x, b) (\displaystyle f(x,b))передбачається вже у самій моделі. Сутність МНК (звичайного, класичного) у тому, щоб знайти такі параметри b (\displaystyle b), При яких сума квадратів відхилень (помилок, для регресійних моделей їх часто називають залишками регресії) e t (\displaystyle e_(t))буде мінімальною:

b ^ O S = arg ⁡ min b RS S (b) (\displaystyle (\hat (b))_(OLS)=\arg \min _(b)RSS(b)),

де RS S (\displaystyle RSS)- англ. Residual Sum of Squares визначається як:

RS (b) = e T e = ∑ t = 1 n e t 2 = ∑ t = 1 n (y t − f (x t , b)) 2 (\displaystyle RSS(b)=e^(T)e=\sum _ (t=1)^(n)e_(t)^(2)=\sum _(t=1)^(n)(y_(t)-f(x_(t),b))^(2) ).

У випадку вирішення цього завдання може здійснюватися чисельними методами оптимізації (мінімізації). У цьому випадку говорять про нелінійному МНК(NLS або NLLS - англ. Non-Linear Least Squares). У багатьох випадках можна одержати аналітичне рішення. Для вирішення задачі мінімізації необхідно знайти стаціонарні точки функції RS S (b) (\displaystyle RSS(b)), продиференціювавши її за невідомими параметрами b (\displaystyle b), прирівнявши похідні до нуля і вирішивши отриману систему рівнянь:

∑ t = 1 n (y t − f (x t , b)) ∂ f (x t , b) ∂ b = 0 (\displaystyle \sum _(t=1)^(n)(y_(t)-f(x_ (t),b))(\frac (\partial f(x_(t),b))(\partial b))=0).

МНК у разі лінійної регресії

Нехай регресійна залежність є лінійною:

t = ∑ j = 1 k b j x t j + ε = x t T b + ε t (\displaystyle y_(t)=\sum _(j=1)^(k)b_(j)x_(tj)+\varepsilon =x_( t)^(T)b+\varepsilon _(t)).

Нехай y- вектор-стовпець спостережень пояснюваної змінної, а X (\displaystyle X)- це (n × k) (\displaystyle ((n\times k)))-матриця спостережень чинників (рядки матриці - вектори значень чинників у цьому спостереженні, по стовпчикам - вектор значень даного чинника переважають у всіх спостереженнях). Матричне представлення лінійної моделі має вигляд:

y = X b + ε (\displaystyle y=Xb+\varepsilon).

Тоді вектор оцінок змінної, що пояснюється, і вектор залишків регресії дорівнюватимуть

y ^ = X b , e = y − y ^ = y − X b (\displaystyle (\hat(y))=Xb,\quad e=y-(\hat(y))=y-Xb).

відповідно сума квадратів залишків регресії дорівнюватиме

RS = e T e = (y − X b) T (y − X b) (\displaystyle RSS=e^(T)e=(y-Xb)^(T)(y-Xb)).

Диференціюючи цю функцію за вектором параметрів b (\displaystyle b)і прирівнявши похідні до нуля, отримаємо систему рівнянь (у матричній формі):

(X T X) b = X T y (\displaystyle (X^(T)X)b=X^(T)y).

У розшифрованій матричній формі ця система рівнянь виглядає так:

(∑ x t 1 2 ∑ x t 1 x t 2 ∑ x t 1 x t 3 … ∑ x t 1 x t k ∑ x t 2 x t 1 ∑ x t 2 2 ∑ x t 2 x t 3 … ∑ ∑ x t 3 x t 2 ∑ x t 3 2 … ∑ x t 3 x t k ⋮ ⋮ ⋮ ⋱ ⋮ ∑ x t k x t 1 ∑ x t k x t 2 ∑ x t k x t 3 … ∑ x t k 2) (b 1 b t b ∑ x t 2 y t ∑ x t 3 y t ⋮ ∑ x t k y t) , (\displaystyle (\begin(pmatrix)\sum x_(t1)^(2)&\sum x_(t1)x_(t2)&\sum x_(t1)x_(t3)&\ldots &\sum x_(t1)x_(tk)\\\sum x_(t2)x_(t1)&\sum x_(t2)^(2)&\sum x_(t2)x_(t3)&\ldots &\ sum x_(t2)x_(tk)\\\sum x_(t3)x_(t1)&\sum x_(t3)x_(t2)&\sum x_(t3)^(2)&\ldots &\sum x_ (t3)x_(tk)\\\vdots &\vdots &\vdots &\ddots &\vdots \\\sum x_(tk)x_(t1)&\sum x_(tk)x_(t2)&\sum x_ (tk)x_(t3)&\ldots &\sum x_(tk)^(2)\\\end(pmatrix))(\begin(pmatrix)b_(1)\\b_(2)\\b_(3 )\\\vdots \\b_(k)\\\end(pmatrix))=(\begin(pmatrix)\sum x_(t1)y_(t)\\\sum x_(t2)y_(t)\\ \sum x_(t3)y_(t)\\\vdots \\\sum x_(tk)y_(t)\\\end(pmatrix)),)де всі суми беруться за всіма допустимими значеннями t (\displaystyle t).

