Квадратне рівняння більше від нуля. Розв'язання квадратних рівнянь

У суспільстві вміння робити дії з рівняннями, що містять змінну, зведену в квадрат, може стати у нагоді у багатьох галузях діяльності і широко застосовується практично у наукових і технічних розробках. Свідченням цього може бути конструювання морських і річкових суден, літаків і ракет. За допомогою подібних розрахунків визначають траєкторії переміщення різних тіл, у тому числі і космічних об'єктів. Приклади з розв'язанням квадратних рівнянь знаходять застосування не тільки в економічному прогнозуванні, при проектуванні та будівництві будівель, а й у звичайних життєвих обставинах. Вони можуть знадобитися в туристичних походах, на спортивних змаганнях, в магазинах при здійсненні покупок та інших досить поширених ситуаціях.

Розіб'ємо вираз на складові множники

Ступінь рівняння визначається максимальним значенням ступеня у змінної, яку містить цей вираз. Якщо вона дорівнює 2, то подібне рівняння якраз і називається квадратним.

Якщо говорити мовою формул, то зазначені вирази, хоч би як вони виглядали, завжди можна привести до вигляду, коли ліва частина виразу складається з трьох доданків. Серед них: ax 2 (тобто змінна, зведена квадрат зі своїм коефіцієнтом), bx (невідоме без квадрата зі своїм коефіцієнтом) і c (вільна складова, тобто звичайне число). Все це в правій частині дорівнює 0. У випадку, коли у такого багаточлена відсутня одна з його складових доданків, за винятком ax 2 воно називається неповним квадратним рівнянням. Приклади з вирішенням таких завдань, значення змінних у яких знайти нескладно, слід розглянути насамперед.

Якщо вираз на вигляд виглядає таким чином, що доданків у виразу в правій частині два, точніше ax 2 і bx, найлегше відшукати їх винесенням змінної за дужки. Тепер наше рівняння виглядатиме так: x(ax+b). Далі стає очевидним, що або х=0, або завдання зводиться до знаходження змінної з наступного виразу: ax+b=0. Зазначене продиктовано однією з властивостей множення. Правило говорить, що добуток двох множників дає в результаті 0 тільки якщо один з них дорівнює нулю.

приклад

x = 0 або 8х - 3 = 0

В результаті одержуємо два корені рівняння: 0 та 0,375.

Рівняння такого роду можуть описувати переміщення тіл під дією сили тяжкості, які почали рух з певної точки, прийнятої початку координат. Тут математичний запис набуває такої форми: y = v 0 t + gt 2 /2. Підставивши необхідні значення, прирівнявши праву частину 0 і знайшовши можливі невідомі, можна дізнатися про час, що проходить з моменту підйому тіла до моменту його падіння, а також багато інших величин. Але про це ми поговоримо пізніше.

Розкладання виразу на множники

Описане вище правило дає можливість вирішувати зазначені завдання й у складніших випадках. Розглянемо приклади із розв'язанням квадратних рівнянь такого типу.

X 2 - 33x + 200 = 0

Цей квадратний тричлен є повним. Спочатку перетворимо вираз і розкладемо його на множники. Їх виходить два: (x-8) і (x-25) = 0. У результаті маємо два корені 8 та 25.

Приклади з розв'язанням квадратних рівнянь у 9 класі дозволяють цим методом знаходити змінну у виразах не тільки другого, а й третього та четвертого порядків.

Наприклад: 2x 3 + 2x 2 - 18x - 18 = 0. При розкладанні правої частини на множники зі змінною їх виходить три, тобто (x+1),(x-3) і (x+3).

В результаті стає очевидним, що дане рівняння має три корені: -3; -1; 3.

Вилучення квадратного кореня

Іншим випадком неповного рівняння другого порядку є вираз, мовою букв представлене таким чином, що права частина будується зі складових ax 2 і c. Тут для отримання значення змінної вільний член переноситься у праву сторону, а потім з обох частин рівності витягується квадратний корінь. Слід звернути увагу, що й у разі коренів рівняння зазвичай буває два. Винятком можуть бути лише рівності, взагалі які містять доданок з, де змінна дорівнює нулю, і навіть варіанти висловів, коли права частина виявляється негативною. У разі рішень взагалі немає, оскільки зазначені вище дії неможливо проводити з корінням. Приклади розв'язків квадратних рівнянь такого типу слід розглянути.

У разі корінням рівняння виявляться числа -4 і 4.

Обчислення пощади земельної ділянки

Потреба в подібних обчисленнях з'явилася в давнину, адже розвиток математики багато в чому в ті далекі часи було обумовлено необхідністю визначати з найбільшою точністю площі і периметри земельних ділянок.

Приклади з розв'язанням квадратних рівнянь, складених на основі таких завдань, слід розглянути і нам.

Отже, допустимо є прямокутна ділянка землі, довжина якої на 16 метрів більша, ніж ширина. Слід знайти довжину, ширину та периметр ділянки, якщо відомо, що його площа дорівнює 612 м 2 .

Приступаючи до справи, спершу складемо необхідне рівняння. Позначимо за x ширину ділянки, тоді його довжина виявиться (х +16). З написаного випливає, що площа визначається виразом х(х+16), що згідно з умовою нашого завдання становить 612. Це означає, що х(х+16) = 612.

Вирішення повних квадратних рівнянь, а даний вираз є саме таким, не може виконуватися колишнім способом. Чому? Хоча ліва частина його, як і раніше, містить два множники, добуток їх зовсім не дорівнює 0, тому тут застосовуються інші методи.

Дискримінант

Насамперед зробимо необхідні перетворення, тоді зовнішній вигляд даного виразу виглядатиме таким чином: x 2 + 16x - 612 = 0. Це означає, що ми отримали вираз у формі, що відповідає зазначеному раніше стандарту, де a=1, b=16, c= -612.

Це може стати прикладом розв'язання квадратних рівнянь через дискримінант. Тут необхідні розрахунки виконуються за схемою: D = b 2 - 4ac. Ця допоміжна величина непросто дає можливість знайти шукані величини рівнянні другого порядку, вона визначає кількість можливих варіантів. Якщо D>0, їх два; при D = 0 існує один корінь. У випадку, якщо D<0, никаких шансов для решения у уравнения вообще не имеется.

Про коріння та його формулу

У разі дискримінант дорівнює: 256 - 4(-612) = 2704. Це свідчить, що у нашого завдання існує. Якщо знати, до , Розв'язання квадратних рівнянь потрібно продовжувати із застосуванням нижче наведеної формули. Вона дозволяє обчислити коріння.

Це означає, що у цьому випадку: x 1 =18, x 2 =-34. Другий варіант у цій дилемі не може бути рішенням, тому що розміри земельної ділянки не можуть вимірюватися в негативних величинах, отже х (тобто ширина ділянки) дорівнює 18 м. Звідси обчислюємо довжину: 18+16=34 і периметр 2(34+ 18) = 104 (м 2).

Приклади та завдання

Продовжуємо вивчення квадратних рівнянь. Приклади та детальне рішення кількох з них будуть наведені далі.

