Наявність та склад атмосфери землі. Склад та будова атмосфери

Атмосфера – газова оболонка нашої планети, яка обертається разом із Землею. Газ, що у атмосфері, називають повітрям. Атмосфера стикається з гідросферою та частково покриває літосферу. А ось верхні межі визначити важко. Умовно прийнято вважати, що атмосфера простягається нагору приблизно на три тисячі кілометрів. Там вона плавно перетікає у безповітряний простір.

Хімічний склад атмосфери Землі

Формування хімічного складу атмосфери розпочалося близько чотирьох мільярдів років тому. Спочатку атмосфера складалася лише з легких газів – гелію та водню. На думку вчених, вихідними передумовами створення газової оболонки навколо Землі стали виверження вулканів, які разом з лавою викидали величезну кількість газів. Надалі розпочався газообмін з водними просторами, з живими організмами, з продуктами їхньої діяльності. Склад повітря поступово змінювався та у сучасному вигляді зафіксувався кілька мільйонів років тому.

Головні складові атмосфери це азот (близько 79%) і кисень (20%). Відсоток, що залишився (1%) припадає на такі гази: аргон, неон, гелій, метан, вуглекислий газ, водень, криптон, ксенон, озон, аміак, двоокису сірки і азоту, закис азоту і окис вуглецю, що входять в цей один відсоток.

Крім того, в повітрі міститься водяна пара і тверді частинки (пилок рослин, пил, кристали солі, домішки аерозолів).

Останнім часом вчені відзначають не якісну, а кількісну зміну деяких інгредієнтів повітря. І причина тому – людина та її діяльність. Лише за останні 100 років вміст вуглекислого газу значно зріс! Це загрожує багатьма проблемами, найбільш глобальна з яких – зміна клімату.

Формування погоди та клімату

Атмосфера грає найважливішу роль формуванні клімату та погоди Землі. Дуже багато залежить від кількості сонячних променів, від характеру поверхні, що підстилає, і атмосферної циркуляції.

Розглянемо чинники з порядку.

1. Атмосфера пропускає тепло сонячних променів та поглинає шкідливу радіацію. Про те, що промені Сонця падають різні ділянки Землі під різними кутами, знали ще древні греки. Саме слово "клімат" у перекладі з давньогрецької означає "нахил". Так, на екваторі сонячні промені падають практично прямовисно, тому тут дуже спекотно. Чим ближче до полюсів, тим більший кут нахилу. І температура знижується.

2. Через нерівномірне нагрівання Землі в атмосфері формуються повітряні течії. Вони класифікуються за своїми розмірами. Найменші (десятки та сотні метрів) – це місцеві вітри. Далі йдуть мусони та пасати, циклони та антициклони, планетарні фронтальні зони.

Усі ці повітряні маси постійно переміщуються. Деякі їх досить статичні. Наприклад, пасати, які дмуть від субтропіків до екватора. Рух інших багато в чому залежить від атмосферного тиску.

3. Атмосферний тиск – ще один фактор, що впливає на формування клімату. Це тиск повітря на поверхню ґрунту. Як відомо, повітряні маси переміщаються з області з підвищеним атмосферним тиском у бік області, де тиск нижче.

Усього виділено 7 зон. Екватор – зона низького тиску. Далі, по обидва боки від екватора до тридцятих широт - область високого тиску. Від 30 ° до 60 ° - знову низький тиск. А від 60 ° до полюсів – зона високого тиску. Між цими зонами циркулюють повітряні маси. Ті, що йдуть із моря на сушу, несуть дощі та негоду, а ті, що дмуть із континентів – ясну та суху погоду. У місцях, де повітряні течії стикаються, утворюються зони атмосферного фронту, які характеризуються опадами та ненависною, вітряною погодою.

Вчені довели, що від атмосферного тиску залежить навіть здоров'я людини. За міжнародними стандартами нормальний атмосферний тиск – 760 мм рт. стовпа за температури 0°C. Цей показник розрахований на ті ділянки суші, які знаходяться практично нарівні з рівнем моря. З висотою тиск знижується. Тому, наприклад, для Санкт-Петербурга 760 мм рт. - це норма. А ось для Москви, яка розташована вище, нормальний тиск – 748 мм рт.ст.

Тиск змінюється не тільки по вертикалі, а й по горизонталі. Особливо це відчувається під час проходження циклонів.

Будова атмосфери

Атмосфера нагадує листковий пиріг. І кожний шар має свої особливості.

. Тропосфера- Найближчий до Землі шар. "Товщина" цього шару змінюється при віддаленні від екватора. Над екватором шар простягається вгору на 16-18 км, в помірних зонах – на 10-12 км, на полюсах – на 8-10 км.

Саме тут міститься 80% усієї маси повітря та 90% водяної пари. Тут утворюються хмари, виникають циклони та антициклони. Температура повітря залежить від висоти. В середньому вона знижується на 0,65 ° C на кожні 100 метрів.

. Тропопауза- Перехідний шар атмосфери. Його висота – від кількох сотень метрів до 1-2 км. Температура повітря влітку вища, ніж узимку. Так, наприклад, над полюсами взимку -65 ° C. А над екватором будь-якої пори року тримається -70 ° C.

. Стратосфера- Це шар, верхня межа якого проходить на висоті 50-55 км. Турбулентність тут низька, вміст водяної пари в повітрі – незначний. Проте дуже багато озону. Максимальна його концентрація – на висоті 20-25 км. У стратосфері температура повітря починає підвищуватися і досягає позначки +0,8 ° C. Це зумовлено тим, що озоновий шар взаємодіє з ультрафіолетовим випромінюванням.

. Стратопауза- невисокий проміжний шар між стратосферою та наступною за нею мезосферою.

. Мезосфера- верхня межа цього шару – 80-85 кілометрів. Тут відбуваються складні фотохімічні процеси за участю вільних радикалів. Саме вони забезпечують те ніжне блакитне сяйво нашої планети, яке бачиться з космосу.

У мезосфері згоряє більшість комет та метеоритів.

. Мезопауза- наступний проміжний шар, температура повітря в якому -90°.

. Термосфера- нижня межа починається висоті 80 - 90 км, а верхня межа шару проходить приблизно за позначкою 800 км. Температура повітря зростає. Вона може змінюватись від +500°C до +1000°C. Протягом доби температурні коливання складають сотні градусів! Але повітря тут настільки розріджене, що розуміння терміна "температура" як ми його уявляємо, тут не доречно.

. Іоносфера- поєднує мезосферу, мезопаузу та термосферу. Повітря тут складається в основному з молекул кисню та азоту, а також із квазінейтральної плазми. Сонячні промені, потрапляючи в іоносферу, сильно іонізують молекули повітря. У нижньому шарі (до 90 км) ступінь іонізація низька. Що вище, то більше вписувалося іонізація. Так, на висоті 100–110 км електрони концентруються. Це сприяє відображенню коротких та середніх радіохвиль.

Найважливіший шар іоносфери – верхній, що знаходиться на висоті 150-400 км. Його особливість у тому, що він відображає радіохвилі, а це сприяє передачі радіосигналів на значні відстані.

Саме в іоносфері відбувається таке явище, як полярне сяйво.

. Екзосфера- складається з атомів кисню, гелію та водню. Газ у цьому шарі дуже розріджений і часто атоми водню вислизають у космічний простір. Тому цей шар і називають "зоною розсіювання".

Першим ученим, який припустив, що наша атмосфера має вагу, був італієць Е. Торрічеллі. Остап Бендер, наприклад, у романі "Золоте теля" журився, що на кожну людину тисне повітряний стовп вагою 14 кг! Але великий комбінатор трохи помилявся. Доросла людина відчуває на себе тиск 13-15 тонн! Але ми не відчуваємо цієї тяжкості, тому що атмосферний тиск урівноважується внутрішнім тиском людини. Вага нашої атмосфери складає 5300000000000 000 тонн. Цифра колосальна, хоча це лише мільйонна частина ваги нашої планети.

Будова та склад атмосфери Землі, треба сказати, не завжди були постійними величинами в той чи інший період розвитку нашої планети. Сьогодні вертикальна будова цього елемента, що має загальну «товщину» 1,5-2,0 тис. км, представлена ​​кількома основними шарами, у тому числі:

  1. Тропосфера.
  2. Тропопаузою.
  3. Стратосфера.
  4. Стратопаузою.
  5. Мезосферою та мезопаузою.
  6. Термосфера.
  7. Екзосферою.

Основні елементи атмосфери

Тропосфера є шаром, у якому спостерігаються сильні вертикальні та горизонтальні рухи, саме тут формується погода, осадові явища, кліматичні умови. Вона простягається на 7-8 кілометрів від поверхні планети майже повсюдно, крім полярних регіонів (там - до 15 км). У тропосфері спостерігається поступове зниження температури, приблизно 6,4°З кожним кілометром висоти. Цей показник може відрізнятися для різних широт та пір року.

Склад атмосфери Землі у цій частині представлений такими елементами та його відсотковими частками:

Азот – близько 78 відсотків;

Кисень – майже 21 відсоток;

Аргон – близько одного відсотка;

Вуглекислий газ – менше 0.05%.

Єдиний склад до висоти 90 км

Крім того, тут можна знайти пил, крапельки води, водяну пару, продукти горіння, кристалики льоду, морські солі, безліч аерозольних частинок та ін. Такий склад атмосфери Землі спостерігається приблизно до дев'яноста кілометрів висоти, тому повітря приблизно однакове за хімічним складом, не тільки у тропосфері, а й у вищележачих шарах. Але там атмосфера має інші фізичні характеристики. А шар, який має загальний хімічний склад, називають гомосферою.

