Знайти площу фігури обмеженою лініями зробити малюнок. Визначений інтеграл

Приклад1. Обчислити площу фігури, обмеженої лініями: х + 2у - 4 = 0, у = 0, х = -3, і х = 2


Виконаємо побудову фігури (див. рис.) Будуємо пряму х + 2у – 4 = 0 за двома точками А(4;0) та В(0;2). Виразивши у через х отримаємо у = -0,5х + 2. За формулою (1), де f(x) = -0,5х + 2, а = -3, в = 2, знаходимо

S = = [-0,25 = 11,25 кв. од

приклад 2.Обчислити площу фігури, обмеженою лініями: х – 2у + 4 = 0, х + у – 5 = 0 та у = 0.

Рішення. Виконаємо побудову фігури.

Побудуємо пряму х - 2у + 4 = 0: у = 0, х = - 4, А (-4; 0); х = 0, у = 2, (0; 2).

Побудуємо пряму х + у - 5 = 0: у = 0, х = 5, С (5; 0), х = 0, у = 5, D (0; 5).

Знайдемо точку перетину прямих, розв'язавши систему рівнянь:

х = 2, у = 3; М(2; 3).

Для обчислення шуканої площі розіб'ємо трикутник АМС на два трикутники АМN і NМС, тому що при зміні х від А до N площа обмежена прямою, а при зміні х від N до С - прямий


Для трикутника АМN маємо: ; у = 0,5 х + 2, тобто f(x) = 0,5 х + 2, a = - 4, b = 2.

Для трикутника NМС маємо: y = – x + 5, тобто f(x) = – x + 5, a = 2, b = 5.

Обчисливши площу кожного з трикутників та склавши результати, знаходимо:

кв. од.

кв. од.

9+4,5 = 13,5 кв. од. Перевірка: = 0,5 АС = 0,5 кв. од.

приклад 3.Обчислити площу фігури, обмежену лініями: y = x 2 , y = 0, x = 2, x = 3.

У даному випадку потрібно обчислити площу криволінійної трапеції, обмеженої параболою y = x 2 , прямими x = 2 і x = 3і віссю Ох(див. рис.) За формулою (1) знаходимо площу криволінійної трапеції


= = 6кв. од.

приклад 4.Обчислити площу фігури, обмежену лініями: у = - x 2 + 4 і у = 0

Виконаємо побудову фігури. Потрібна площа укладена між параболою у = - x 2 + 4 і віссю Ох.


Знайдемо точки перетину параболи із віссю Ох. Вважаючи у = 0, знайдемо х = Так як ця фігура симетрична щодо осі Оу, то обчислимо площу фігури, розташованої праворуч від осі Оу, і отриманий результат вдвох: = +4x] кв. од. 2 = 2 кв. од.

Приклад 5.Обчислити площу фігури, обмеженою лініями: y 2 = x, yx = 1, x = 4

Тут потрібно обчислити площу криволінійної трапеції, обмеженою верхньою гілкою параболиy 2 = x, віссю Ох і прямими x = 1x = 4 (див. рис.)


За формулою (1), де f(x) = a = 1 та b = 4 маємо = (= кв. од.

Приклад 6. Обчислити площу фігури, обмеженої лініями: y = sinx, y = 0, x = 0, x = .

Шукана площа обмежена напівхвильової синусоїди та віссю Ох (див. рис.).


Маємо – cosx = – cos = 1 + 1 = 2 кв. од.

Приклад 7.Обчислити площу фігури, обмеженої лініями: y = - 6х, у = 0 та х = 4.

Фігура розташована під віссю Ох (див. мал.).

Отже, її площу знаходимо за формулою (3)


= =

Приклад 8.Обчислити площу фігури, обмеженої лініями: y = і х = 2. Криву y = збудуємо за точками (див. рис.). Таким чином, площу фігури знаходимо за формулою (4)

Приклад 9 .

х 2 + у 2 = r2.