1) 15x2+20x+5=12x2+27x+1

Перенесемо все в ліву частину рівності, зробимо перетворення, тобто отримаємо вид рівняння, який прийнято називати стандартним, і прирівняємо його нулю.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Склавши подібні, визначимо дискримінант: D = 49 - 48 = 1. Значить у нашого рівняння буде два корені. Обчислимо їх згідно з наведеною вище формулою, а це означає, що перший з них дорівнюватиме 4/3, а другий 1.

2) Тепер розкриємо загадки іншого.

З'ясуємо, чи взагалі є тут коріння x 2 - 4x + 5 = 1? Для отримання вичерпної відповіді наведемо багаточлен до відповідного звичного вигляду та обчислимо дискримінант. У вказаному прикладі рішення квадратного рівняння виконувати не обов'язково, адже суть завдання полягає зовсім не в цьому. У разі D = 16 - 20 = -4, отже, коріння дійсно немає.

Теорема Вієта

Квадратні рівняння зручно вирішувати через зазначені вище формули і дискримінант, коли значення останнього витягується квадратний корінь. Але це не завжди. Проте способів отримання значень змінних у разі існує безліч. Приклад: розв'язання квадратних рівнянь з теореми Вієта. Вона названа на честь який жив у XVI столітті у Франції та зробив блискучу кар'єру завдяки своєму математичному таланту та зв'язкам при дворі. Портрет його можна побачити у статті.

Закономірність, яку помітив уславлений француз, полягала в наступному. Він довів, що коріння рівняння у сумі чисельно дорівнює -p=b/a, які твір відповідає q=c/a.

Тепер розглянемо конкретні завдання.

3x 2 + 21x - 54 = 0

Для простоти перетворюємо вираз:

x 2 + 7x - 18 = 0

Скористаємося теоремою Вієта, це дасть нам таке: сума коренів дорівнює -7, а їх твір -18. Звідси отримаємо, що корінням рівняння є числа -9 і 2. Зробивши перевірку, переконаємося, що ці значення змінних справді підходять у вираз.

Графік та рівняння параболи

Поняття квадратичні функції і квадратні рівняння тісно пов'язані. Приклади подібного вже наведено раніше. Тепер розглянемо деякі математичні загадки трохи докладніше. Будь-яке рівняння описуваного типу можна наочно. Така залежність, намальована як графіка, називається параболою. Різні її види представлені малюнку нижче.

Будь-яка парабола має вершину, тобто точку, з якої виходять її гілки. Якщо a>0, вони йдуть високо в нескінченність, а коли a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Наочні зображення функцій допомагають вирішувати будь-які рівняння, зокрема квадратні. Цей метод називається графічним. А значенням змінної х є координата абсцис у точках, де відбувається перетин лінії графіка з 0x. Координати вершини можна дізнатися за щойно наведеною формулою x 0 = -b/2a. І, підставивши отримане значення початкове рівняння функції, можна дізнатися y 0 , тобто другу координату вершини параболи, що належить осі ординат.

Перетин гілок параболи з віссю абсцис

Прикладів із розв'язанням квадратних рівнянь дуже багато, але існують і загальні закономірності. Розглянемо їх. Зрозуміло, що перетин графіка з віссю 0x при a>0 можливе тільки якщо у 0 приймає негативні значення. А для a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. Інакше D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

За графіком параболи можна визначити коріння. Правильне також протилежне. Тобто, якщо отримати наочне зображення квадратичної функції нелегко, можна прирівняти праву частину виразу до 0 і вирішити отримане рівняння. А знаючи точки перетину із віссю 0x, легше побудувати графік.

З історії

За допомогою рівнянь, що містять змінну, зведену в квадрат, за старих часів не тільки робили математичні розрахунки і визначали площі геометричних фігур. Подібні обчислення давнім були необхідні для грандіозних відкриттів у галузі фізики та астрономії, а також для складання астрологічних прогнозів.

Як припускають сучасні діячі науки, одними з перших розв'язання квадратних рівнянь зайнялися жителі Вавилону. Сталося це за чотири сторіччя до настання нашої ери. Зрозуміло, їх обчислення докорінно відрізнялися від нині прийнятих і виявлялися набагато примітивнішими. Наприклад, месопотамские математики гадки не мали про існування негативних чисел. Незнайомі їм були інші тонкощі з тих, які знає будь-який школяр сучасності.

Можливо, ще раніше вчених Вавилона розв'язанням квадратних рівнянь зайнявся мудрець із Індії Баудхаяма. Сталося це приблизно за вісім століть до настання ери Христа. Щоправда, рівняння другого порядку, способи вирішення яких він навів, були найпростішими. Крім нього, подібними питаннями цікавилися за старих часів і китайські математики. У Європі квадратні рівняння почали вирішувати лише на початку XIII століття, проте пізніше їх використовували у своїх роботах такі великі вчені, як Ньютон, Декарт і багато інших.

Сподіваюся, вивчивши цю статтю, ви навчитеся знаходити коріння повного квадратного рівняння.

За допомогою дискримінанта вирішуються лише повні квадратні рівняння, для вирішення неповних квадратних рівнянь використовують інші методи, які ви знайдете у статті "Рішення неповних квадратних рівнянь".

Які квадратні рівняння називаються повними? Це рівняння виду ах 2 + b x + c = 0, Де коефіцієнти a, b і з не дорівнюють нулю. Отже, щоб розв'язати повне квадратне рівняння, треба обчислити дискримінант D.

D = b 2 - 4ас.

Залежно від того, яке значення має дискримінант, ми й запишемо відповідь.

Якщо дискримінант є негативним числом (D< 0),то корней нет.

Якщо ж дискримінант дорівнює нулю, то x = (-b)/2a. Коли дискримінант позитивне число (D > 0),

тоді х 1 = (-b - √D) / 2a, і х 2 = (-b + √D) / 2a.

Наприклад. Вирішити рівняння х 2- 4х + 4 = 0.

D = 4 2 - 4 · 4 = 0

x = (- (-4)) / 2 = 2

Відповідь: 2.

Розв'язати рівняння 2 х 2 + x + 3 = 0.

D = 1 2 - 4 · 2 · 3 = - 23

Відповідь: коріння немає.

Розв'язати рівняння 2 х 2 + 5х - 7 = 0.

D = 5 2 - 4 · 2 · (-7) = 81

х 1 = (-5 - √81) / (2 · 2) = (-5 - 9) / 4 = - 3,5

х 2 = (-5 + √81) / (2 · 2) = (-5 + 9) / 4 = 1

Відповідь: - 3,5; 1.

Отже представимо розв'язок повних квадратних рівнянь схемою на рисунку1.

За цими формулами можна вирішувати будь-яке повне квадратне рівняння. Потрібно лише уважно стежити за тим, щоб рівняння було записано багаточленом стандартного вигляду

а х 2 + bx + c,інакше можна припуститися помилки. Наприклад, у записі рівняння х + 3 + 2х 2 = 0 помилково можна вирішити, що

а = 1, b = 3 та с = 2. Тоді

D = 3 2 - 4 · 1 · 2 = 1 і тоді рівняння має два корені. А це не так. (Дивись рішення прикладу 2 вище).

Тому, якщо рівняння записано не багаточлен стандартного виду, спочатку повне квадратне рівняння треба записати багаточлен стандартного виду (на першому місці повинен стояти одночлен з найбільшим показником ступеня, тобто а х 2 , потім з меншим bx, а потім вільний член с.