Які елементи входять до складу атмосфери Землі? У відсотках (за обсягом, у сухому повітрі) тут представлені такі гази як криптон (близько 1.14 х 10 -4), ксенон (8.7 х 10 -7), водень (5.0 х 10 -5), метан (близько 1.7 х 10 -4) 4), закис азоту (5.0 х 10 -5) та ін. У відсотках по масі з перерахованих компонентів найбільше закису азоту і водню, далі слідує гелій, криптон та ін.

Фізичні властивості різних атмосферних верств

Фізичні властивості тропосфери тісно пов'язані з її приляганням до планети. Звідси відбите сонячне тепло у формі інфрачервоних променів прямує назад нагору, включаючи процеси теплопровідності та конвекції. Саме тому із віддаленням від земної поверхні падає температура. Таке явище спостерігається до висоти стратосфери (11-17 кілометрів), потім температура стає практично незмінною до позначки 34-35 км, і далі йде знову зростання температур до висот 50 кілометрів (верхня межа стратосфери). Між стратосферою та тропосферою є тонкий проміжний шар тропопаузи (до 1-2 км), де спостерігаються постійні температури над екватором – близько мінус 70°С та нижче. Над полюсами тропопауза «прогрівається» влітку до мінус 45°С, взимку температури тут коливаються біля позначки -65°С.

Газовий склад атмосфери Землі включає такий важливий елемент, як озон. Його відносно трохи біля поверхні (десять мінус шостої від відсотка), оскільки газ утворюється під впливом сонячних променів з атомарного кисню у верхніх частинах атмосфери. Зокрема, найбільше озону на висоті близько 25 км, а весь озоновий екран розташований в областях від 7-8 км в області полюсів, від 18 км на екваторі і до п'ятдесяти кілометрів загалом над поверхнею планети.

Атмосфера захищає від сонячної радіації

Склад повітря атмосфери Землі грає дуже важливу роль у збереженні життя, так як окремі хімічні елементи і композиції вдало обмежують доступ сонячної радіації до земної поверхні і людей, тварин, рослин, що живуть на ній. Наприклад, молекули водяної пари ефективно поглинають майже всі діапазони інфрачервоного випромінювання, крім довжин в інтервалі від 8 до 13 мкм. Озон же поглинає ультрафіолет аж до довжини хвиль в 3100 А. Без його тонкого шару (складе всього в середньому 3 мм, якщо його розташувати на поверхні планети) живуть можуть лише води на глибині більше 10 метрів і підземні печери, куди не доходить сонячна радіація .

Нуль за Цельсієм у стратопаузі

Між двома наступними рівнями атмосфери, стратосферою та мезосферою, існує чудовий шар – стратопауза. Він відповідає приблизно висоті озонних максимумів і тут спостерігається відносно комфортна для людини температура - близько 0°С. Вище стратопаузи, у мезосфері (починається десь на висоті 50 км і закінчується на висоті 80-90 км), спостерігається знову ж таки падіння температур зі збільшенням відстані від поверхні Землі (до мінус 70-80°С). У мезосфері зазвичай повністю згоряють метеори.

У термосфері – плюс 2000 К!

Хімічний склад атмосфери Землі в термосфері (починається після мезопаузи з висот близько 85-90 до 800 км) визначає можливість такого явища, як поступове нагрівання шарів дуже розрідженого «повітря» під впливом сонячного випромінювання. У цій частині «повітряного покривала» планети зустрічаються температури від 200 до 2000 К, які у зв'язку з іонізацією кисню (понад 300 км знаходиться атомарний кисень), а також рекомбінацією атомів кисню в молекули, що супроводжується виділенням великої кількості тепла. Термосфера – це місце виникнення полярних сяйв.

Вище термосфери знаходиться екзосфера - зовнішній шар атмосфери, з якого легкі атоми водню, що швидко переміщаються, можуть йти в космічний простір. Хімічний склад атмосфери Землі тут представлений більше окремими атомами кисню в нижніх шарах, атомами гелію в середніх і майже виключно атомами водню - у верхніх. Тут панують високі температури – близько 3000 К та відсутній атмосферний тиск.

Як утворилася земна атмосфера?

Але, як згадувалося вище, такий склад атмосфери планета мала який завжди. Усього існує три концепції походження цього елемента. Перша гіпотеза припускає, що атмосфера була взята в процесі акреції з протопланетної хмари. Однак сьогодні ця теорія піддається суттєвій критиці, оскільки така первинна атмосфера повинна була бути зруйнована сонячним вітром від світила в нашій планетній системі. Крім того, передбачається, що леткі елементи не могли утриматися в зоні утворення планет за типом земної групи через занадто високі температури.

Склад первинної атмосфери Землі, як передбачає друга гіпотеза, міг бути сформований за рахунок активного бомбардування поверхні астероїдами та кометами, які прибули з околиць Сонячної системи на ранніх етапах розвитку. Підтвердити чи спростувати цю концепцію досить складно.

Експеримент у ІДГ РАН

Найправдоподібнішою є третя гіпотеза, яка вважає, що атмосфера з'явилася в результаті виділення газів з мантії земної кори приблизно 4 млрд. років тому. Цю концепцію вдалося перевірити в ІДГ РАН в ході експерименту під назвою «Царів 2», коли у вакуумі розігріли зразок речовини метеорного походження. Тоді було зафіксовано виділення таких газів як Н 2 , СН 4 , СО, Н 2 О, N 2 та ін. Тому вчені справедливо припустили, що хімічний склад первинної атмосфери Землі включав водяний і вуглекислий газ, пари фтороводню (HF), чадного газу (CO), сірководню (H 2 S), сполук азоту, водень, метан (СН 4), пари аміаку (NH 3), аргон та ін. у зв'язаному стані в органічних речовинах і гірських породах азот перейшов до складу сучасного повітря, а також знову в осадові породи та органічні речовини.

Склад первинної атмосфери Землі не дозволив би сучасним людям перебувати у ній без дихальних апаратів, оскільки кисню у необхідних кількостях тоді був. Цей елемент у значних обсягах з'явився півтора мільярда років тому, як вважають, у зв'язку з розвитком процесу фотосинтезу у синьо-зелених та інших водоростей, які є найдавнішими мешканцями нашої планети.

Мінімум кисню

На те, що склад атмосфери Землі спочатку був майже безкисневим, вказує на те, що в найдавніших (катархейських) породах знаходять легкоокислюваний, але не окислений графіт (вуглець). Згодом з'явилися так звані полосчасті залізні руди, які включали прошарки збагачених оксидів заліза, що означає появу на планеті потужного джерела кисню в молекулярній формі. Але ці елементи траплялися лише періодично (можливо, ті ж водорості чи інші продуценти кисню з'явилися невеликими острівцями в безкисневій пустелі), тоді як світ був анаеробним. На користь останнього говорить те, що пірит, що легко окислюється, знаходили у вигляді гальки, обробленої течією без слідів хімічних реакцій. Оскільки текучі води неможливо знайти погано аэрированными, виробилася думка, що атмосфера на початок кембрія містила менше відсотка кисню від сьогоднішнього складу.

Революційна зміна складу повітря

Приблизно в середині протерозою (1,8 млрд років тому) відбулася «киснева революція», коли світ перейшов до аеробного дихання, в ході якого з однієї молекули поживної речовини (глюкоза) можна отримувати 38, а не дві (як при анаеробному диханні) одиниці енергії. Склад атмосфери Землі, у частині кисню, став перевищувати один відсоток від сучасного, став виникати озоновий шар, який захищає організми від радіації. Саме від неї «ховалися» під товстими панцирями, наприклад такі древні тварини, як трилобіти. З того часу і до нашого часу зміст основного «дихального» елемента поступово і повільно зростав, забезпечуючи різноманітність форм життя на планеті.

Еволюційні зміни атмосфери Землі


Вступ

1. Склад та будова атмосфери Землі

2. Еволюція земної атмосфери

3. Домішки в атмосфері

Література


Вступ

Повітряна оболонка, що оточує земну кулю, називається атмосферою. У атмосфері постійно відбуваються різноманітні процеси: хімічні, фізичні, біологічні та інших. У результаті процесів відбувається зміна як нижніх, і верхніх верств атмосфери.

Процеси, що відбуваються в атмосфері, відбуваються закономірно і взаємопов'язано. На атмосферу впливає космічний простір, поверхня землі, водойм, рослинного та снігового покриву. Відбувається взаємообмін газами, теплом, вологою, рідкими та твердими частинками. Сонячне випромінювання є основним джерелом енергії для атмосферних частинок. В атмосфері, завдяки різним процесам, що відбуваються в ній, відбуваються деякі хімічні реакції, які змінюють її склад. Розвиваються рухи повітряних мас, утворюються хмари, опади, спостерігаються електричні, акустичні та оптичні явища. Стан атмосфери постійно змінюється у часі та просторі.

Атмосфера немає певної верхньої кордону. Вона поступово переходить у міжпланетне середовище. Умовно верхню межу атмосфери прийнято вважати на висоті 1000-1200 км. Супутникові дані зміни густини повітря з висотою дозволяють вважати, що густина атмосфери наближається до густини міжпланетного середовища, починаючи з висоти 2000-3000 км.


1. Склад та будова атмосфери Землі

В даний час Земля має атмосферу масою приблизно 5,27 х10 18 кг. Половина всієї маси атмосфери зосереджена шарі до 5 км, 75% - до висоти 10 км, 95%- до 20км. Біля поверхні вона містить 78,08% азоту, 20,95% кисню, 0,94% інертних газів, 0,03% вуглекислого газу та в незначних кількостях інші гази. Тиск та щільність в атмосфері зменшуються з висотою. Половина повітря міститься у нижніх 5,6 км, а майже вся друга половина зосереджена до висоти 11,3 км. На висоті 95 км густина повітря в мільйон разів нижча, ніж у поверхні. На цьому рівні та хімічний склад атмосфери вже інший. Зростає частка легких газів, і переважають стають водень і гелій. Частина молекул розкладається на іони, утворюючи іоносферу. Понад 1000 км знаходяться радіаційні пояси. Їх також можна як частину атмосфери, заповнену дуже енергійними ядрами атомів водню і електронами, захопленими магнітним полем планети.