Тут потрібно обчислити площу, обмежену колом х 2 + у 2 = r 2 тобто площа кола радіуса r з центром на початку координат. Знайдемо четверту частину цієї площі, взявши межі інтегрування від 0

доr; маємо: 1 = = [

Отже, 1 =

приклад 10.Обчислити площу фігури, обмеженою лініями: у = х 2 і у = 2х

Дана фігура обмежена параболою у = х 2 і прямий у = 2х (див. рис.) Для визначення точок перетину заданих ліній розв'яжемо систему рівнянь: х 2 - 2х = 0 х = 0 і х = 2


Використовуючи для знаходження площі формулу (5), отримаємо

= графік функції y = x 2+2 розташований над віссю OXтому:

Відповідь: .

У кого виникли труднощі з обчисленням певного інтегралу та застосуванням формули Ньютона-Лейбніца

,

зверніться до лекції Певний інтеграл. Приклади рішень. Після того, як завдання виконане, завжди корисно поглянути на креслення і прикинути, чи реальна вийшла відповідь. У цьому випадку «на око» підраховуємо кількість клітинок у кресленні – ну, приблизно 9 набереться, схоже на правду. Цілком зрозуміло, що якби в нас вийшов, скажімо, відповідь: 20 квадратних одиниць, то, очевидно, що десь припущена помилка - у розглянуту фігуру 20 клітинок явно не вміщається, від сили десяток. Якщо відповідь вийшла негативною, то завдання теж вирішено некоректно.

Приклад 2

Обчислити площу фігури, обмеженою лініями xy = 4, x = 2, x= 4 та віссю OX.

Це приклад самостійного рішення. Повне рішення та відповідь наприкінці уроку.

Що робити, якщо криволінійна трапеція розташована під віссю OX?

Приклад 3

Обчислити площу фігури, обмеженою лініями y = e - x, x= 1 та координатними осями.

Рішення: Виконаємо креслення:

Якщо криволінійна трапеція повністю розташована під віссю OX, то її площу можна знайти за формулою:

В даному випадку:

.

Увага! Не слід плутати два типи завдань:

1) Якщо Вам запропоновано вирішити просто певний інтеграл без жодного геометричного сенсу, то він може бути негативним.

2) Якщо Вам запропоновано знайти площу фігури за допомогою певного інтеграла, то площа завжди позитивна! Саме тому у щойно розглянутій формулі фігурує мінус.

На практиці найчастіше фігура розташована і у верхній і нижній півплощині, а тому, від найпростіших шкільних завдань переходимо до більш змістовних прикладів.

Приклад 4

Знайти площу плоскої фігури, обмеженою лініями y = 2xx 2 , y = -x.

Рішення: Спочатку потрібно виконати креслення. При побудові креслення завдання на площу нас найбільше цікавлять точки перетину ліній. Знайдемо точки перетину параболи y = 2xx 2 та прямий y = -x. Це можна зробити двома способами. Перший спосіб – аналітичний. Вирішуємо рівняння:

Отже, нижня межа інтегрування a= 0, верхня межа інтегрування b= 3. Часто вигідніше і швидше побудувати лінії поточечно, у своїй межі інтегрування з'ясовуються хіба що «самі собою». Тим не менш, аналітичний спосіб знаходження меж все-таки доводиться іноді застосовувати, якщо, наприклад, графік досить великий, або поточена побудова не виявила меж інтегрування (вони можуть бути дрібними або ірраціональними). Повертаємося до нашого завдання: раціональніше спочатку побудувати пряму і лише потім параболу. Виконаємо креслення:

Повторимося, що з поточечному побудові межі інтегрування найчастіше з'ясовуються «автоматоматично».

А тепер робоча формула:

Якщо на відрізку [ a; b] деяка безперервна функція f(x) більше або дорівнює певній безперервній функції g(x), то площу відповідної фігури можна знайти за формулою:

Тут вже не треба думати, де розташована фігура - над віссю або під віссю, а важливо, який графік Вище (щодо іншого графіка), а який - НИЖЧЕ .

У прикладі очевидно, що на відрізку парабола розташовується вище прямої, а тому з 2 xx 2 необхідно відняти - x.