При вирішенні наведеного квадратного рівняння і квадратного рівняння з парним коефіцієнтом при другому доданку можна використовувати інші формули. Давайте познайомимося з цими формулами. Якщо у повному квадратному рівнянні при другому доданку коефіцієнт буде парним (b = 2k), можна вирішувати рівняння за формулами наведеними на схемі малюнка 2.

Повне квадратне рівняння називається наведеним, якщо коефіцієнт при х 2 дорівнює одиниці і рівняння набуде вигляду х 2 + px + q = 0. Таке рівняння може бути дано на вирішення, або виходить розподілом всіх коефіцієнтів рівняння коефіцієнт а, що стоїть при х 2 .

На малюнку 3 наведено схему рішення наведених квадратних
рівнянь. Розглянемо з прикладу застосування розглянутих у цій статті формул.

приклад. Вирішити рівняння

3х 2 + 6х - 6 = 0.

Давайте розв'яжемо це рівняння застосовуючи формули наведені на схемі малюнка 1.

D = 6 2 - 4 · 3 · (- 6) = 36 + 72 = 108

√D = √108 = √(36 · 3) = 6√3

х 1 = (-6 - 6√3)/(2 · 3) = (6 (-1- √(3)))/6 = –1 – √3

х 2 = (-6 + 6√3)/(2 · 3) = (6 (-1+ √(3)))/6 = –1 + √3

Відповідь: –1 – √3; -1 + √3

Можна зауважити, що коефіцієнт при х у цьому рівнянні парне число, тобто b = 6 або b = 2k , звідки k = 3. Тоді спробуємо розв'язати рівняння за формулами, наведеними на схемі малюнка D 1 = 3 2 – 3 · (– 6 ) = 9 + 18 = 27

√(D 1) = √27 = √(9 · 3) = 3√3

х 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

х 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Відповідь: –1 – √3; -1 + √3. Помітивши, що всі коефіцієнти у цьому квадратному рівнянні діляться на 3 і виконавши розподіл, отримаємо наведене квадратне рівняння x 2 + 2х – 2 = 0 Розв'яжемо це рівняння, використовуючи формули для наведеного квадратного рівняння
рівняння рисунок 3.

D 2 = 2 2 - 4 · (- 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 · 3) = 2√3

х 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

х 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Відповідь: –1 – √3; -1 + √3.

Як бачимо, при вирішенні цього рівняння за різними формулами ми отримали одну й ту саму відповідь. Тому добре засвоївши формули, наведені на схемі малюнка 1, ви завжди зможете вирішити будь-яке повне квадратне рівняння.

сайт, при повному або частковому копіюванні матеріалу посилання на першоджерело обов'язкове.

Ця тема спочатку може здатися складною через безліч не найпростіших формул. Мало того, що самі квадратні рівняння мають довгі записи, ще й коріння знаходиться через дискримінант. Усього виходить три нові формули. Не дуже просто запам'ятати. Це вдається лише після частого розв'язання таких рівнянь. Тоді всі формули будуть згадуватися самі собою.

Загальний вигляд квадратного рівняння

Тут запропоновано їх явний запис, коли найбільша ступінь записана першою, і далі - за спаданням. Часто бувають ситуації, коли доданки стоять врозріз. Тоді краще переписати рівняння в порядку зменшення ступеня у змінної.

Введемо позначення. Вони представлені у таблиці нижче.

Якщо прийняти ці позначення, то всі квадратні рівняння зводяться до наступного запису.

Причому коефіцієнт а ≠ 0. Нехай цю формулу буде позначено номером один.

Коли рівняння задано, то незрозуміло, скільки коренів буде у відповіді. Тому що завжди можливий один із трьох варіантів:

  • у рішенні буде два корені;
  • відповіддю буде одне число;
  • коріння рівняння не буде зовсім.

І поки рішення не доведено до кінця, складно зрозуміти, який варіант випаде в конкретному випадку.

Види записів квадратних рівнянь

У завданнях можуть зустрічатися різні записи. Не завжди вони виглядатимуть як загальна формула квадратного рівняння. Іноді в ній не вистачатиме деяких доданків. Те, що було записано вище, — це повне рівняння. Якщо в ньому прибрати другий або третій доданок, то вийде щось інше. Ці записи теж називаються квадратними рівняннями, лише неповними.

Причому зникнути можуть тільки доданки, у яких коефіцієнти «в» і «с». Число «а» не може бути рівним нулю ні за яких умов. Тому що в цьому випадку формула перетворюється на лінійне рівняння. Формули для неповного виду рівнянь будуть такими:

Отже, видів лише два, крім повних, є ще й неповні квадратні рівняння. Нехай перша формула матиме номер два, а друга – три.

Дискримінант та залежність кількості коренів від його значення

Це число потрібно знати у тому, щоб обчислити коріння рівняння. Воно може бути пораховано завжди, якою б не була формула квадратного рівняння. Для того щоб обчислити дискримінант, потрібно скористатися рівністю, записаною нижче, яка матиме номер чотири.

Після підстановки в цю формулу значень коефіцієнтів можна отримати числа з різними знаками. Якщо відповідь позитивна, то відповіддю рівняння будуть два різні корені. При негативному числі коріння квадратного рівняння не буде. У разі рівності нулю відповідь буде одна.

Як розв'язується квадратне рівняння повного вигляду?

По суті, розгляд цього питання вже розпочався. Тому що спочатку потрібно знайти дискримінант. Після того, як з'ясовано, що є коріння квадратного рівняння, і відомо їх число, потрібно скористатися формулами для змінних. Якщо коріння два, потрібно застосувати таку формулу.

Оскільки в ній стоїть знак "±", то значень буде два. Вираз під знаком квадратного кореня – це дискримінант. Тому формулу можна переписати інакше.

Формула номер п'ять. З цього ж запису видно, що якщо дискримінант дорівнює нулю, то обидва корені набудуть однакових значень.

Якщо розв'язання квадратних рівнянь ще не відпрацьовано, то краще до того, як застосовувати формули дискримінанта та змінної, записати значення всіх коефіцієнтів. Пізніше цей момент не викликатиме труднощів. Але на початку буває плутанина.

Як розв'язується квадратне рівняння неповного вигляду?

Тут все набагато простіше. Навіть немає потреби у додаткових формулах. І не знадобляться ті, що вже були записані для дискримінанта та невідомої.

Спершу розглянемо неповне рівняння під номером два. У цій рівності слід винести невідому величину за дужку і вирішити лінійне рівняння, яке залишиться в дужках. У відповіді буде два корені. Перший - обов'язково дорівнює нулю, тому що є множник, що складається із самої змінної. Другий вийде під час вирішення лінійного рівняння.

Неповне рівняння під номером три вирішується перенесенням числа з лівої частини рівності до правої. Потім треба розділити на коефіцієнт, що стоїть перед невідомою. Залишиться лише витягти квадратний корінь і не забути записати його двічі з протилежними знаками.

Далі записані деякі дії, які допомагають навчитися вирішувати всілякі види рівностей, які перетворюються на квадратні рівняння. Вони сприятимуть тому, що учень зможе уникнути помилок через неуважність. Ці недоліки бувають причиною поганих оцінок щодо великої тематики «Квадратні рівняння (8 клас)». Згодом ці дії не потрібно постійно виконувати. Тому що з'явиться стійка навичка.