Атмосфера одна із необхідних умов виникнення та існування життя Землі. Вона бере участь у формуванні клімату на планеті, регулює її тепловий режим, сприяє перерозподілу тепла на поверхні. Частина променистої енергії Сонця поглинається атмосферою, а решта енергії, досягаючи поверхні Землі, частково йде в ґрунт, водойми, а частково відбивається в атмосферу.

Атмосфера захищає землю від різких коливань температури. За відсутності атмосфери та водойм температура поверхні Землі протягом доби коливалася б в інтервалі 200 °С. Завдяки наявності кисню атмосфера бере участь в обміні та кругообігу речовин у біосфері.

У сучасному стані атмосфера існує сотні мільйонів років, все живе пристосовано до певного її складу. Газова оболонка захищає живі організми від згубних ультрафіолетових, рентгенівських та космічних променів. Атмосфера оберігає Землю від падіння метеоритів.

В атмосфері розподіляються та розсіюються сонячні промені, що створює рівномірне освітлення. Це середовище, де поширюється звук. Через дії гравітаційних сил атмосфера не розсіюється у світовому просторі, а оточуючи Землю, обертається разом із нею.

2. Еволюція земної атмосфери

Атмосфера почала утворюватися разом із формуванням Землі. У процесі еволюції планети і з наближенням її параметрів до сучасних значень відбулися принципово якісні зміни її хімічного складу та фізичних властивостей. Згідно з еволюційною моделлю, на ранньому етапі Земля перебувала в розплавленому стані і близько 4,5 млрд. років тому сформувалася як тверде тіло. Цей рубіж приймається початок геологічного літочислення. З цього часу розпочалася повільна еволюція атмосфери.

У догеологічний час, у фазу розплавлення зовнішньої сфери земної кулі, величезні маси газів, що виділялися, утворили первинну атмосферу Землі. Основними компонентами газів, що виділялися з надр Землі, були вуглекислий газ і водяна пара. Склад первинної атмосфери Землі, що утворилася за рахунок виділення газів і води при розплавленні планетної речовини, був подібний до складу компонентів вулканічних вивержень сучасності. Гази, що виділяються із сучасних вулканів, містять переважно водяну пару. У складі газів базальтових лав, наприклад, вулканів гавайських з температурами до 1200°С водяна пара становить 70-80% за обсягом. Другим за значенням компонентом, що становить атмосферу, є вуглекислий газ. У газах з вулканічних лав 2 міститься від 6 до 15%.

Отже, атмосфера на той час складалася головним чином з водяної пари із суттєвою домішкою вуглекислого газу. У фазу розплавлення зовнішньої сфери земної кулі майже вся гідросфера перебувала у складі атмосфери. У цю фазу водяна пара, що виділилася, охолоджуючись на великій висоті, утворювала густий хмарний покрив і інтенсивні дощові опади. Однак краплі води, що падають з хмар, на деякій висоті над поверхнею планети, де температура повітря була вище 100°С, перетворювалися на пару, яка знову піднімалася вгору. Над розпеченою поверхнею Землі функціонував своєрідний кругообіг води: пара - дощові опади - пара, тобто потужний парниковий ефект, що аналогічно спостерігається нині на Венері.

У ранній період формування щільної атмосфери навколо Землі, що остигає, мабуть, відбувалося за рахунок парів і газів, що виділяються в результаті дегазації мантії. Передбачається, що надалі формування атмосфери відбувалося за рахунок газів, що вивергаються вулканами протягом перших 500 млн. років існування Землі, що складалися з водню, водяної пари, метану, оксидів вуглецю, аміаку та ін.

Кругообіг води в природі, локалізований у первинній атмосфері Землі поблизу температурного рівня 100 ° С, практично не впливав на загальний перебіг еволюції планети та на розвиток її поверхні. Але це були причини могутнього кругообігу води на Землі, який сформувався пізніше і мав величезний вплив на розвиток природного середовища та планети в цілому. Після охолодження земної поверхні до температури нижче 100°С відбувся перехід атмосферної водяної пари в рідку воду. На сухій і дуже гарячій тоді земній поверхні утворився стік, річкова мережа та виникли водойми. Земна поверхня стала сильно обводненою і почала зазнавати інтенсивного впливу водних потоків. Цей етап і став початком геологічної історії.

Отже, первісна атмосфера була відновною і містила незначну кількість кисню, який утворювався за рахунок фотодисоціації водяної пари під впливом ультрафіолетового випромінювання Сонця та дегазації базальтової магми. Конденсація водяної пари близько 4 млрд років тому призвела до утворення гідросфери.

Зміни температурних умов Землі, а потім і всієї природної обстановки було неможливо не позначитися і атмосфері. Вилучення з атмосфери величезної кількості води та утворення поверхневого стоку та водойм надали величезний вплив на склад та еволюцію повітряного середовища. З водної атмосфери вона перетворилася в основному на вуглекислу, в якій водяна пара з панівного компонента перетворилася на другорядну.

Освіта на земній поверхні великих водойм вплинула на подальшу еволюцію атмосфери, в якій почалося швидке зменшення вмісту вуглекислого газу. 2 легко розчиняється у воді, і основна його частина була поглинена нею. Багато разів зменшився і тиск атмосфери. Природні умови Землі різко змінилися. Природне середовище на нашій планеті стало несхожим на те, що було в нього в ранні фази історії.

Деякі геологічні процеси, (наприклад, вилив лави при виверженнях вулканів) супроводжувалися викидом газів з надр Землі. До їх складу входили азот, аміак, метан, водяна пара, оксид і діоксид 2 вуглецю. Під впливом сонячної ультрафіолетової радіації водяна пара розкладалася на водень і кисень, але кисень, що звільнився, вступав в реакцію з оксидом вуглецю, утворюючи вуглекислий газ. Аміак розкладався на азот та водень. Водень в процесі дифузії піднімався вгору і залишав атмосферу, а важчий азот не міг випаровуватися і поступово накопичувався, стаючи основним компонентом, хоча деяка його частина зв'язувалася в молекули внаслідок хімічних реакцій. Під впливом ультрафіолетових променів та електричних розрядів суміш газів, що були у початковій атмосфері Землі, вступала у хімічні реакції, у яких відбувалося утворення органічних речовин, зокрема амінокислот.

Через відсутність значних кількостей кисню, а, отже, і озону, ультрафіолетові промені легко проникали крізь атмосферу, що створювало сприятливі умови для утворення таких органічних речовин, як амінокислоти та піридинові основи, що є найголовнішими складовими живої матерії. Вихідними речовинами для цього процесу служили молекули метану, оксиду вуглецю (II), водню, води та аміаку. Необхідно відзначити, що причиною ускладнення структури була відсутність повної деструкції молекул органічних сполук до вуглекислого газу та води, як це відбувається за наявності в атмосфері кисню. Отже, у відновлювальній атмосфері відбувалося не окислення органічних речовин, а розкладання їх у окремі фрагменти, які служили вихідним матеріалом для синтезу складніших речовин. Ці органічні речовини могли поступово накопичуватися в окремих, найбільш сприятливих місцях первісного океану, наприклад, на берегах, що забезпечило виникнення життя та його прогресивну еволюцію. Першими видами живих організмів були, мабуть, бактерії, у яких обмін речовин відбувався без кисню. Вони отримали назву анаеробних.

Атмосфера є сумішшю різних газів. Вона простягається від Землі на висоту до 900 км, захищаючи планету від шкідливого спектра сонячного випромінювання, і містить гази, необхідних всього живого планети. Атмосфера затримує сонячне тепло, нагріваючи біля земної поверхні та створюючи сприятливий клімат.

Склад атмосфери

Атмосфера Землі складається з двох газів - азоту (78%) і кисню (21%). Крім того, вона містить домішки вуглекислого та інших газів. в атмосфері існує у вигляді пари, крапель вологи у хмарах та кристаликів льоду.

Шари атмосфери

Атмосфера складається з багатьох верств, між якими немає чітких меж. Температури різних верств помітно відрізняються одна від одної.

  • Безповітряна магнітосфера. Тут літає більшість супутників Землі поза земної атмосфери.
  • Екзосфера (450-500 км. від поверхні). Майже не містить газів. Деякі супутники погоди здійснюють польоти в екзосфері. Термосфера (80-450 км) характеризується високими температурами, що досягають верхньому шарі 1700°С.
  • Мезосфера (50-80 км.). У цій сфері температура падає зі збільшенням висоти. Саме тут згоряють більшість метеоритів (уламків космічних порід), що потрапляють в атмосферу.
  • Стратосфера (15-50 км). Містить озоновий спой, тобто шар озону, що поглинає ультрафіолетове випромінювання Сонця. Це призводить до підвищення температури біля Землі. Тут зазвичай літають реактивні літаки, оскільки видимість у цьому шарі дуже хороша і майже немає перешкод, спричинених погодними умовами.
  • Тропосфера. Висота варіюється від 8 до 15 км. від земної поверхні. Саме тут формується погода планети, оскільки цьому шарі міститься найбільше водяної пари, пилу і виникають вітри. Температура знижується при віддаленні від земної поверхні.