Якщо модель включена константа (як завжди), то x t 1 = 1 (\displaystyle x_(t1)=1)при всіх t (\displaystyle t)тому у лівому верхньому кутку матриці системи рівнянь знаходиться кількість спостережень n (\displaystyle n), а інших елементах першого рядка і першого стовпця - просто суми значень змінних: ∑ x t j (\displaystyle \sum x_(tj))та перший елемент правої частини системи - ∑ y t (\displaystyle \sum y_(t)).

Вирішення цієї системи рівнянь і дає загальну формулу МНК-оцінок для лінійної моделі:

b ^ O L S = (X T X) − 1 X T y = (1 n X T X) − 1 1 n X T y = V x − 1 C x y (\displaystyle(\hat(b))_(OLS)=(X^(T) )X)^(-1)X^(T)y=\left((\frac(1)(n))X^(T)X\right)^(-1)(\frac(1)(n ))X^(T)y=V_(x)^(-1)C_(xy)).

Для аналітичних цілей виявляється корисним останнє уявлення цієї формули (у системі рівнянь при розподілі на n замість сум фігурують середні арифметичні). Якщо у регресійній моделі дані центровані, то цьому поданні перша матриця має сенс вибіркової ковариационной матриці чинників, а друга - вектор ковариаций чинників із залежною змінною. Якщо дані ще й нормованіна СКО (тобто зрештою стандартизовано), то перша матриця має сенс вибіркової кореляційної матриці факторів, другий вектор - вектора вибіркових кореляцій факторів із залежною змінною.

Важлива властивість МНК-оцінок для моделей з константою- лінія побудованої регресії проходить через центр тяжкості вибіркових даних, тобто виконується рівність:

y ? (\hat(b))_(j)(\bar(x))_(j)).

Зокрема, у крайньому випадку, коли єдиним регресором є константа, отримуємо, що МНК-оцінка єдиного параметра (власне константи) дорівнює середньому значенню змінної, що пояснюється. Тобто середнє арифметичне, відоме своїми добрими властивостями із законів великих чисел, також є МНК-оцінкою – задовольняє критерію мінімуму суми квадратів відхилень від неї.

Найпростіші окремі випадки

У разі парної лінійної регресії y t = a + b x t + ε t (\displaystyle y_(t)=a+bx_(t)+\varepsilon _(t))Коли оцінюється лінійна залежність однієї змінної від іншої, формули розрахунку спрощуються (можна обійтися без матричної алгебри). Система рівнянь має вигляд:

(1 x x x x 2) (a b) = (y x x y) (displaystyle (begin(pmatrix)1) (x^(2)))\\\end(pmatrix))(\begin(pmatrix)a\b\\end(pmatrix))=(\begin(pmatrix)(\bar (y))\\ (\overline (xy))\\\end(pmatrix))).

Звідси нескладно знайти оцінки коефіцієнтів:

( b ^ = Cov ⁡ (x , y) Var ⁡ (x) = x y − − x ¯ y ¯ x 2 − − x 2 , a ^ = y ¯ − b x ¯ . (\displaystyle (\begin(cases)) (\hat (b))=(\frac (\mathop (\textrm (Cov)) (x,y))(\mathop (\textrm (Var)) (x)))=(\frac ((\overline (xy))-(\bar (x))(\bar (y)))((\overline (x^(2)))-(\overline (x))^(2))),\\( \hat(a))=(\bar(y))-b(\bar(x)).\end(cases)))

Незважаючи на те, що в загальному випадку моделі з константою краще, в деяких випадках з теоретичних міркувань відомо, що константа a (\displaystyle a)повинна дорівнювати нулю. Наприклад, у фізиці залежність між напругою та силою струму має вигляд U = I ⋅ R (\displaystyle U=I\cdot R); Вимірюючи напругу і силу струму, необхідно оцінити опір. У такому разі йдеться про модель y = b x (\displaystyle y = bx). У цьому випадку замість системи рівнянь маємо єдине рівняння

(∑ x t 2) b = ∑ x t y t (\displaystyle \left(\sum x_(t)^(2)\right)b=\sum x_(t)y_(t)).