  • Спочатку потрібно записати рівняння у стандартному вигляді. Тобто спочатку доданок із найбільшим ступенем змінним, а потім - без ступеня і останнім - просто число.
  • Якщо перед коефіцієнтом «а» з'являється мінус, він може ускладнити роботу для початківця вивчати квадратні рівняння. Його краще позбутися. Для цього всі рівність потрібно помножити на «-1». Це означає, що у всіх доданків зміниться знак протилежний.
  • Так само рекомендується позбавлятися дробів. Просто помножити рівняння на відповідний множник, щоб знаменники скоротилися.

Приклади

Потрібно вирішити такі квадратні рівняння:

х 2 − 7х = 0;

15 − 2х − х 2 = 0;

х 2 + 8 + 3х = 0;

12х + х 2 + 36 = 0;

(x + 1) 2 + x + 1 = (x + 1) (x + 2).

Перше рівняння: х 2 − 7х = 0. Воно неповне, тому вирішується так, як описано для формули під номером два.

Після винесення за дужки виходить: х (х – 7) = 0.

Перший корінь набуває значення: х 1 = 0. Другий буде знайдено з лінійного рівняння: х - 7 = 0. Легко помітити, що х 2 = 7.

Друге рівняння: 5х2 + 30 = 0. Знову неповне. Тільки вирішується так, як описано для третьої формули.

Після перенесення 30 у праву частину рівності: 5х 2 = 30. Тепер потрібно виконати поділ на 5. Виходить: х 2 = 6. Відповідями будуть числа: х 1 = √6, х 2 = - √6.

Третє рівняння: 15 − 2х − х 2 = 0. Тут і далі розв'язання квадратних рівнянь буде починатися з їх переписування у стандартний вигляд: − х 2 − 2х + 15 = 0. Тепер настав час скористатися другою корисною порадою та помножити все на мінус одиницю . Виходить х 2 + 2х - 15 = 0. За четвертою формулою потрібно обчислити дискримінант: Д = 2 2 - 4 * (- 15) = 4 + 60 = 64. Він є позитивним числом. З того, що сказано вище, виходить, що рівняння має два корені. Їх треба вирахувати за п'ятою формулою. По ній виходить, що х = (-2±64) / 2 = (-2 ± 8) / 2. Тоді х 1 = 3, х 2 = - 5.

Четверте рівняння х 2 + 8 + 3х = 0 перетворюється на таке: х 2 + 3х + 8 = 0. Його дискримінант дорівнює такому значенню: -23. Оскільки це число негативне, то відповіддю до цього завдання буде наступний запис: «Корнів немає».

П'яте рівняння 12х + х 2 + 36 = 0 слід переписати так: х 2 + 12х + 36 = 0. Після застосування формули для дискримінанта виходить число нуль. Це означає, що він матиме один корінь, саме: х = -12/ (2 * 1) = -6.

Шосте рівняння (х+1) 2 + х + 1 = (х+1)(х+2) вимагає провести перетворення, які полягають у тому, що потрібно навести подібні доданки, до того розкривши дужки. На місці першої виявиться такий вираз: х 2 + 2х + 1. Після рівності з'явиться цей запис: х 2 + 3х + 2. Після того як подібні доданки будуть пораховані, рівняння набуде вигляду: х 2 - х = 0. Воно перетворилося на неповне . Подібне йому вже розглядалося трохи вище. Корінням цього будуть числа 0 та 1.

Просто. За формулами та точними нескладними правилами. На першому етапі

треба задане рівняння призвести до стандартного вигляду, тобто. до вигляду:

Якщо рівняння вам дано вже у такому вигляді – перший етап робити не потрібно. Найголовніше - правильно

визначити всі коефіцієнти, а, bі c.

Формула для знаходження коріння квадратного рівняння.

Вираз під знаком кореня називається дискримінант . Як бачимо, для знаходження ікса, ми

використовуємо тільки a, b і с. Тобто. коефіцієнти з квадратного рівняння. Просто акуратно підставляємо

значення a, b і су цю формулу і рахуємо. Підставляємо зі своїмизнаками!

Наприклад, у рівнянні:

а =1; b = 3; c = -4.

Підставляємо значення та записуємо:

Приклад практично вирішено:

Це відповідь.

Найпоширеніші помилки - плутанина зі знаками значень a, bі з. Точніше, з підстановкою

негативних значень формулу для обчислення коренів. Тут рятує докладний запис формули

із конкретними числами. Якщо є проблеми з обчисленнями, то й робіть!

Припустимо, треба такий приклад вирішити:

Тут a = -6; b = -5; c = -1

Розписуємо все докладно, уважно, нічого не втрачаючи з усіма знаками та дужками:

Часто квадратні рівняння виглядають трохи інакше. Наприклад, ось так:

А тепер прийміть до уваги практичні прийоми, які різко знижують кількість помилок.

Прийом перший. Не лінуйтесь перед розв'язанням квадратного рівнянняпривести його до стандартного вигляду.

Що це означає?

Припустимо, після будь-яких перетворень ви отримали таке рівняння:

Не кидайтеся писати формулу коріння! Майже напевно, ви переплутаєте коефіцієнти a, b та с.

Побудуйте приклад правильно. Спочатку ікс у квадраті, потім без квадрата, потім вільний член. Ось так:

Позбудьтеся мінусу. Як? Потрібно помножити все рівняння на -1. Отримаємо:

А ось тепер можна сміливо записувати формулу для коріння, рахувати дискримінант і дорішувати приклад.

Дорішайте самостійно. У вас має вийти коріння 2 і -1.

Прийом другий.Перевіряйте коріння! за теоремі Вієта.

Аби вирішити наведених квадратних рівнянь, тобто. якщо коефіцієнт

x 2 +bx+c=0,

тодіx 1 x 2 = c

x 1 +x 2 =−b

Для повного квадратного рівняння, в якому a≠1:

x 2 +bx+c=0,

ділимо все рівняння на а:

де x 1і x 2 – коріння рівняння.

Прийом третій. Якщо у вашому рівнянні є дробові коефіцієнти, - позбавтеся дробів! Домножте

рівняння загальний знаменник.

Висновок. Практичні поради:

1. Перед рішенням наводимо квадратне рівняння до стандартного вигляду, вибудовуємо його правильно.

2. Якщо перед іксом у квадраті стоїть негативний коефіцієнт, ліквідуємо його множенням всього

рівняння на -1.

3. Якщо коефіцієнти дробові - ліквідуємо дроби множенням всього рівняння на відповідний

множник.

4. Якщо ікс у квадраті - чистий, коефіцієнт при ньому дорівнює одиниці, рішення можна легко перевірити по

Протягом теми «Рішення рівнянь» матеріал цієї статті познайомить вас із квадратними рівняннями.

Розглянемо все докладно: суть і запис квадратного рівняння, поставимо супутні терміни, розберемо схему розв'язання неповних і повних рівнянь, познайомимося з формулою коренів і дискримінантом, встановимо зв'язки між корінням і коефіцієнтами, і наведемо наочне рішення практичних прикладів.

Yandex.RTB R-A-339285-1

Квадратне рівняння, його види

Визначення 1

Квадратне рівняння– це рівняння, записане як a · x 2 + b · x + c = 0, де x- Змінна, a, b і c- Деякі числа, при цьому aнемає нуль.