Атмосферний тиск

Хоча ми й не відчуваємо цього, шари атмосфери чинять тиск на поверхню Землі. Найбільш високе біля поверхні, а при віддаленні від неї воно поступово знижується. Воно залежить від перепаду температур суші та океану, і тому в районах, що знаходяться на однаковій висоті над рівнем моря, нерідко буває різний тиск. Низький тиск приносить сиру погоду, а за високого зазвичай встановлюєте ясна погода.

Рух повітряних мас у атмосфері

І тиску змушують у нижніх шарах атмосфери перемішатися. Так виникають вітри, що дмуть із областей високого тиску в області низького. У багатьох регіонах виникають і місцеві вітри, спричинені перепадами температур суші та моря. Гори також істотно впливають на напрям вітрів.

Парниковий ефект

Вуглекислий газ та інші гази, що входять до складу земної атмосфери, затримують сонячне тепло. Цей процес прийнято називати парниковим ефектом, оскільки багато в чому нагадує циркуляцію тепла в парниках. Парниковий ефект спричиняє глобальне потепління на планеті. В областях високого тиску – антициклонах – встановлюється ясна сонячна. В областях низького тиску – циклонах – зазвичай стоїть нестійка погода. Тепло та світлова, що надходять в атмосферу. Гази затримують тепло, що відбивається від земної поверхні, викликаючи цим підвищення температури Землі.

У стратосфері є особливий озоновий шар. Озон затримує більшу частину ультрафіолетового випромінювання Сонця, захищаючи від нього Землю та все живе на ній. Вчені встановили, що причиною руйнування озонового шару є особливі хлорофторвуглекислі гази, що містяться в деяких аерозолях та холодильному устаткуванні. Над Арктикою та Антарктидою в озоновому шарі було виявлено величезні дірки, що сприяють збільшенню кількості ультрафіолетового випромінювання, що впливає на поверхню Землі.

Озон утворюється в нижніх шарах атмосфери в результаті між сонячним випромінюванням та різними вихлопними димами та газами. Зазвичай він розсіюється по атмосфері, але якщо під шаром теплого повітря утворюється замкнутий шар холодного, озон концентрується і виникає зміг. На жаль, це не може компенсувати втрати озону в озонових дірах.

На фото з супутника добре видно дірку в озоновому шарі над Антарктикою. Розміри дірки змінюються, але вчені вважають, що вона постійно зростає. Робляться спроби зменшити рівень вихлопних газів в атмосфері. Слід зменшувати забруднення повітря та застосовувати у містах бездимні види палива. Зміг викликає роздратування очей та ядуху у багатьох людей.

Виникнення та еволюція атмосфери Землі

Сучасна атмосфера Землі є результатом тривалого еволюційного розвитку. Вона виникла внаслідок спільних дій геологічних чинників та життєдіяльності організмів. Протягом усієї геологічної історії земна атмосфера пережила кілька глибоких перебудов. На основі геологічних даних і теоретичних (передумов первісна атмосфера молодої Землі, що існувала близько 4 млрд. років тому, могла складатися із суміші інертних і шляхетних газів з невеликим додаванням пасивного азоту (Н. А. Ясаманов, 1985; А. С. Монін, 1987; О. Г. Сорохтін, С. А. Ушаков, 1991, 1993. В даний час погляд на склад і будову ранньої атмосфери дещо видозмінився. 4,2 млрд. років, могла складатися з суміші метану, аміаку і вуглекислого газу.В результаті дегазації мантії і активних процесів вивітрювання в атмосферу, що протікають на земній поверхні, стали надходити пари води, сполуки вуглецю у вигляді СO 2 і СО, сірки та її сполук , а також сильних галогенних кислот - НСI, НF, НI і борної кислоти, які доповнювалися метаном, аміаком, воднем, аргоном та деякими іншими благородними газами, що знаходилися в атмосфері.Ця первинна атмосфера була надзвичайно тонкою. Тому температура біля земної поверхні була близькою до температури променистої рівноваги (А. С. Монін, 1977).

З часом газовий склад первинної атмосфери під впливом процесів вивітрювання гірських порід, що виступали на земній поверхні, життєдіяльності ціанобактерій та синьо-зелених водоростей, вулканічних процесів та дії сонячних променів став трансформуватися. Привело це до розкладання метану на вуглекислоту, аміаку - на азот і водень; у вторинній атмосфері стали накопичуватися вуглекислий газ, який повільно опускався до земної поверхні та азот. Завдяки життєдіяльності синьо-зелених водоростей у процесі фотосинтезу став вироблятися кисень, який, проте, спочатку переважно витрачався на «окислення атмосферних газів, та був і гірських порід. При цьому аміак, що окислився до молекулярного азоту, почав інтенсивно накопичуватися в атмосфері. Як передбачається, значна чай азоту сучасної атмосфери є реліктовою. Метан та оксид вуглецю окислялися до вуглекислоти. Сірка та сірководень окислювалися до SO 2 і SO 3 , які внаслідок своєї високої рухливості та легкості швидко пішли з атмосфери. Таким чином, атмосфера з відновної, якою вона була в археї та ранньому протерозої, поступово перетворювалася на окислювальну.

Вуглекислий газ надходив в атмосферу як внаслідок окислення метану, так і внаслідок дегазації мантії та вивітрювання гірських порід. У тому випадку, якби весь вуглекислий газ, що виділився за всю історію Землі, зберігся в атмосфері, його парціальний тиск в даний час міг стати таким самим, як на Венері (О. Сорохтін, С. А. Ушаков, 1991). Але Землі діяв зворотний процес. Значна частина вуглекислого газу з атмосфери розчинялася в гідросфері, в якій він використовувався гідробіонтами для побудови своєї раковини та біогенним шляхом перетворювався на карбонати. Надалі з них були сформовані найпотужніші товщі хемогенних та органогенних карбонатів.

Кисень в атмосферу надходив із трьох джерел. Протягом тривалого часу, починаючи з моменту виникнення Землі, він виділявся в процесі дегазації мантії і в основному витрачався на окислювальні процеси. Іншим джерелом кисню була фотодисоціація водяної пари жорстким ультрафіолетовим сонячним випромінюванням. появ; вільного кисню в атмосфері призвело до загибелі більшості прокаріотів, які мешкали у відновлювальних умовах. Прокаріотні організми змінили місця свого проживання. Вони пішли з поверхні Землі в її глибини та області, де ще зберігалися відновлювальні умови. Їм на зміну прийшли еукаріоти, які почали енергійно переробляти вуглекислоту на кисень.

Протягом архею та значної частини протерозою практично весь кисень, що виникає як: абіогенним, так і біогенним шляхом, переважно витрачався на окислення заліза та сірки. Вже до кінця протерозою все металеве двовалентне залізо, що знаходилося на земній поверхні або окислилося, або перемістилося в земне ядро. Це призвело до того, що парціальний тиск кисню у ранньопротерозойській атмосфері змінився.

У середині протерозою концентрація кисню в атмосфері досягала точки Юрі та становила 0,01% сучасного рівня. Починаючи з цього часу, кисень став накопичуватися в атмосфері і, ймовірно, вже наприкінці рифея його зміст досяг точки Пастера (0,1% сучасного рівня). Можливо, у вендському періоді виник озоновий шар і цього часу вже ніколи не зникав.

Поява вільного кисню в земній атмосфері стимулювала еволюцію життя і призвела до нових форм з більш досконалим метаболізмом. Якщо раніше еукаріотні одноклітинні водорості та ціанії, що з'явилися на початку протерозою, вимагали вмісту кисню у воді всього 10 -3 його сучасної концентрації, то з виникненням безскелетних Metazoa в кінці раннього венду, тобто близько 650 млн. років тому, концентрація в атмосфері мала б бути значно вищою. Адже Metazoa використовували кисневе дихання і для цього потрібно, щоб парціальний тиск кисню досяг критичного рівня - точки Пастера. У цьому випадку анаеробний процес бродіння змінився енергетично перспективнішим і прогресивнішим кисневим метаболізмом.

Після цього подальше накопичення кисню у земній атмосфері відбувалося досить швидко. Прогресивне збільшення обсягу синьо-зелених водоростей сприяло досягненню в атмосфері необхідного для життєзабезпечення тваринного світу рівня кисню. Певна стабілізація вмісту кисню в атмосфері відбулася з того моменту, коли рослини вийшли на сушу – приблизно 450 млн. років тому. Вихід рослин на сушу, що стався в силурійському періоді, призвів до остаточної стабілізації кисню в атмосфері. Починаючи з цього часу його концентрація стала коливатися в досить вузьких межах, які ніколи не сходили за межі життя. Цілком концентрація кисню в атмосфері стабілізувалася з часу появи квіткових рослин. Ця подія сталася у середині крейдяного періоду, тобто. близько 100 млн. років тому.

Переважна більшість азоту сформувалася на ранніх стадіях розвитку Землі, головним чином з допомогою розкладання аміаку. З появою організмів почався процес зв'язування атмосферного азоту в органічну речовину та поховання їх у морських опадах. Після виходу організмів на сушу азот став поховався і в континентальних опадів. Особливо посилилися процеси переробки вільного азоту із появою наземних рослин.

На рубежі криптозою та фанерозою, тобто близько 650 млн. років тому, вміст вуглекислого газу в атмосфері знизився до десятих часток відсотків, а змісту, близького до сучасного рівня, він досяг лише зовсім недавно, приблизно 10-20 млн. років тому назад.

Отже, газовий склад атмосфери як надавав організмам життєвий простір, а й визначав особливості їх життєдіяльності, сприяв розселенню та еволюції. Збої, що виникають у розподілі сприятливого для організмів газового складу атмосфери як через космічні, так і планетарні причини призводили до масових вимирань органічного світу, які неодноразово відбувалися протягом криптозою і на певних рубежах фанерозойської історії.