Отже, формула оцінки єдиного коефіцієнта має вигляд

B ^ = ∑ t = 1 n x t y t ∑ t = 1 n x t 2 = x y x 2 (displaystyle (hat (b))= )y_(t))(\sum _(t=1)^(n)x_(t)^(2)))=(\frac (\overline (xy))(\overline (x^(2)) ))).

Випадок поліноміальної моделі

Якщо дані апроксимуються поліноміальною функцією регресії однієї змінної f (x) = b 0 + ∑ i = 1 k b i x i (\displaystyle f(x)=b_(0)+\sum \limits _(i=1)^(k)b_(i)x^(i)), то, сприймаючи ступеня x i (\displaystyle x^(i))як незалежні фактори для кожного i (\displaystyle i)можна оцінити параметри моделі, виходячи із загальної формули оцінки параметрів лінійної моделі. Для цього в загальну формулу достатньо врахувати, що за такої інтерпретації x t i x t j = x t i x t j = x t i + j (\displaystyle x_(ti)x_(tj)=x_(t)^(i)x_(t)^(j)=x_(t)^(i+j)і x t j y t = x t j y t (\displaystyle x_(tj)y_(t)=x_(t)^(j)y_(t)). Отже, матричні рівняння в даному випадку набудуть вигляду:

(n ∑ n x t … ∑ n x t k ∑ n x t ∑ n x i 2 … ∑ m x i k + 1 ⋮ ⋮ ⋱ ⋮ ∑ n x t k ∑ n x t k + 1 … ∑ = [ ∑ n y t ∑ n x t y t ⋮ ∑ n x t k y t ]. (\displaystyle (\begin(pmatrix)n&\sum \limits _(n)x_(t)&\ldots &\sum \limits _(n)x_(t)^(k)\\\sum \limits _( n)x_(t)&\sum \limits _(n)x_(i)^(2)&\ldots &\sum \limits _(m)x_(i)^(k+1)\\\vdots & \vdots &\ddots &\vdots \\\sum \limits _(n)x_(t)^(k)&\sum \limits _(n)x_(t)^(k+1)&\ldots &\ sum \limits _(n)x_(t)^(2k)\end(pmatrix))(\begin(bmatrix)b_(0)\\b_(1)\\\vdots \\b_(k)\end( bmatrix))=(\begin(bmatrix)\sum \limits _(n)y_(t)\\\sum \limits _(n)x_(t)y_(t)\\\vdots \\\sum \limits _(n)x_(t)^(k)y_(t)\end(bmatrix)).)

Статистичні властивості МНК оцінок

Насамперед, зазначимо, що для лінійних моделей МНК-оцінки є лінійними оцінками, як це випливає з вищенаведеної формули. Для незміщеності МНК-оцінок необхідно і достатньо виконання найважливішої умови регресійного аналізу: умовне за факторами математичне очікування випадкової помилки має бути рівне нулю. Ця умова, зокрема, виконана, якщо

  1. математичне очікування випадкових помилок дорівнює нулю, та
  2. фактори та випадкові помилки - незалежні, випадкові, величини.

Друга умова - умова екзогенності факторів - важлива. Якщо це властивість не виконано, можна вважати, що будь-які оцінки будуть вкрай незадовільними: де вони навіть заможними (тобто навіть дуже великий обсяг даних Демшевського не дозволяє отримати якісні оцінки у разі). У класичному випадку робиться сильніша припущення про детермінованість факторів, на відміну від випадкової помилки, що автоматично означає виконання умови екзогенності. У випадку для спроможності оцінок достатньо виконання умови екзогенності разом із збіжністю матриці V x (\displaystyle V_(x))до деякої невиродженої матриці зі збільшенням обсягу вибірки до нескінченності.