Найчастіше квадратні рівняння також звуться рівнянь другого ступеня, оскільки насправді квадратне рівняння є алгебраїчне рівняння другого ступеня.

Наведемо приклад для ілюстрації заданого визначення: 9 · x 2 + 16 · x + 2 = 0; 7, 5 · x 2 + 3, 1 · x + 0, 11 = 0 і т.п. - Це квадратні рівняння.

Визначення 2

Числа a, b і c– це коефіцієнти квадратного рівняння a · x 2 + b · x + c = 0, при цьому коефіцієнт aносить назву першого, або старшого, або коефіцієнта при x 2 b - другого коефіцієнта, або коефіцієнта при x, а cназивають вільним членом.

Наприклад, у квадратному рівнянні 6 · x 2 − 2 · x − 11 = 0старший коефіцієнт дорівнює 6 другий коефіцієнт є − 2 , а вільний член дорівнює − 11 . Звернемо увагу на той факт, що коли коефіцієнти bта/або c є негативними, то використовується коротка форма запису виду 6 · x 2 − 2 · x − 11 = 0, а не 6 · x 2 + (−2) · x + (− 11) = 0.

Уточнимо також такий аспект: якщо коефіцієнти aта/або bрівні 1 або − 1 , то явної участі в записі квадратного рівняння вони можуть не брати, що пояснюється особливостями запису вказаних числових коефіцієнтів. Наприклад, у квадратному рівнянні y 2 − y + 7 = 0старший коефіцієнт дорівнює 1 а другий коефіцієнт є − 1 .

Наведені та ненаведені квадратні рівняння

За значенням першого коефіцієнта квадратні рівняння поділяють на наведені та ненаведені.

Визначення 3

Наведене квадратне рівняння- Це квадратне рівняння, де старший коефіцієнт дорівнює 1. За інших значень старшого коефіцієнта квадратне рівняння є ненаведеним.

Наведемо приклади: квадратні рівняння x 2 − 4 · x + 3 = 0 , x 2 − x − 4 5 = 0 є наведеними, у кожному з яких старший коефіцієнт дорівнює 1 .

9 · x 2 − x − 2 = 0- ненаведене квадратне рівняння, де перший коефіцієнт відмінний від 1 .

Будь-яке ненаведене квадратне рівняння можна перетворити на наведене рівняння, якщо розділити обидві його частини на перший коефіцієнт (рівносильне перетворення). Перетворене рівняння матиме таке ж коріння, як і задане ненаведене рівняння або не мати коріння зовсім.

Розгляд конкретного прикладу дозволить нам продемонструвати виконання переходу від ненаведеного квадратного рівняння до наведеного.

Приклад 1

Задано рівняння 6 · x 2 + 18 · x − 7 = 0 . Необхідно перетворити вихідне рівняння на наведену форму.

Рішення

Згідно з зазначеною вище схемою розділимо обидві частини вихідного рівняння на старший коефіцієнт 6 . Тоді отримаємо: (6 · x 2 + 18 · x − 7): 3 = 0: 3, і це те саме, що: (6 · x 2) : 3 + (18 · x) : 3 − 7: 3 = 0і далі: (6: 6) · x 2 + (18: 6) · x − 7: 6 = 0 .Звідси: x 2 + 3 · x - 1 1 6 = 0. Таким чином, отримано рівняння, рівносильне заданому.

Відповідь: x 2 + 3 · x - 1 1 6 = 0.

Повні та неповні квадратні рівняння

Звернемося до визначення квадратного рівняння. У ньому ми уточнили, що a ≠ 0. Подібна умова необхідна, щоб рівняння a · x 2 + b · x + c = 0було саме квадратним, оскільки при a = 0воно по суті перетворюється на лінійне рівняння b · x + c = 0.

У разі, коли коефіцієнти bі cрівні нулю (що можливо, як окремо, і спільно), квадратне рівняння зветься неповного.

Визначення 4

Неповне квадратне рівняння– таке квадратне рівняння a · x 2 + b · x + c = 0де хоча б один із коефіцієнтів bі c(або обидва) дорівнює нулю.

Повне квадратне рівняння- Квадратне рівняння, в якому всі числові коефіцієнти не рівні нулю.

Поміркуємо, чому типу квадратних рівнянь дано саме такі назви.

При b = 0 квадратне рівняння набуде вигляду a · x 2 + 0 · x + c = 0, що те саме, що a · x 2 + c = 0. При c = 0квадратне рівняння записано як a · x 2 + b · x + 0 = 0, що рівносильно a · x 2 + b · x = 0. При b = 0і c = 0рівняння набуде вигляду a · x 2 = 0. Рівняння, які ми отримали, відмінні від повного квадратного рівняння тим, що в їх лівих частинах не міститься або доданку зі змінною x, або вільного члена, або обох одночасно. Власне, цей факт і поставив назву такого типу рівнянь – неповна.

Наприклад, x 2 + 3 · x + 4 = 0 і − 7 · x 2 − 2 · x + 1 , 3 = 0 – це повні квадратні рівняння; x 2 = 0, − 5 · x 2 = 0; 11 · x 2 + 2 = 0, − x 2 − 6 · x = 0 – неповні квадратні рівняння.

Розв'язання неповних квадратних рівнянь

Задане вище визначення дозволяє виділити такі види неповних квадратних рівнянь:

  • a · x 2 = 0, такому рівнянню відповідають коефіцієнти b = 0і c = 0;
  • a · x 2 + c = 0 при b = 0;
  • a · x 2 + b · x = 0 при c = 0.

Розглянемо послідовно розв'язання кожного виду неповного квадратного рівняння.

Розв'язання рівняння a x 2 = 0

Як було зазначено вище, такому рівнянню відповідають коефіцієнти bі c, що дорівнює нулю. Рівняння a · x 2 = 0можна перетворити на рівносильне йому рівняння x 2 = 0, яке ми отримаємо, поділивши обидві частини вихідного рівняння на число a, Не рівне нулю. Очевидний факт, що корінь рівняння x 2 = 0це нуль, оскільки 0 2 = 0 . Іншого коріння це рівняння не має, що можна пояснити властивостями ступеня: для будь-якого числа p ,не рівного нулю, вірна нерівність p 2 > 0, з чого випливає, що за p ≠ 0рівність p 2 = 0ніколи не буде досягнуто.

Визначення 5

Таким чином, для неповного квадратного рівняння a · x 2 = 0 існує єдиний корінь x = 0.

Приклад 2

Наприклад вирішимо неповне квадратне рівняння − 3 · x 2 = 0. Йому рівносильне рівняння x 2 = 0, його єдиним коренем є x = 0тоді і вихідне рівняння має єдиний корінь - нуль.

Коротко рішення оформляється так:

− 3 · x 2 = 0, x 2 = 0, x = 0.

Розв'язання рівняння a · x 2 + c = 0

На черзі - розв'язання неповних квадратних рівнянь, де b = 0 c ≠ 0 тобто рівнянь виду a · x 2 + c = 0. Перетворимо це рівняння, перенісши доданок з однієї частини рівняння на іншу, змінивши знак на протилежний і розділивши обидві частини рівняння на число, що не дорівнює нулю:

  • переносимо cу праву частину, що дає рівняння a · x 2 = − c;
  • ділимо обидві частини рівняння на a, Отримуємо в результаті x = - C a.