Етносферні функції атмосфери

Атмосфера Землі забезпечує необхідною речовиною, енергією та визначає спрямованість та швидкість метаболічних процесів. Газовий склад сучасної атмосфери є оптимальним для існування та розвитку життя. Будучи областю формування погоди та клімату, атмосфера має створювати комфортні умови для життєдіяльності людей, тварин та рослинності. Відхилення в той чи інший бік як атмосферне повітря та погодні умови створюють екстремальні умови для життєдіяльності тваринного та рослинного світу, в тому числі і для людини.

Атмосфера Землі як забезпечує умови існування людства, будучи основним чинником еволюції етносфери. Вона водночас виявляється енергетичним та сировинним ресурсом виробництва. В цілому атмосфера - це фактор, що зберігає здоров'я людини, а деякі області в силу фізико-географічних умов та якості атмосферного повітря служать рекреаційними територіями та є областями, призначеними для санаторно-курортного лікування та відпочинку людей. Таким чином, атмосфера є фактором естетичного та емоційного впливу.

Етносферні та техносферні функції атмосфери, визначені зовсім недавно (Є. Д. Нікітін, Н. А. Ясаманов, 2001), потребують самостійного та поглибленого дослідження. Так, дуже актуальним є вивчення енергетичних атмосферних функцій як з погляду виникнення та дії процесів, що завдають шкоди навколишньому середовищу, так і з погляду впливу на здоров'я та добробут людей. В даному випадку йдеться про енергію циклонів і антициклонів, атмосферний вихорів, атмосферний тиск та інші екстремальні атмосферні явища, ефективне використання яких сприятиме успішному вирішенню проблеми отримання альтернативних джерел енергії, що не забруднюють довкілля. Адже повітряне середовище, особливо та його частина, яка розташовується над Світовим океаном, є областю виділення колосального обсягу вільної енергії.

Наприклад, встановлено, що тропічні циклони середньої сили лише за добу виділяють енергію, еквівалентну енергії 500 тис. атомних бомб, скинутих на Хіросіму та Нагасакі. За 10 днів існування такого циклону вивільняється енергія, достатня задоволення всіх енергетичних потреб такої країни, як США, протягом 600 років.

В останні роки було опубліковано велику кількість робіт учених природничо-наукового профілю, що тією чи іншою мірою стосуються різних сторін діяльності та впливу атмосфери на земні процеси, що свідчить про активізацію міждисциплінарних взаємодій у сучасному природознавстві. При цьому проявляється інтегруюча роль певних його напрямів, серед яких слід зазначити функціонально-екологічний напрямок у геоекології.

Даний напрямок стимулює аналіз та теоретичне узагальнення щодо екологічних функцій та планетарної ролі різних геосфер, а це, у свою чергу, є важливою передумовою для розробки методології та наукових засад цілісного вивчення нашої планети, раціонального використання та охорони її природних ресурсів.

Атмосфера Землі складається з кількох верств: тропосфери, стратосфери, мезосфери, термосфери, іоносфери та екзосфери. У верхній частині тропосфери і нижній частині стратосфери розташовується шар, збагачений озоном, що називається озоновим екраном. Встановлено певні (добові, сезонні, річні тощо) закономірності у розподілі озону. З часу свого виникнення атмосфера впливає протягом планетарних процесів. Первинний склад атмосфери був зовсім іншим, ніж у час, але з часом неухильно зростали частка і роль молекулярного азоту, близько 650 млн. років тому з'явився вільний кисень, кількість якого безперервно підвищувалося, але відповідно знижувалася концентрація вуглекислого газу. Висока рухливість атмосфери, її газовий склад та наявність аерозолів зумовлюють її визначну роль та активну участь у різноманітних геологічних та біосферних процесах. Велика роль атмосфери у перерозподілі сонячної енергії та розвитку катастрофічних стихійних явищ та лих. Негативний вплив на органічний світ та природні системи надають атмосферні вихори – смерчі (торнадо), урагани, тайфуни, циклони та інші явища. Основними джерелами забруднень поруч із природними чинниками виступають різні форми господарську діяльність людини. Антропогенні на атмосферу виражаються у появі різних аерозолів і парникових газів, а й у збільшенні кількості водяної пари, і виявляються як смогів і кислотних дощів. Парникові гази змінюють температурний режим земної поверхні, викиди деяких газів зменшують об'єм озонового екрану та сприяють виникненню озонових дірок. Велика етносферна роль атмосфери Землі.

Роль атмосфери у природних процесах

Приземна атмосфера свого проміжного стану між літосферою і космічним простором і свого газового складу створює умови для життєдіяльності організмів. Водночас від кількості, характеру та періодичності атмосферних опадів, від частот та сили вітрів і особливо від температури повітря залежать вивітрювання та інтенсивність руйнування гірських порід, перенесення та акумуляція уламкового матеріалу. Атмосфера є центральним компонентом кліматичної системи. Температура і вологість повітря, хмарність і опади, вітер - все це характеризує погоду, тобто стан атмосфери, що безперервно змінюється. Одночасно ці компоненти характеризують і клімат, т. е. усереднений багаторічний режим погоди.

Склад газів, наявність хмарності та різних домішок, які називаються аерозольними частинками (попіл, пил, частинки водяної пари), визначають особливості проходження сонячної радіації крізь атмосферу та перешкоджають відходу теплового випромінювання Землі в космічний простір.

Атмосфера Землі дуже рухлива. Виникають у ній процеси та зміни її газового складу, товщини, хмарності, прозорості та наявність у ній тих чи інших аерозольних частинок впливають як на погоду, так і на клімат.

Дія та спрямованість природних, процесів, а також життя та діяльність на Землі визначаються сонячною радіацією. Вона дає 99,98% теплоти, що надходить на земну поверхню. Щорічно це становить 134*1019 ккал. Таку кількість теплоти можна отримати при спалюванні 200 млрд т кам'яного вугілля. Запасів водню, що створює цей потік термоядерної енергії в масі Сонця, вистачить принаймні ще на 10 млрд. років, тобто на період вдвічі більший, ніж існують сама і наша планета.

Близько 1/3 загальної кількості сонячної енергії, що надходить на верхню межу атмосфери, відбивається назад у світовий простір, 13% поглинається озоновим шаром (у тому числі майже вся ультрафіолетова радіація). 7% - іншою атмосферою і лише 44% досягає земної поверхні. Сумарна сонячна радіація, що досягає Землі за добу, дорівнює енергії, яку людство отримало внаслідок спалювання всіх видів палива за останнє тисячоліття.

Кількість та характер розподілу сонячної радіації на земній поверхні перебувають у тісній залежності від хмарності та прозорості атмосфери. На величину розсіяної радіації впливають висота Сонця над горизонтом, прозорість атмосфери, вміст у ній водяної пари, пилу, загальна кількість вуглекислоти тощо.

Максимальна кількість розсіяної радіації потрапляє до полярних районів. Чим нижче Сонце над горизонтом, тим менше теплоти надходить на цю ділянку місцевості.

Велике значення мають прозорість атмосфери та хмарність. У похмурий літній день зазвичай холодніше, ніж у ясний, оскільки хмарність перешкоджає нагріванню земної поверхні.

Велику роль у розподілі теплоти грає запиленість атмосфери. Перебувають у ній тонкодисперсні тверді частинки пилу і попелу, які впливають її прозорість, негативно позначаються на розподілі сонячної радіації, більшість якої відбивається. Тонкодисперсні частинки потрапляють в атмосферу двома шляхами: це або попіл, що викидається під час вулканічних вивержень, або пил пустель, що переноситься вітрами з тропічних і субтропічних областей. Особливо багато такого пилу утворюється в період посух, коли потоками теплого повітря вона виноситься у верхні шари атмосфери та здатна перебувати там тривалий час. Після виверження вулкана Кракатау в 1883 р. пил, викинутий на десятки кілометрів в атмосферу, був у стратосфері близько 3 років. В результаті виверження в 1985 р. вулкана Ель-Чічон (Мексика) пил досяг Європи, і тому сталося деяке зниження приземних температур.

Атмосфера Землі містить змінну кількість водяної пари. В абсолютному обчисленні за масою чи обсягом його кількість становить від 2 до 5%.

Водяна пара, як і вуглекислота, посилює парниковий ефект. У хмарах і туманах, що виникають в атмосфері, протікають своєрідні фізико-хімічні процеси.

Першоджерелом водяної пари в атмосферу є поверхня Світового океану. З нього щорічно випаровується шар води завтовшки від 95 до 110 см. Частина вологи повертається в океан після конденсації, а інша повітряними потоками прямує у бік материків. В областях змінно-вологого клімату опади зволожують ґрунт, а у вологих створюють запаси ґрунтових вод. Таким чином, атмосфера є акумулятором вологості та резервуаром опадів. і тумани, що формуються в атмосфері, забезпечують вологою ґрунтовий покрив і тим самим відіграють визначальну роль у розвитку тваринного та рослинного світу.

Атмосферна волога розподіляється по земній поверхні завдяки рухливості атмосфери. Їй властива дуже складна система вітрів та розподілу тиску. У зв'язку з тим, що атмосфера знаходиться в безперервному русі, характер і масштаби розподілу вітрових потоків і тиску постійно змінюються. Масштаби циркуляції змінюються від мікрометеорологічних, розміром всього кілька сотень метрів, до глобального - кілька десятків тисяч кілометрів. Величезні атмосферні вихори беруть участь у створенні систем великомасштабних повітряних течій та визначають загальну циркуляцію атмосфери. З іншого боку, є джерелами катастрофічних атмосферних явищ.

Від атмосферного тиску залежить розподіл погодних та кліматичних умов та функціонування живої речовини. У тому випадку, якщо атмосферний тиск коливається в невеликих межах, він не відіграє вирішальної ролі у самопочутті людей та поведінці тварин і не відбивається на фізіологічних функціях рослин. Зі зміною тиску, як правило, пов'язані фронтальні явища та зміни погоди.