Завершення рішення може мати такий вигляд:

Потрібна фігура обмежена параболою y = 2xx 2 зверху та прямий y = -xзнизу.

На відрізку 2 xx 2 ≥ -x. За відповідною формулою:

Відповідь: .

Насправді, шкільна формула для площі криволінійної трапеції у нижній напівплощині (див. приклад №3) – окремий випадок формули

.

Оскільки вісь OXзадається рівнянням y= 0, а графік функції g(x) розташований нижче осі OX, то

.

А зараз пара прикладів для самостійного вирішення

Приклад 5

Приклад 6

Знайти площу фігури, обмеженою лініями

У ході вирішення завдань на обчислення площі за допомогою певного інтегралу іноді трапляється кумедний казус. Креслення виконано правильно, розрахунки – правильно, але, за неуважністю, знайдено площу не тієї фігури.

Приклад 7

Спочатку виконаємо креслення:

Фігура, площу якої нам потрібно знайти, заштрихована синім кольором (уважно дивіться на умову – чим обмежена фігура!). Але на практиці, через неуважність, нерідко вирішують, що потрібно знайти площу фігури, яка заштрихована зеленим кольором!

Цей приклад ще й корисний тим, що в ньому площа фігури вважається двома певними інтегралами. Дійсно:

1) На відрізку [-1; 1] над віссю OXрозташований графік прямий y = x+1;

2) На відрізку над віссю OXрозташований графік гіперболи y = (2/x).

Цілком очевидно, що площі можна (і потрібно) приплюсувати, тому:

Відповідь:

Приклад 8

Обчислити площу фігури, обмеженою лініями

Представимо рівняння у «шкільному» вигляді

і виконаємо крапковий креслення:

З креслення видно, що верхня межа у нас «хороша»: b = 1.

Але чому дорівнює нижня межа?! Зрозуміло, що це ціле число, але яке?

Може бути, a=(-1/3)? Але де гарантія, що креслення виконано з ідеальною точністю, цілком може виявитися, що a=(-1/4). А якщо ми взагалі неправильно збудували графік?

У таких випадках доводиться витрачати додатковий час та уточнювати межі інтегрування аналітично.

Знайдемо точки перетину графіків

Для цього розв'язуємо рівняння:

.

Отже, a=(-1/3).

Подальше рішення тривіальне. Головне, не заплутатися у підстановках та знаках. Обчислення тут не найпростіші. На відрізку

, ,

за відповідною формулою:

Відповідь:

На закінчення уроку розглянемо два завдання складніше.

Приклад 9

Обчислити площу фігури, обмеженою лініями

Рішення: Зобразимо цю фігуру на кресленні.

Для поточкового побудови креслення потрібно знати зовнішній вигляд синусоїди. Взагалі корисно знати графіки всіх елементарних функцій, а також деякі значення синуса. Їх можна знайти у таблиці значень тригонометричних функцій. У ряді випадків (наприклад, у цьому) допускається побудова схематичного креслення, на якому принципово правильно повинні бути відображені графіки та межі інтегрування.

З межами інтегрування тут проблем немає, вони випливають прямо з умови:

- "ікс" змінюється від нуля до "пі". Оформлюємо подальше рішення:

На відрізку графік функції y= sin 3 xрозташований над віссю OXтому:

(1) Як інтегруються синуси та косинуси у непарних ступенях, можна подивитися на уроці Інтеграли від тригонометричних функцій . Відщипуємо один синус.

(2) Використовуємо основне тригонометричне тотожність у вигляді

(3) Проведемо заміну змінної t= cos x, тоді: розташований над віссю , тому:

.

.

Примітка: зверніть увагу, як береться інтеграл від тангенсу в кубі, тут використано наслідок основного тригонометричного тотожності

.

Як вставити математичні формули на сайт?

Якщо потрібно колись додавати одну-дві математичні формули на веб-сторінку, то найпростіше зробити це, як описано в статті: математичні формули легко вставляються на сайт у вигляді картинок, які автоматично генерує Вольфрам Альфа. Окрім простоти, цей універсальний спосіб допоможе покращити видимість сайту у пошукових системах. Він працює давно (і, гадаю, працюватиме вічно), але морально вже застарів.