Наші перетворення є рівносильними, відповідно отримане рівняння також рівносильно вихідному, і цей факт дає можливість робити висновок про коріння рівняння. Від того, які значення aі cзалежить значення виразу - c a: воно може мати знак мінус (припустимо, якщо a = 1і c = 2тоді - c a = - 2 1 = - 2) або знак плюс (наприклад, якщо a = − 2і c = 6, то - c a = - 6 - 2 = 3); воно не дорівнює нулю, оскільки c ≠ 0. Докладніше зупинимося на ситуаціях, коли - c a< 0 и - c a > 0 .

У разі коли - c a< 0 , уравнение x 2 = - c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при - c a < 0 ни для какого числа pрівність p 2 = - c a може бути вірним.

Все інакше, коли - c a > 0: згадаємо про квадратне коріння, і стане очевидним, що коренем рівняння x 2 = - c a буде число - c a , оскільки - c a 2 = - c a . Неважко зрозуміти, що число - - a - також корінь рівняння x 2 = - a: дійсно, - - a 2 = - c a .

Іншого коріння рівняння не матиме. Ми можемо це продемонструвати, використовуючи метод протилежного. Для початку поставимо позначення знайдених вище коренів як x 1і − x 1. Висловимо припущення, що рівняння x 2 = - a має також корінь x 2, який відрізняється від коріння x 1і − x 1. Ми знаємо, що, підставивши в рівняння замість xйого коріння, перетворимо рівняння на справедливу числову рівність.

Для x 1і − x 1запишемо: x 1 2 = - c a , а для x 2- x 2 2 = - C a. Спираючись на властивості числових рівностей, почленно віднімемо одну правильну рівність з іншої, що дасть нам: x 1 2 − x 2 2 = 0. Використовуємо властивості дій з числами, щоб переписати останню рівність як (x 1 − x 2) · (x 1 + x 2) = 0. Відомо, що добуток двох чисел є нуль тоді і лише тоді, коли хоча б одне із чисел є нулем. Зі сказаного випливає, що x 1 − x 2 = 0та/або x 1 + x 2 = 0, що те саме, x 2 = x 1та/або x 2 = − x 1. Виникла очевидна суперечність, адже спочатку було зумовлено, що корінь рівняння x 2відрізняється від x 1і − x 1. Так, ми довели, що рівняння не має іншого коріння, крім x = - c a і x = - c a .

Резюмуємо всі міркування вище.

Визначення 6

Неповне квадратне рівняння a · x 2 + c = 0рівносильне рівнянню x 2 = - c a , яке:

  • не матиме коріння при - c a< 0 ;
  • матиме два корені x = - c a та x = - - c a при - c a > 0 .

Наведемо приклади розв'язування рівнянь a · x 2 + c = 0.

Приклад 3

Задано квадратне рівняння 9 · x 2 + 7 = 0.Потрібно знайти його рішення.

Рішення

Перенесемо вільний член у праву частину рівняння, тоді рівняння набуде вигляду 9 · x 2 = − 7 .
Розділимо обидві частини отриманого рівняння на 9 прийдемо до x 2 = - 7 9 . У правій частині бачимо число зі знаком мінус, що означає: задане рівняння не має коріння. Тоді й вихідне неповне квадратне рівняння 9 · x 2 + 7 = 0не матиме коріння.

Відповідь:рівняння 9 · x 2 + 7 = 0не має коріння.

Приклад 4

Необхідно вирішити рівняння − x 2 + 36 = 0.

Рішення

Перенесемо 36 у праву частину: − x 2 = − 36.
Розділимо обидві частини на − 1 , отримаємо x 2 = 36. У правій частині - позитивне число, звідси можна дійти невтішного висновку, що x = 36 або x = -36.
Виймемо корінь і запишемо остаточний підсумок: неповне квадратне рівняння − x 2 + 36 = 0має два корені x = 6або x = − 6.

Відповідь: x = 6або x = − 6.

Розв'язання рівняння a x 2 + b x = 0

Розберемо третій вид неповних квадратних рівнянь, коли c = 0. Щоб знайти розв'язок неповного квадратного рівняння a · x 2 + b · x = 0, скористаємося методом розкладання на множники Розкладемо на множники багаточлен, що знаходиться в лівій частині рівняння, винісши за дужки загальний множник x. Цей крок дасть можливість перетворити вихідне неповне квадратне рівняння на рівносильне йому x · (a · x + b) = 0. А це рівняння, у свою чергу, рівносильне сукупності рівнянь x = 0і a · x + b = 0. Рівняння a · x + b = 0лінійне, і корінь його: x = − b a.

Визначення 7

Таким чином, неповне квадратне рівняння a · x 2 + b · x = 0матиме два корені x = 0і x = − b a.

Закріпимо матеріал прикладом.

Приклад 5

Необхідно знайти рішення рівняння 2 3 · x 2 - 2 2 7 · x = 0.

Рішення

Винесемо xза дужки та отримаємо рівняння x · 2 3 · x - 2 2 7 = 0 . Це рівняння рівносильне рівнянням x = 0та 2 3 · x - 2 2 7 = 0 . Тепер слід розв'язати отримане лінійне рівняння: 2 3 · x = 2 2 7 x = 2 2 7 2 3 .

Коротко рішення рівняння запишемо так:

2 3 · x 2 - 2 2 7 · x = 0 x · 2 3 · x - 2 2 7 = 0

x = 0 або 2 3 · x - 2 2 7 = 0

x = 0 або x = 3 3 7

Відповідь: x = 0, x = 3 3 7 .

Дискримінант, формула коренів квадратного рівняння

Для знаходження розв'язання квадратних рівнянь існує формула коренів:

Визначення 8

x = - b ± D 2 · a де D = b 2 − 4 · a · c- Так званий дискримінант квадратного рівняння.

Запис x = - b ± D 2 · a по суті означає, що x 1 = - b + D 2 · a x 2 = - b - D 2 · a .

Не зайвим буде розуміти, як було виведено зазначену формулу і як її застосовувати.

Висновок формули коріння квадратного рівняння

Нехай перед нами стоїть завдання розв'язати квадратне рівняння a · x 2 + b · x + c = 0. Здійснимо ряд рівносильних перетворень:

  • розділимо обидві частини рівняння на число a, Відмінне від нуля, отримаємо наведене квадратне рівняння: x 2 + b a · x + c a = 0;
  • виділимо повний квадрат в лівій частині рівняння, що вийшло:
    x 2 + b a · x + c a = x 2 + 2 · b 2 · a · x + b 2 · a 2 - b 2 · a 2 + c a = = x + b 2 · a 2 - b 2 · a 2 + c a
    Після цього рівняння набуде вигляду: x + b 2 · a 2 - b 2 · a 2 + c a = 0;
  • тепер можна зробити перенесення двох останніх доданків у праву частину, змінивши знак на протилежний, після чого отримуємо: x + b 2 · a 2 = b 2 · a 2 - c a ;
  • нарешті, перетворимо вираз, записаний у правій частині останньої рівності:
    b 2 · a 2 - c a = b 2 4 · a 2 - c a = b 2 4 · a 2 - 4 · a · c 4 · a 2 = b 2 - 4 · a · c 4 · a 2 .