Фундаментальне значення має атмосферний тиск для формування вітру, який, будучи рельєфоутворюючим фактором, дуже впливає на тваринний і рослинний світ.

Вітер здатний придушити зростання рослин і водночас сприяє перенесенню насіння. Велика роль вітру у формуванні погодних та кліматичних умов. Виступає він і як регулятор морських течій. Вітер як один із екзогенних факторів сприяє ерозії та дефляції вивітрілого матеріалу на великі відстані.

Еколого-геологічна роль атмосферних процесів

Зменшення прозорості атмосфери за рахунок появи в ній аерозольних частинок та твердого пилу впливає на розподіл сонячної радіації, збільшуючи альбедо або відбивну здатність. До такого ж результату призводять і різноманітні хімічні реакції, що викликають розкладання озону та генерацію «перламутрових» хмар, що складаються з водяної пари. Глобальна зміна відбивної здатності, як і зміни газового складу атмосфери, головним чином парникових газів, є причиною кліматичних змін.

Нерівномірне нагрівання, що викликає відмінності в атмосферному тиску над різними ділянками земної поверхні, призводить до атмосферної циркуляції, яка є характерною рисою тропосфери. При виникненні різниці тиску повітря спрямовується з областей підвищеного тиску область знижених тисків. Ці переміщення повітряних мас разом із вологістю та температурою визначають основні еколого-геологічні особливості атмосферних процесів.

Залежно від швидкості вітер виготовляє на земній поверхні різну геологічну роботу. При швидкості 10 м/с він хитає товсті гілки дерев, піднімає та переносить пил та дрібний пісок; зі швидкістю 20 м/с ламає гілки дерев, переносить пісок та гравій; зі швидкістю 30 м/с (буря) зриває дахи будинків, вириває з коренем дерева, ламає стовпи, пересуває гальку та переносить дрібний щебінь, а ураганний вітер зі швидкістю 40 м/с руйнує будинки, ламає та зносить стовпи ліній електропередач, вириває з коренем великі дерева.

Великий негативний екологічний вплив з катастрофічними наслідками надають шквальні бурі та смерчі (торнадо) - атмосферні вихори, що виникають у теплу пору року на потужних атмосферних фронтах, що мають швидкість до 100 м/с. Шквали - це горизонтальні вихори з ураганною швидкістю вітру (до 60-80 м/с). Вони часто супроводжуються потужними зливами та грозами тривалістю від кількох хвилин до півгодини. Шквали охоплюють території завширшки до 50 км і проходять відстань 200-250 км. Шквальна буря в Москві та Підмосков'ї у 1998 р. пошкодила дахи багатьох будинків та повалила дерева.

Смерчі, звані в Північній Америці торнадо, є потужними воронкоподібними атмосферними вихорами, часто пов'язані з хмарами. Це стовпи повітря, що звужуються в середині, діаметром від декількох десятків до сотень метрів. Смерч має вигляд лійки, дуже схожої на хобот слона, що спускається з хмар або піднімається з поверхні землі. Маючи сильну розрідженість і високу швидкість обертання, смерч проходить шлях до декількох сотень кілометрів, втягуючи в себе пил, воду з водойм і різні предмети. Потужні смерчі супроводжуються грозою, дощем і мають велику руйнівну силу.

Смерчі рідко виникають у приполярних чи екваторіальних областях, де постійно холодно чи спекотно. Мало смерчі у відкритому океані. Смерчі відбуваються в Європі, Японії, Австралії, США, а в Росії особливо часті в Центрально-Чорноземному районі, Московській, Ярославській, Нижегородській та Іванівській областях.

Смерчі піднімають та переміщають автомобілі, будинки, вагони, мости. Особливо руйнівні смерчі (торнадо) спостерігаються у США. Щорічно відзначається від 450 до 1500 торнадо із кількістю жертв у середньому близько 100 осіб. Смерчі відносяться до швидкодіючих катастрофічних атмосферних процесів. Вони формуються лише за 20-30 хв, а час існування 30 хв. Тому передбачити час та місце виникнення смерчів практично неможливо.

Іншими руйнівними, але діючими тривалий час атмосферними вихорами є циклони. Вони утворюються через перепад тиску, який у певних умовах сприяє виникненню кругового руху повітряних потоків. Атмосферні вихори зароджуються навколо потужних висхідних потоків вологого теплого повітря і з великою швидкістю обертаються за годинниковою стрілкою у південній півкулі та проти годинникової – у північній. Циклони на відміну смерчів зароджуються над океанами і справляють свої руйнівні дії над материками. Основними руйнівними факторами є сильні вітри, інтенсивні опади у вигляді снігопаду, злив, граду та нагінні повені. Вітри зі швидкостями 19 – 30 м/с утворюють бурю, 30 – 35 м/с – шторм, а понад 35 м/с – ураган.

Тропічні циклони - урагани і тайфуни - мають середню ширину кілька сотень кілометрів. Швидкість вітру всередині циклону досягає ураганної сили. Тривають тропічні циклони від кількох днів за кілька тижнів, переміщаючись зі швидкістю від 50 до 200 км/год. Циклони середніх широт мають більший діаметр. Поперечні розміри становлять від тисячі до кількох тисяч кілометрів, швидкість вітру штормова. Рухають у північній півкулі із заходу та супроводжуються градом та снігопадом, що мають катастрофічний характер. За кількістю жертв і шкоди циклони і пов'язані з ними урагани і тайфуни є найбільшими після повеней атмосферними стихійними явищами. У густонаселених районах Азії кількість жертв під час ураганів вимірюється тисячами. У 1991 р. у Бангладеш під час урагану, що викликав утворення морських хвиль заввишки 6 м, загинуло 125 тис. осіб. Великих збитків завдають тайфуни території США. При цьому гинуть десятки та сотні людей. У Західній Європі урагани завдають меншої шкоди.

Катастрофічним атмосферним явищем вважаються грози. Вони виникають при дуже швидкому піднятті вологого теплого повітря. На межі тропічного та субтропічного поясів грози відбуваються по 90-100 днів на рік, у помірному поясі по 10-30 днів. У нашій країні найбільше гроз трапляється на Північному Кавказі.

Грози зазвичай продовжуються менше години. Особливу небезпеку становлять інтенсивні зливи, градобиття, удари блискавки, пориви вітру, вертикальні потоки повітря. Небезпека градобиття визначається розмірами градин. На Північному Кавказі маса градин одного разу досягала 0,5 кг, а Індії відзначені градини масою 7 кг. Найбільш містобезпечні райони в нашій країні знаходяться на Північному Кавказі. У липні 1992 р. місто пошкодило в аеропорту «Мінеральні Води» 18 літаків.

До небезпечних атмосферних явищ належать блискавки. Вони вбивають людей, худобу, викликають пожежі, ушкоджують електромережу. Від гроз та їх наслідків щорічно у світі гине близько 10 000 людей. Причому в деяких районах Африки, у Франції та США кількість жертв від блискавок більша, ніж від інших стихійних явищ. Щорічні економічні збитки від гроз у США становлять не менше 700 млн. доларів.

Посухи характерні для пустельних, степових та лісостепових регіонів. Нестача атмосферних опадів спричиняє сушіння ґрунту, зниження рівня підземних вод та у водоймах до повного їх висихання. Дефіцит вологи призводить до загибелі рослинності та посівів. Особливо сильними бувають посухи в Африці, на Близькому та Середньому Сході, у Центральній Азії та на півдні Північної Америки.

Посухи змінюють умови життєдіяльності людини, надають несприятливий вплив на природне середовище через такі процеси, як осолонення ґрунту, суховії, курні бурі, ерозія ґрунту та лісові пожежі. Особливо сильними пожежі бувають під час посухи у тайгових районах, тропічних та субтропічних лісах та саванах.

Посухи відносяться до короткочасних процесів, які продовжуються протягом одного сезону. У тому випадку, коли посухи тривають понад два сезони, виникає загроза голоду та масової смертності. Зазвичай дія посухи поширюється на територію однієї чи кількох країн. Особливо часто тривалі посухи із трагічними наслідками виникають у Сахельській області Африки.

Великих збитків завдають такі атмосферні явища, як снігопади, короткочасні зливи та тривалі затяжні дощі. Снігопади викликають масові сходи лавин у горах, а швидке танення снігу, що випав, і зливи тривалі дощі призводять до повеней. Величезна маса води, що падає на земну поверхню, особливо в безлісих районах, викликає сильну ерозію ґрунтового покриву. Відбувається інтенсивне зростання яружно-балкових систем. Повені виникають у результаті великих паводків у період рясного випадання атмосферних опадів або повені після раптово потепління або весняного танення снігу і, отже, за походженням відносяться до атмосферних явищ (вони розглядаються в розділі, присвяченій екологічній ролі гідросфери).

Антропогенні зміни атмосфери

В даний час є безліч різних джерел антропогенного характеру, що викликають забруднення атмосфери і призводять до серйозних порушень екологічної рівноваги. За своїми масштабами найбільший вплив на атмосферу мають два джерела: транспорт і промисловість. У середньому частку транспорту припадає близько 60% загальної кількості атмосферних забруднень, промисловості - 15, теплової енергетики - 15, технологій знищення побутових і промислових відходів - 10%.

Транспорт залежно від використовуваного палива та типів окислювачів викидає в атмосферу оксиди азоту, сірки, оксиди та діоксиди вуглецю, свинцю та його сполук, сажу, бензопірен (речовина з групи поліциклічних ароматичних вуглеводнів, яка є сильним канцерогеном, що викликає рак шкіри).