Для того, щоб крім спроможності та незміщеності, оцінки (звичайного) МНК були ще й ефективними (найкращими в класі лінійних незміщених оцінок) необхідно виконання додаткових властивостей випадкової помилки:

Дані припущення можна сформулювати для коваріаційної матриці вектора випадкових помилок V (ε) = σ 2 I (\displaystyle V(\varepsilon)=\sigma ^(2)I).

Лінійна модель, що задовольняє такі умови, називається класичною. МНК-оцінки для класичної лінійної регресії є незміщеними, заможними та найбільш ефективними оцінками в класі всіх лінійних незміщених оцінок (в англомовній літературі іноді вживають абревіатуру BLUE (Best Linear Unbiased Estimator) - найкраща лінійна незміщена оцінка; у вітчизняній літературі частіше наводиться теорема Гаусса-Маркова). Як неважко показати, ковариационная матриця вектора оцінок коефіцієнтів дорівнюватиме:

V (b ^ O L S) = σ 2 (X T X) − 1 (\displaystyle V((\hat(b))_(OLS))=\sigma ^(2)(X^(T)X)^(-1 )).

Ефективність означає, що ця ковариационная матриця є «мінімальної» (будь-яка лінійна комбінація коефіцієнтів, і зокрема самі коефіцієнти, мають мінімальну дисперсію), тобто у класі лінійних незміщених оцінок оцінки МНК-найкращі. Діагональні елементи цієї матриці – дисперсії оцінок коефіцієнтів – важливі параметри якості отриманих оцінок. Однак розрахувати матрицю коваріації неможливо, оскільки дисперсія випадкових помилок невідома. Можна довести, що незміщеною та заможною (для класичної лінійної моделі) оцінкою дисперсії випадкових помилок є величина:

S 2 = R S S / (n − k) (\displaystyle s^(2)=RSS/(n-k)).

Підставивши це значення формулу для ковариационной матриці і отримаємо оцінку ковариационной матриці. Отримані оцінки також є незміщеними та заможними. Важливо також те, що оцінка дисперсії помилок (а отже дисперсій коефіцієнтів) та оцінки параметрів моделі є незалежними випадковими величинами, що дозволяє отримати тестові статистики для перевірки гіпотез про коефіцієнти моделі.

Необхідно відзначити, що якщо класичні припущення не виконані, МНК-оцінки параметрів не є найбільш ефективними і де W (\displaystyle W)- Деяка симетрична позитивно визначена вагова матриця. Звичайний МНК є окремим випадком даного підходу, коли вагова матриця пропорційна одиничній матриці. Як відомо, для симетричних матриць (або операторів) є розкладання W = P T P (\displaystyle W=P^(T)P). Отже, вказаний функціонал можна подати так e T P T P e = (P e) T P e = e ∗ T e ∗ (\displaystyle e^(T)P^(T)Pe=(Pe)^(T)Pe=e_(*)^(T)e_( *)), тобто цей функціонал можна як суму квадратів деяких перетворених «залишків». Отже, можна назвати клас методів найменших квадратів - LS-методи (Least Squares).

Доведено (теорема Айткена), що для узагальненої лінійної регресійної моделі (у якій на коварійну матрицю випадкових помилок не накладається жодних обмежень) найефективнішими (у класі лінійних незміщених оцінок) є оцінки т.з. узагальненого МНК (ОМНК, GLS - Generalized Least Squares)- LS-метода з ваговою матрицею, що дорівнює зворотній коварійній матриці випадкових помилок: W = V ε − 1 (\displaystyle W=V_(\varepsilon )^(-1)).

Можна показати, що формула ОМНК оцінок параметрів лінійної моделі має вигляд

B ^ G L S = (X T V − 1 X) − 1 X T V − 1 y (\displaystyle (\hat(b))_(GLS)=(X^(T)V^(-1)X)^(-1) X^(T)V^(-1)y).

Коваріаційна матриця цих оцінок відповідно дорівнюватиме

V (b ^ G L S) = (X T V − 1 X) − 1 (\displaystyle V((\hat(b))_(GLS))=(X^(T)V^(-1)X)^(- 1)).

Фактично сутність ОМНК полягає у певному (лінійному) перетворенні (P) вихідних даних та застосуванні звичайного МНК до перетворених даних. Ціль цього перетворення - для перетворених даних випадкові помилки вже задовольняють класичним припущенням.