Таким чином, ми дійшли рівняння x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 , рівносильному вихідному рівнянню a · x 2 + b · x + c = 0.

Вирішення подібних рівнянь ми розбирали в попередніх пунктах (вирішення неповних квадратних рівнянь). Вже отриманий досвід дає можливість зробити висновок щодо коренів рівняння x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2:

  • при b 2 - 4 · a · c 4 · a 2< 0 уравнение не имеет действительных решений;
  • при b 2 - 4 · a · c 4 · a 2 = 0 рівняння має вигляд x + b 2 · a 2 = 0 тоді x + b 2 · a = 0 .

Звідси очевидний єдиний корінь x = - b 2 · a;

  • при b 2 - 4 · a · c 4 · a 2 > 0 вірним буде: x + b 2 · a = b 2 - 4 · a · c 4 · a 2 або x = b 2 · a - b 2 - 4 · a · c 4 · a 2 , що те саме, що x + - b 2 · a = b 2 - 4 · a · c 4 · a 2 або x = - b 2 · a - b 2 - 4 · a · c 4 · a 2, тобто. рівняння має два корені.

Можливо зробити висновок, що наявність або відсутність коренів рівняння x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 (а значить і вихідного рівняння) залежить від знака виразу b 2 - 4 · a · c 4 · a 2, записаного у правій частині. А знак цього виразу задається знаком чисельника, (знаменник 4 · a 2завжди буде позитивним), тобто, знаком виразу b 2 − 4 · a · c. Цьому виразу b 2 − 4 · a · cдано назву - дискримінант квадратного рівняння і визначена як його позначення літера D. Тут можна записати суть дискримінанта - за його значенням і знаком роблять висновок, чи буде квадратне рівняння мати дійсне коріння, і, якщо буде, то яка кількість коренів - один або два.

Повернемося до рівняння x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 . Перепишемо його, використовуючи позначення дискримінанта: x + b 2 · a 2 = D 4 · a 2 .

Знову сформулюємо висновки:

Визначення 9

  • при D< 0 рівняння не має дійсних коренів;
  • при D = 0рівняння має єдиний корінь x = - b 2 · a;
  • при D > 0рівняння має два корені: x = - b 2 · a + D 4 · a 2 або x = - b 2 · a - D 4 · a 2 . Це коріння на основі властивості радикалів можна записати у вигляді: x = - b 2 · a + D 2 · a або - b 2 · a - D 2 · a . А коли розкриємо модулі і приведемо дроби до спільного знаменника, отримаємо: x = - b + D 2 · a , x = - b - D 2 · a .

Так, результатом наших міркувань стало виведення формули коріння квадратного рівняння:

x = - b + D 2 · a , x = - b - D 2 · a , дискримінант Dобчислюється за формулою D = b 2 − 4 · a · c.

Дані формули дають можливість при дискримінанті більше нуля визначити обидва дійсні корені. Коли дискримінант дорівнює нулю, застосування обох формул дасть той самий корінь, як єдине рішення квадратного рівняння. У випадку, коли дискримінант негативний, спробувавши використати формулу кореня квадратного рівняння, ми зіткнемося з необхідністю витягти квадратний корінь із негативного числа, що виведе нас за межі дійсних чисел. При негативному дискримінанті у квадратного рівняння не буде дійсних коренів, але можлива пара комплексно пов'язаних коренів, що визначаються тими самими отриманими нами формулами коренів.

Алгоритм розв'язання квадратних рівнянь за формулами коренів

Вирішити квадратне рівняння можливо, відразу задіюючи формулу коренів, але в основному так роблять при необхідності знайти комплексне коріння.

У більшості випадків зазвичай мається на увазі пошук не комплексних, а дійсних коренів квадратного рівняння. Тоді оптимально перед тим, як використовувати формули коренів квадратного рівняння, спочатку визначити дискримінант і переконатися, що він не є негативним (інакше зробимо висновок, що у рівняння немає дійсних коренів), а потім приступити до обчислення значення коренів.

Міркування вище дають можливість сформулювати алгоритм розв'язання квадратного рівняння.

Визначення 10

Щоб розв'язати квадратне рівняння a · x 2 + b · x + c = 0, необхідно:

  • за формулою D = b 2 − 4 · a · cвизначити значення дискримінанта;
  • при D< 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
  • при D = 0 знайти єдиний корінь рівняння за формулою x = - b 2 · a;
  • при D > 0 визначити два дійсних кореня квадратного рівняння за формулою x = - b ± D 2 · a.

Зазначимо, що коли дискримінант є нуль, можна використовувати формулу x = - b ± D 2 · a , вона дасть той же результат, що і формула x = - b 2 · a .

Розглянемо приклади.

Приклади розв'язання квадратних рівнянь

Наведемо рішення прикладів за різних значень дискримінанта.

Приклад 6

Необхідно знайти коріння рівняння x 2 + 2 · x − 6 = 0.

Рішення

Запишемо числові коефіцієнти квадратного рівняння: a = 1, b = 2 і c = − 6. Далі діємо алгоритмом, тобто. приступимо до обчислення дискримінанта, для чого підставимо коефіцієнти a, b і cу формулу дискримінанта: D = b 2 − 4 · a · c = 2 2 − 4 · 1 · (− 6) = 4 + 24 = 28 .

Отже, ми отримали D > 0 , а це означає, що вихідне рівняння матиме два дійсні корені.
Для їхнього знаходження використовуємо формулу кореня x = - b ± D 2 · a і, підставивши відповідні значення, отримаємо: x = - 2 ± 28 2 · 1 . Спростимо отриманий вираз, винісши множник за знак кореня з наступним скороченням дробу:

x = - 2 ± 2 · 7 2

x = - 2 + 2 · 7 2 або x = - 2 - 2 · 7 2

x = - 1 + 7 або x = - 1 - 7

Відповідь: x = - 1 + 7, x = - 1 - 7 .

Приклад 7

Необхідно розв'язати квадратне рівняння − 4 · x 2 + 28 · x − 49 = 0.

Рішення

Визначимо дискримінант: D = 28 2 − 4 · (− 4) · (− 49) = 784 − 784 = 0. При такому значенні дискримінанта вихідне рівняння матиме лише один корінь, який визначається за формулою x = - b 2 · a .

x = - 28 2 · (- 4) x = 3 , 5

Відповідь: x = 3, 5.

Приклад 8

Необхідно вирішити рівняння 5 · y 2 + 6 · y + 2 = 0

Рішення

Числові коефіцієнти цього рівняння будуть: a = 5 b = 6 і c = 2 . Використовуємо ці значення для знаходження дискримінанта: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . Обчислений дискримінант негативний, таким чином, вихідне квадратне рівняння не має дійсних коренів.

У разі, коли стоїть завдання вказати комплексне коріння, застосуємо формулу коренів, виконуючи дії з комплексними числами:

x = - 6 ± - 4 2 · 5

x = - 6 + 2 · i 10 або x = - 6 - 2 · i 10

x = - 3 5 + 1 5 · i або x = - 3 5 - 1 5 · i.

Відповідь:дійсне коріння відсутнє; комплексні коріння наступні: - 3 5 + 1 5 · i, - 3 5 - 1 5 · i.

У шкільній програмі стандартно немає вимоги шукати комплексне коріння, тому, якщо в ході рішення дискримінант визначений як негативний, відразу записується відповідь, що дійсних коренів немає.