Промисловість викидає в атмосферу сірчистий газ, оксиди та діоксиди вуглецю, вуглеводні, аміак, сірководень, сірчану кислоту, фенол, хлор, фтор та інші сполуки та хімічні речовини. Але чільне становище серед викидів (до 85%) займає пил.

Внаслідок забруднення змінюється прозорість атмосфери, у ній виникають аерозолі, смог та кислотні дощі.

Аерозолі являють собою дисперсні системи, що складаються з частинок твердого тіла або крапель рідини, що знаходяться у зваженому стані в газовому середовищі. Розмір частинок дисперсної фази зазвичай становить 10 -3 -10 -7 см. Залежно від складу дисперсної фази аерозолі поділяють на дві групи. До однієї відносять аерозолі, що складаються з твердих частинок, диспергованих в газоподібному середовищі, до другої - аерозолі, що є сумішшю газоподібних та рідких фаз. Перші називають димами, а другі – туманами. У процесі їхнього утворення велику роль грають центри конденсації. Як ядер конденсації виступають вулканічний попіл, космічний пил, продукти промислових викидів, різні бактерії та ін. Число можливих джерел ядер концентрації безперервно зростає. Так, наприклад, при знищенні вогнем сухої трави на площі 4000 м2 утворюється в середньому 11*1022 ядер аерозолів.

Аерозолі почали утворюватися з моменту виникнення нашої планети та впливали на природні умови. Однак їх кількість і дії, врівноважуючись із загальним кругообігом речовин у природі, не викликали глибоких екологічних змін. Антропогенні фактори їх утворення зрушили цю рівновагу у бік значних біосферних навантажень. Особливо сильно ця особливість проявляється з тих пір, як людство стало використовувати аерозолі, що спеціально створюються, як у вигляді отруйних речовин, так і для захисту рослин.

Найбільш небезпечними для рослинного покриву є аерозолі сірчистого газу, фтористого водню та азоту. При зіткненні з вологою поверхнею листа вони утворюють кислоти, що згубно впливають на живі. Кислотні тумани потрапляють разом із повітрям, що вдихається, в дихальні органи тварин і людини, агресивно впливають на слизові оболонки. Одні їх розкладають живу тканину, а радіоактивні аерозолі викликають онкологічні захворювання. Серед радіоактивних ізотопів особливу небезпеку становить Sг 90 як своєї канцерогенностью, а й аналог кальцію, замещающий їх у кістках організмів, викликаючи їх розкладання.

Під час ядерних вибухів у атмосфері утворюються радіоактивні аерозольні хмари. Дрібні частки радіусом 1 - 10 мкм потрапляють у верхні шари тропосфери, а й у стратосферу, де вони здатні перебувати тривалий час. Аерозольні хмари утворюються також під час роботи реакторів промислових установок, що виробляють ядерне паливо, а також внаслідок аварій на АЕС.

Смог являє собою суміш аерозолів з рідкою та твердою дисперсними фазами, які утворюють туманну завісу над промисловими районами та великими містами.

Розрізняють три види смогу: крижаний, вологий та сухий. Крижаний зміг названий аляскінським. Це поєднання газоподібних забруднювачів з додаванням пилуватих частинок та кристаликів льоду, які виникають при замерзанні крапель туману та пари опалювальних систем.

Вологий зміг, чи зміг лондонського типу, іноді називається зимовим. Він є сумішшю газоподібних забруднювачів (в основному сірчистого ангідриту), пилуватих частинок і крапель туману. Метеорологічною передумовою для появи зимового смогу є безвітряна погода, коли шар теплого повітря розташовується над приземним шаром холодного повітря (нижче 700 м). У цьому відсутня як горизонтальний, а й вертикальний обмін. Забруднюючі речовини, які зазвичай розсіюються у високих шарах, в даному випадку накопичуються в приземному шарі.

Сухий зміг виникає влітку, і його нерідко називають смогом лос-анджелеського типу. Він є сумішшю озону, чадного газу, оксидів азоту і пар кислот. Утворюється такий зміг в результаті розкладання забруднюючих речовин сонячною радіацією, особливо її ультрафіолетовою частиною. Метеорологічною передумовою є атмосферна інверсія, що виражається у появі шару холодного повітря над теплим. Зазвичай гази, що піднімаються теплими потоками повітря, і тверді частинки потім розсіюються у верхніх холодних шарах, але в даному випадку накопичуються в інверсійному шарі. У процесі фотолізу діоксиди азоту, утворені при згорянні палива в двигунах автомобілів, розпадаються:

NO 2 → NO + О

Потім відбувається синтез озону:

O + O 2 + M → O 3 + M

NO + О → NO 2

Процеси фотодисоціації супроводжуються жовто-зеленим свіченням.

Крім того, відбуваються реакції за типом: SO 3 + Н 2 0 -> Н 2 SO 4 т. Е. Утворюється сильна сірчана кислота.

Зі зміною метеорологічних умов (поява вітру або зміна вологості) холодне повітря розсіюється та змогло зникати.

Наявність канцерогенних речовин у смозі призводить до порушення дихання, подразнення слизових оболонок, розладу кровообігу, виникнення астматичних задух та нерідко до смерті. Особливо небезпечний зміг малолітніх дітей.

Кислотні дощі являють собою атмосферні опади, підкислені розчиненими в них промисловими викидами оксидів сірки, азоту та пари хлорної кислоти та хлору. У процесі спалювання вугілля, і газу більша частина сірки, що знаходиться в ній, як у вигляді оксиду, так у сполуках із залізом, зокрема в піриті, пірротині, халькопіриті і т. д., перетворюється на оксид сірки, який разом з діоксидом вуглецю викидається в атмосферу. При з'єднанні атмосферного азоту і технічних викидів з киснем утворюються різні оксиди азоту, причому обсяг оксидів азоту, що утворилися, залежить від температури горіння. Основна маса оксидів азоту виникає під час експлуатації автотранспорту та тепловозів, а менша частина припадає на енергетику та промислові підприємства. Оксиди сірки та азоту – головні кислотоутворювачі. При реакції з атмосферним киснем і парами води, що знаходяться в ньому, утворюються сірчана і азотна кислоти.

Відомо, що лужнокислотний баланс середовища визначається величиною рН. Нейтральне середовище має величину рН, що дорівнює 7, кисла - 0, а лужна - 14. У сучасну епоху величина рН дощової води становить 5,6, хоча в недавньому минулому вона була нейтральною. Зменшення значення рН на одиницю відповідає десятикратному підвищенню кислотності і, отже, нині практично випадають дощі з підвищеною кислотністю. Максимальна кислотність дощів, зареєстрована у Європі, становила 4-3,5 рН. При цьому треба врахувати, що величина рН, що дорівнює 4-4,5, є смертельною для більшості риб.

Кислотні дощі надають агресивний вплив на рослинний покрив Землі, на промислові та житлові будівлі та сприяють суттєвому прискоренню вивітрювання оголених гірських порід. Підвищення кислотності перешкоджає саморегуляції нейтралізації ґрунтів, у яких розчиняються поживні речовини. У свою чергу, це призводить до різкого зниження врожайності та викликає деградацію рослинного покриву. Кислотність грунтів сприяє звільненню перебувають у зв'язаному стані важких рослин, які поступово засвоюються рослинами, викликаючи у них серйозні пошкодження тканин і проникаючи в харчові ланцюжки людини.

Зміна лужно-кислотного потенціалу морських вод, особливо в мілководдях, веде до припинення розмноження багатьох безхребетних, викликає загибель риб і порушує екологічну рівновагу в океанах.

Внаслідок кислотних дощів під загрозою загибелі знаходяться лісові масиви Західної Європи, Прибалтики, Карелії, Уралу, Сибіру та Канади.

Товщина атмосфери – приблизно 120 км від поверхні Землі. Сумарна маса повітря в атмосфері - (5,1-5,3) 10 18 кг. З них маса сухого повітря становить 5,1352 ±0,0003 10 18 кг, загальна маса водяної пари в середньому дорівнює 1,27 10 16 кг.

Тропопауза

Перехідний шар від тропосфери до стратосфери, шар атмосфери, де припиняється зниження температури з висотою.

Стратосфера

Шар атмосфери, що знаходиться на висоті від 11 до 50 км. Характерна незначна зміна температури у шарі 11-25 км (нижній шар стратосфери) та підвищення її у шарі 25-40 км від −56,5 до 0,8° (верхній шар стратосфери чи область інверсії). Досягши на висоті близько 40 км. значення близько 273 К (майже 0 °C), температура залишається постійною до висоти близько 55 км. Ця область постійної температури називається стратопаузою і є межею між стратосферою та мезосферою.

Стратопауза

Прикордонний шар атмосфери між стратосферою та мезосферою. У вертикальному розподілі температури є максимум (близько 0 °C).

Мезосфера

Атмосфера Землі

Кордон атмосфери Землі

Термосфера

Верхня межа – близько 800 км. Температура зростає до висот 200-300 км, де досягає значень близько 1500 К, після чого залишається майже постійною до висот. Під дією ультрафіолетової та рентгенівської сонячної радіації та космічного випромінювання відбувається іонізація повітря («полярні сяйва») – основні області іоносфери лежать усередині термосфери. На висотах понад 300 км. переважає атомарний кисень. Верхня межа термосфери значною мірою визначається поточною активністю Сонця. У періоди низької активності – наприклад, у 2008-2009 рр. – відбувається помітне зменшення розмірів цього шару.

Термопауза

Область атмосфери прилегла зверху до термосфери. У цій галузі поглинання сонячного випромінювання незначне, і температура фактично не змінюється з висотою.