Якщо ви постійно використовуєте математичні формули на своєму сайті, я рекомендую вам використовувати MathJax - спеціальну бібліотеку JavaScript, яка відображає математичні позначення у веб-браузерах з використанням розмітки MathML, LaTeX або ASCIIMathML.

Є два способи, як почати використовувати MathJax: (1) за допомогою простого коду можна швидко підключити до вашого сайту скрипт MathJax, який автоматично підвантажуватиметься з віддаленого сервера (список серверів); (2) завантажити скрипт MathJax з віддаленого сервера на свій сервер та підключити до всіх сторінок свого сайту. Другий спосіб – більш складний та довгий – дозволить прискорити завантаження сторінок вашого сайту, і якщо батьківський сервер MathJax з якихось причин стане тимчасово недоступним, це ніяк не вплине на ваш власний сайт. Незважаючи на ці переваги, я вибрав перший спосіб, як більш простий, швидкий і не потребує технічних навичок. Наслідуйте мій приклад, і вже через 5 хвилин ви зможете використовувати всі можливості MathJax на своєму сайті.

Підключити скрипт бібліотеки MathJax з віддаленого сервера можна за допомогою двох варіантів коду, взятого на головному сайті MathJax або на сторінці документації:

Один з цих варіантів коду потрібно скопіювати і вставити в код вашої веб-сторінки, бажано між тегами або відразу після тега . За першим варіантом MathJax підвантажується швидше і менше гальмує сторінку. Натомість другий варіант автоматично відстежує та підвантажує свіжі версії MathJax. Якщо вставити перший код, його потрібно буде періодично оновлювати. Якщо вставити другий код, то сторінки завантажуватимуться повільніше, зате вам не потрібно буде постійно стежити за оновленнями MathJax.

Підключити MathJax найпростіше в Blogger або WordPress: в панелі керування сайтом додайте віджет, призначений для вставки стороннього коду JavaScript, скопіюйте в нього перший або другий варіант завантаженого коду, представленого вище, і розмістіть віджет ближче до початку шаблону (до речі, це зовсім не обов'язково , оскільки скрипт MathJax завантажується асинхронно). От і все. Тепер вивчіть синтаксис розмітки MathML, LaTeX та ASCIIMathML, і ви готові вставляти математичні формули на веб-сторінки свого сайту.

Будь-який фрактал будується за певним правилом, яке послідовно застосовується необмежену кількість разів. Щоразу називається ітерацією.

Ітеративний алгоритм побудови губки Менгера досить простий: вихідний куб зі стороною 1 ділиться площинами, що паралельні його граням, на 27 рівних кубів. З нього видаляються один центральний куб і 6 прилеглих до нього на грані кубів. Виходить безліч, що складається з 20 менших кубів, що залишилися. Поступаючи так само з кожним із цих кубів, отримаємо безліч, що складається вже з 400 менших кубів. Продовжуючи цей процес безкінечно, отримаємо губку Менгера.



Останні матеріали розділу:

Пабло Ескобар - найвідоміший наркобарон в історії
Пабло Ескобар - найвідоміший наркобарон в історії

Пабло Еміліо Ескобар Гавіріа – найвідоміший наркобарон та терорист із Колумбії. Увійшов до підручників світової історії як найжорстокіший злочинець.

Михайло Олексійович Сафін.  Сафін Марат.  Спортивна біографія.  Професійний старт тенісиста
Михайло Олексійович Сафін. Сафін Марат. Спортивна біографія. Професійний старт тенісиста

Володар одразу двох кубків Великого Шолома в одиночній грі, двічі переможець змагань на Кубок Девіса у складі збірної Росії, переможець...

Чи потрібна вища освіта?
Чи потрібна вища освіта?

Ну, на мене питання про освіту (саме вищу) це завжди палиця з двома кінцями. Хоч я сам і вчуся, але в моїй ДУЖЕ великій сім'ї багато прикладів...