Формула коренів для парних других коефіцієнтів

Формула коренів x = - b ± D 2 · a (D = b 2 − 4 · a · c) дає можливість отримати ще одну формулу, більш компактну, що дозволяє знаходити розв'язки квадратних рівнянь з парним коефіцієнтом при x (або з коефіцієнтом виду 2 · n, наприклад, 2 · 3 або 14 · ln 5 = 2 · 7 · ln 5). Покажемо, як виводиться ця формула.

Нехай перед нами стоїть завдання знайти розв'язок квадратного рівняння a · x 2 + 2 · n · x + c = 0 . Діємо за алгоритмом: визначаємо дискримінант D = (2 · n) 2 - 4 · a · c = 4 · n 2 - 4 · a · c = 4 · (n 2 - a · c), а потім використовуємо формулу коренів:

x = - 2 · n ± D 2 · a , x = - 2 · n ± 4 · n 2 - a · c 2 · a , x = - 2 · n ± 2 n 2 - a · c 2 · a , x = - n ± n 2 - a · c a.

Нехай вираз n 2 − a · c буде позначено як D 1 (іноді його позначають D "). Тоді формула коренів квадратного рівняння, що розглядається, з другим коефіцієнтом 2 · n набуде вигляду:

x = - n ± D 1 a , де D 1 = n 2 − a · c.

Легко побачити, що D = 4 · D 1 або D 1 = D 4 . Інакше висловлюючись, D 1 – це чверть дискримінанта. Очевидно, що знак D 1 такий самий, як знак D , а значить знак D 1 може служити індикатором наявності або відсутності коренів квадратного рівняння.

Визначення 11

Таким чином, щоб знайти розв'язок квадратного рівняння з другим коефіцієнтом 2 · n необхідно:

  • знайти D 1 = n 2 − a · c;
  • при D 1< 0 сделать вывод, что действительных корней нет;
  • при D 1 = 0 визначити єдиний корінь рівняння за формулою x = - n a;
  • при D 1 > 0 визначити два дійсних кореня за формулою x = - n ± D 1 a.

Приклад 9

Необхідно розв'язати квадратне рівняння 5 · x 2 − 6 · x − 32 = 0 .

Рішення

Другий коефіцієнт заданого рівняння можемо уявити як 2 · (− 3) . Тоді перепишемо задане квадратне рівняння як 5 · x 2 + 2 · (− 3) · x − 32 = 0 де a = 5 , n = − 3 і c = − 32 .

Обчислимо четверту частину дискримінанта: D 1 = n 2 − a · c = (− 3) 2 − 5 · (− 32) = 9 + 160 = 169 . Отримане значення позитивно, це означає, що рівняння має два дійсні корені. Визначимо їх за відповідною формулою коренів:

x = - n ± D 1 a , x = - - 3 ± 169 5 , x = 3 ± 13 5 ,

x = 3 + 13 5 або x = 3 - 13 5

x = 3 1 5 або x = - 2

Можливо було б зробити обчислення і за звичайною формулою коренів квадратного рівняння, але в такому разі рішення було б більш громіздким.

Відповідь: x = 3 1 5 або x = -2.

Спрощення виду квадратних рівнянь

Іноді є можливість оптимізувати вид вихідного рівняння, що дозволить спростити процес обчислення коренів.

Наприклад, квадратне рівняння 12 · x 2 − 4 · x − 7 = 0 явно зручніше для розв'язання, ніж 1200 · x 2 − 400 · x − 700 = 0 .

Найчастіше спрощення виду квадратного рівняння виробляється процесами множення чи розподілу його обох елементів на деяке число. Наприклад, ми показали спрощену запис рівняння 1200 · x 2 − 400 · x − 700 = 0 , отриману розподілом обох його частин на 100 .

Таке перетворення можливе, коли коефіцієнти квадратного рівняння є взаємно простими числами. Тоді зазвичай здійснюють розподіл обох частин рівняння найбільший загальний дільник абсолютних величин його коефіцієнтів.

Як приклад використовуємо квадратне рівняння 12 · x 2 - 42 · x + 48 = 0. Визначимо НОД абсолютних величин його коефіцієнтів: НОД (12 , 42 , 48) = НОД (НОД (12 , 42) , 48) = НОД (6 , 48) = 6 . Зробимо поділ обох частин вихідного квадратного рівняння на 6 і отримаємо рівносильне йому квадратне рівняння 2 x 2 − 7 x + 8 = 0 .

Множенням обох частин квадратного рівняння зазвичай позбавляються дробових коефіцієнтів. У цьому множать найменше загальне кратне знаменників його коефіцієнтів. Наприклад, якщо кожну частину квадратного рівняння 1 6 · x 2 + 2 3 · x - 3 = 0 перемножити з НОК (6 , 3 , 1) = 6 , воно стане записано у простішому вигляді x 2 + 4 · x − 18 = 0.

Насамкінець зазначимо, що майже завжди позбавляються мінуса при першому коефіцієнті квадратного рівняння, змінюючи знаки кожного члена рівняння, що досягається шляхом множення (або поділу) обох частин на − 1 . Наприклад, від квадратного рівняння − 2 · x 2 − 3 · x + 7 = 0 можна перейти до спрощеної його версії 2 · x 2 + 3 · x − 7 = 0 .

Зв'язок між корінням та коефіцієнтами

Вже відома нам формула коренів квадратних рівнянь x = - b ± D 2 · a виражає коріння рівняння через його числові коефіцієнти. Спираючись на цю формулу, ми маємо можливість задати інші залежності між корінням та коефіцієнтами.

Найбільш відомими та застосовними є формули теореми Вієта:

x 1 + x 2 = - a і x 2 = c a .

Зокрема, для наведеного квадратного рівняння сума коренів є другий коефіцієнт із протилежним знаком, а добуток коренів дорівнює вільному члену. Наприклад, у вигляді квадратного рівняння 3 · x 2 − 7 · x + 22 = 0 можна відразу визначити, що його коренів дорівнює 7 3 , а добуток коренів - 22 3 .

Також можна знайти ряд інших зв'язків між корінням та коефіцієнтами квадратного рівняння. Наприклад, сума квадратів коренів квадратного рівняння може бути виражена через коефіцієнти:

x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2 · x 1 · x 2 = - b a 2 - 2 · c a = b 2 a 2 - 2 · c a = b 2 - 2 · a · c a 2 .

Якщо ви помітили помилку в тексті, будь ласка, виділіть її та натисніть Ctrl+Enter



Останні матеріали розділу:

Що таке геодезія і що вона вивчає
Що таке геодезія і що вона вивчає

На світі є багато наук. Одна з них – геодезія. Що то за наука? Що вона вивчає? Де їй можна навчитися? Відповіді на ці та інші питання...

б)Філософія права та вчення про правосвідомість
б)Філософія права та вчення про правосвідомість

Ільїн Іван Олександрович, біографія якого є темою цієї статті, був відомим російським публіцистом та письменником. Головне місце у його житті...

Плещеєва презентація до уроку з літератури на тему
Плещеєва презентація до уроку з літератури на тему

Плещеєв Олексій Миколайович коротка біографія російського письменника, поета, перекладача, літературного та театрального критика викладена в цій...