Екзосфера (сфера розсіювання)

До висоти 100 км атмосфера є гомогенною добре перемішаною сумішшю газів. У більш високих шарах розподіл газів за висотою залежить від їх молекулярних мас, концентрація більш важких газів зменшується швидше при віддаленні поверхні Землі. Внаслідок зменшення щільності газів температура знижується від 0 °C у стратосфері до −110 °C у мезосфері. Однак кінетична енергія окремих частинок на висотах 200-250 км. відповідає температурі ~150 °C. Понад 200 км спостерігаються значні флуктуації температури та щільності газів у часі та просторі.

На висоті близько 2000-3500 км екзосфера поступово переходить у так званий ближньокосмічний вакуум, що заповнений сильно розрідженими частинками міжпланетного газу, головним чином атомами водню. Але цей газ є лише частиною міжпланетної речовини. Іншу частину складають пилоподібні частинки кометного та метеорного походження. Окрім надзвичайно розріджених пилоподібних частинок, у цей простір проникає електромагнітна та корпускулярна радіація сонячного та галактичного походження.

Перед тропосфери припадає близько 80 % маси атмосфери, частку стратосфери - близько 20 %; маса мезосфери - трохи більше 0,3 %, термосфери - менше 0,05 % від загальної маси атмосфери. На підставі електричних властивостей в атмосфері виділяють нейтросферу та іоносферу. В даний час вважають, що атмосфера тягнеться до висоти 2000-3000 км.

Залежно від складу газу в атмосфері виділяють гомосферуі гетеросферу. Гетеросфера- це область, де гравітація впливає поділ газів, оскільки їх перемішування такий висоті незначно. Звідси випливає змінний склад гетеросфери. Нижче лежить добре перемішана, однорідна за складом частина атмосфери, звана гомосфера . Кордон між цими шарами називається турбопаузою, вона лежить на висоті близько 120 км.

Фізіологічні та інші властивості атмосфери

Вже на висоті 5 км над рівнем моря у нетренованої людини з'являється кисневе голодування і без адаптації працездатність значно знижується. Тут кінчається фізіологічна зона атмосфери. Подих людини стає неможливим на висоті 9 км, хоча приблизно до 115 км атмосфера містить кисень.

Атмосфера забезпечує нас необхідним для дихання киснем. Однак унаслідок падіння загального тиску атмосфери у міру підйому на висоту відповідно знижується і парціальний тиск кисню.

У розріджених шарах повітря поширення звуку виявляється неможливим. До висот 60-90 км ще можливе використання опору та підйомної сили повітря для керованого аеродинамічного польоту. Але починаючи з висот 100-130 км знайомі кожному льотчику поняття числа М і звукового бар'єру втрачають свій сенс: там проходить умовна лінія Кармана, за якою починається область суто балістичного польоту, керувати яким можна лише використовуючи реактивні сили.

На висотах вище 100 км атмосфера позбавлена ​​й іншої чудової властивості - здатності поглинати, проводити та передавати теплову енергію шляхом конвекції (тобто за допомогою перемішування повітря). Це означає, що різні елементи обладнання, апаратури орбітальної космічної станції не зможуть охолоджуватися зовні так, як це робиться зазвичай літаком, - за допомогою повітряних струменів і повітряних радіаторів. На такій висоті, як і загалом у космосі, єдиним способом передачі тепла є теплове випромінювання.

Історія освіти атмосфери

Згідно з найпоширенішою теорією, атмосфера Землі в часі перебувала в трьох різних складах. Спочатку вона складалася з легких газів (водню та гелію), захоплених із міжпланетного простору. Це так звана первинна атмосфера(близько чотирьох мільярдів років тому). На наступному етапі активна вулканічна діяльність призвела до насичення атмосфери та іншими газами, крім водню (вуглекислим газом, аміаком, водяною парою). Так утворилася вторинна атмосфера(близько трьох мільярдів років до наших днів). Ця атмосфера була відновною. Далі процес утворення атмосфери визначався такими факторами:

  • витік легких газів (водню та гелію) у міжпланетний простір;
  • хімічні реакції, що відбуваються в атмосфері під впливом ультрафіолетового випромінювання, грозових розрядів та деяких інших факторів.

Поступово ці фактори призвели до утворення третинної атмосфери, Що характеризується набагато меншим вмістом водню і набагато більшим - азоту та вуглекислого газу (утворені в результаті хімічних реакцій з аміаку та вуглеводнів).

Азот

Утворення великої кількості азоту N 2 обумовлено окисленням аміачно-водневої атмосфери молекулярним киснем О 2 , який став надходити з поверхні планети в результаті фотосинтезу, починаючи з 3 млрд. років тому. Також азот N 2 виділяється в атмосферу в результаті денітрифікації нітратів та інших азотовмісних сполук. Азот окислюється озоном до NO у верхніх шарах атмосфери.

Азот N 2 вступає у реакції лише у специфічних умовах (наприклад, при розряді блискавки). Окислення молекулярного азоту озоном при електричних розрядах у малих кількостях використовується у промисловому виготовленні азотних добрив. Окислювати його з малими енерговитратами та переводити в біологічно активну форму можуть ціанобактерії (синьо-зелені водорості) та бульбочкові бактерії, що формують різобіальний симбіоз з бобовими рослинами, т.з. сидератами.

Кисень

Склад атмосфери почав радикально змінюватися з появою на Землі живих організмів, внаслідок фотосинтезу, що супроводжується виділенням кисню та поглинанням вуглекислого газу. Спочатку кисень витрачався на окислення відновлених сполук - аміаку, вуглеводнів, закисної форми заліза, що містилася в океанах та ін. Після закінчення даного етапу вміст кисню в атмосфері почав зростати. Поступово утворилася сучасна атмосфера, що має окислювальні властивості. Оскільки це викликало серйозні та різкі зміни багатьох процесів, що протікають в атмосфері, літосфері та біосфері, ця подія отримала назву Киснева катастрофа.

Шляхетні гази

Забруднення атмосфери

Останнім часом на еволюцію атмосфери стала впливати людина. Результатом його діяльності стало постійне значне зростання вмісту в атмосфері вуглекислого газу через спалювання вуглеводневого палива, накопиченого в попередніх геологічних епохах. Величезні кількості СО 2 споживаються при фотосинтезі та поглинаються світовим океаном. Цей газ надходить в атмосферу завдяки розкладанню карбонатних гірських порід та органічних речовин рослинного та тваринного походження, а також внаслідок вулканізму та виробничої діяльності людини. За останні 100 років вміст СО 2 в атмосфері зріс на 10%, причому основна частина (360 млрд тонн) надійшла від спалювання палива. Якщо темпи зростання спалювання палива збережуться, то протягом найближчих 200-300 років кількість СО 2 в атмосфері подвоїться і може призвести до глобальних змін клімату.

Спалювання палива - основне джерело та забруднюючих газів (СО , , SO 2). Діоксид сірки окислюється киснем повітря до SO 3 у верхніх шарах атмосфери, який у свою чергу взаємодіє з парами води і аміаку, а сірчана кислота (Н 2 SO 4) і сульфат амонію ((NH 4) 2 SO 4), що утворюються при цьому, повертаються на поверхню Землі у вигляді т.з. кислотних дощів. Використання двигунів внутрішнього згоряння призводить до значного забруднення атмосфери оксидами азоту, вуглеводнями та сполуками свинцю (тетраетилсвинець Pb(CH 3 CH 2) 4)).

Аерозольне забруднення атмосфери зумовлене як природними причинами (виверження вулканів, курні бурі, винесення крапель морської води та пилку рослин та ін.), так і господарською діяльністю людини (видобуток руд та будівельних матеріалів, спалювання палива, виготовлення цементу тощо). Інтенсивне широкомасштабне винесення твердих частинок в атмосферу - одна з можливих причин змін клімату планети.

Див. також

  • Jacchia (модель атмосфери)

Примітки

Посилання

Література

  1. В. В. Парін, Ф. П. Космолінський, Б. А. Душков«Космічна біологія та медицина» (видання 2-ге, перероблене та доповнене), М.: «Освіта», 1975, 223 стор.
  2. Н. В. Гусакова"Хімія навколишнього середовища", Ростов-на-Дону: Фенікс, 2004, 192 з ISBN 5-222-05386-5
  3. Соколов В. А.Геохімія природних газів, М., 1971;
  4. Маківен М., Філіпс Л.Хімія атмосфери, М., 1978;
  5. Уорк К., Уорнер С.Забруднення повітря. Джерела та контроль, пров. з англ., М. 1980;
  6. Моніторинг фонового забруднення природного середовища. в. 1, Л., 1982.

Wikimedia Foundation. 2010 .

Дивитися що таке "Атмосфера Землі" в інших словниках:

    Атмосфера Землі- атмосфера Землі. Вертикальний розподіл температури та щільності. АТМОСФЕРА ЗЕМЛІ, повітряне середовище навколо Землі, що обертається разом із нею; маса близько 5,15´1015 т. Склад повітря (за обсягом) біля Землі: 78,1% азоту, 21% кисню,… … Ілюстрований енциклопедичний словник



Останні матеріали розділу:

Як правильно заповнити шкільний щоденник
Як правильно заповнити шкільний щоденник

Сенс читацького щоденника в тому, щоб людина змогла згадати, коли і які книги вона читала, який їх сюжет. Для дитини це може бути своєю...

Рівняння площини: загальне, через три точки, нормальне
Рівняння площини: загальне, через три точки, нормальне

Рівняння площини. Як скласти рівняння площини? Взаємне розташування площин. Просторова геометрія не набагато складніше...

Старший сержант Микола Сиротінін
Старший сержант Микола Сиротінін

5 травня 2016, 14:11 Микола Володимирович Сиротинін (7 березня 1921 року, Орел – 17 липня 1941 року, Кричев, Білоруська РСР) – старший сержант артилерії. У...