Зважений МНК

У випадку діагональної вагової матриці (а значить і матриці коварійної випадкових помилок) маємо так званий зважений МНК (WLS - Weighted Least Squares). У даному випадку мінімізується зважена сума квадратів залишків моделі, тобто кожне спостереження отримує «вагу», обернено пропорційну дисперсії випадкової помилки в даному спостереженні: e T W e = ∑ t = 1 n e t 2 σ t 2 (\displaystyle e^(T)We=\sum _(t=1)^(n)(\frac (e_(t)^(2)))(\ sigma _(t)^(2)))). Фактично дані перетворюються зважуванням спостережень (розподілом на величину, пропорційну передбачуваному стандартному відхилення випадкових помилок), а зваженим даним застосовується звичайний МНК.

ISBN 978-5-7749-0473-0.

  • Економетрики. Підручник/За ред. Єлісєєвої І. І. - 2-ге вид. - М.: Фінанси та статистика, 2006. - 576 с. - ISBN 5-279-02786-3.
  • Александрова Н. В.Історія математичних термінів, понять, позначень: словник-довідник. - 3-тє вид. - М.: ЛКІ, 2008. - 248 с. - ISBN 978-5-382-00839-4.І.В Мітін, Русаков В.С. Аналіз та обробка експериментальних даних-5-е видання-24с.
  • 3. Апроксимація функцій за допомогою методу

    найменших квадратів

    Метод найменших квадратів застосовується при обробці результатів експерименту для апроксимації (Наближення) експериментальних даних аналітичною формулою. Конкретний вид формули вибирається, зазвичай, з фізичних міркувань. Такими формулами можуть бути:

    та інші.

    Сутність методу найменших квадратів ось у чому. Нехай результати вимірів представлені таблицею:

    Таблиця 4

    x n

    y n

    (3.1)

    де f - відома функція, a 0 , a 1 , …, a m - невідомі постійні параметри, значення яких слід знайти. У методі найменших квадратів наближення функції (3.1) до експериментальної залежності вважається найкращим, якщо виконується умова

    (3.2)

    тобто сум a квадратів відхилень шуканої аналітичної функції від експериментальної залежності має бути мінімальною .

    Зауважимо, що функція Q називається нев'язкою.


    Тому що нев'язка

    вона має мінімум. Необхідною умовою мінімуму функції кількох змінних є рівність нулю всіх похідних приватних цієї функції за параметрами. Таким чином, відшукання найкращих значень параметрів апроксимуючої функції (3.1), тобто таких значень, при яких Q = Q (a 0 , a 1 , …, a m ) мінімальна, зводиться до розв'язання системи рівнянь:

    (3.3)

    Методу найменших квадратів можна дати таке геометричне тлумачення: серед нескінченного сімейства ліній цього виду знаходиться одна лінія, на яку сума квадратів різниць ординат експериментальних точок і відповідних їм ординат точок, знайдених за рівнянням цієї лінії, буде найменшою.

    Знаходження параметрів лінійної функції

    Нехай експериментальні дані треба подати лінійною функцією:

    Потрібно підібрати такі значення a і b , для яких функція

    (3.4)

    буде мінімальною. Необхідні умови мінімуму функції (3.4) зводяться до системи рівнянь:

    Після перетворень отримуємо систему двох лінійних рівнянь із двома невідомими:

    (3.5)

    вирішуючи яку , знаходимо значення параметрів, що шукаються a і b.

    Знаходження параметрів квадратичної функції

    Якщо апроксимуючою функцією є квадратична залежність

    то її параметри a, b, c знаходять із умови мінімуму функції:

    (3.6)

    Умови мінімуму функції (3.6) зводяться до системи рівнянь:


    Після перетворень отримуємо систему трьох лінійних рівнянь із трьома невідомими:

    (3.7)

    при вирішенні якої знаходимо шукані значення параметрів a, b і c.

    приклад . Нехай в результаті експерименту отримано наступну таблицю значень x і y:

    Таблиця 5

    y i

    0,705

    0,495

    0,426

    0,357

    0,368

    0,406

    0,549

    0,768

    Потрібно апроксимувати експериментальні дані лінійною та квадратичною функціями.

    Рішення. Знаходження параметрів апроксимуючих функцій зводиться до вирішення систем лінійних рівнянь (3.5) та (3.7). Для вирішення задачі скористаємося процесором електронних таблиць Excel.

    1. Спочатку зчепимо листи 1 і 2. Занесемо експериментальні значення x i та y iу стовпці А і В, починаючи з другого рядка (у першому рядку помістимо заголовки стовпців). Потім для цих стовпців обчислимо суми та помістимо їх у десятому рядку.

    У стовпцях C – G розмістимо відповідно обчислення та підсумовування

    2. Розчепимо листи. Подальші обчислення проведемо аналогічним чином для лінійної залежності на аркуші 1і для квадратичної залежності на аркуші 2.

    3. Під отриманою таблицею сформуємо матрицю коефіцієнтів та вектор-стовпець вільних членів. Розв'яжемо систему лінійних рівнянь за наступним алгоритмом:

    Для обчислення зворотної матриці та перемноження матриць скористаємося Майстром функційта функціями МОБРі МУМНІЖ.

    4. У блоці осередків H2: H 9 на основі отриманих коефіцієнтів обчислимо значення апроксимуючогополіномаy i вич., у блоці I 2: I 9 – відхилення D y i = y i експ. - y i вич., у стовпці J – нев'язку:

    Отримані таблиці та побудовані за допомогою Майстри діаграмграфіки наведено на рисунках6, 7, 8.


    Мал. 6. Таблиця обчислення коефіцієнтів лінійної функції,

    апроксимуючоюекспериментальні дані.


    Мал. 7. Таблиця обчислення коефіцієнтів квадратичної функції,

    апроксимуючоюекспериментальні дані.


    Мал. 8. Графічне подання результатів апроксимації

    експериментальних даних лінійної та квадратичної функціями.

    Відповідь. Апроксимували експериментальні дані лінійною залежністю y = 0,07881 x + 0,442262 з нев'язкою Q = 0,165167 та квадратичною залежністю y = 3,115476 x 2 – 5,2175 x + 2,529631 з нев'язкою Q = 0,002103 .

    Завдання. Апроксимувати функцію, задану таблично, лінійною та квадратичною функціями.

    Таблиця 6

    №0

    x

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    y

    3,030

    3,142

    3,358

    3,463

    3,772

    3,251

    3,170

    3,665

    1

    3,314

    3,278

    3,262

    3,292

    3,332

    3,397

    3,487

    3,563

    2

    1,045

    1,162

    1,264

    1,172

    1,070

    0,898

    0,656

    0,344

    3

    6,715

    6,735

    6,750

    6,741

    6,645

    6,639

    6,647

    6,612

    4

    2,325

    2,515

    2,638

    2,700

    2,696

    2,626

    2,491

    2,291

    5

    1.752

    1,762

    1,777

    1,797

    1,821

    1,850

    1,884

    1,944

    6

    1,924

    1,710

    1,525

    1,370

    1,264

    1,190

    1,148

    1,127

    7

    1,025

    1,144

    1,336

    1,419

    1,479

    1,530

    1,568

    1,248

    8

    5,785

    5,685

    5,605

    5,545

    5,505

    5,480

    5,495

    5,510

    9

    4,052

    4,092

    4,152

    4,234

    4,338

    4,468

    4,599



    Останні матеріали розділу:

    Прародина слов'ян Праслов'яни (предки слов'ян) жили в пору відокремлення від інших індоєвропейців на берегах верхів'я річок Одри
    Прародина слов'ян Праслов'яни (предки слов'ян) жили в пору відокремлення від інших індоєвропейців на берегах верхів'я річок Одри

    Попередній перегляд:Щоб користуватися попереднім переглядом презентацій, створіть собі обліковий запис Google і увійдіть до нього:...

    Презентація збо загартовування організму
    Презентація збо загартовування організму

    Слайд 1 Слайд 2 Слайд 3 Слайд 4 Слайд 5 Слайд 6 Слайд 7 Слайд 8 Слайд 9 Слайд 10 Слайд 11 Слайд 12 Слайд 13 Презентацію на тему "Гартування...

    Позакласний захід для початкової школи
    Позакласний захід для початкової школи

    Час має свою пам'ять – історію. Час має свою пам'ять – історію. 2 лютого ми згадуємо одну з найбільших сторінок Великої...

    © Загальноосвітній журнал SLOVARSLOV.RU, 2023

    Усі статті, розміщені на сайті, несуть лише ознайомлювальний характер.