Зворотна теорема вієта приклади. Як вирішувати рівняння з теореми вієта з математики

У цій лекції ми познайомимося з цікавими співвідношеннями між корінням квадратного рівняння та його коефіцієнтами. Ці співвідношення вперше виявив французький математик Франсуа Вієт (1540-1603).

Наприклад, для рівняння Зx 2 - 8x - 6 = 0, не знаходячи його коріння, можна, скориставшись теоремою Вієта, відразу сказати, що сума коренів дорівнює , а добуток коренів дорівнює
т. е. - 2. А рівняння х 2 - 6х + 8 = 0 укладаємо: сума коренів дорівнює 6, добуток коренів дорівнює 8; між іншим, тут неважко здогадатися, чому дорівнює коріння: 4 і 2.
Доказ теореми Вієта. Коріння х 1 і х 2 квадратного рівняння ах 2 + bх + с = 0 перебувають за формулами

Де D = b 2 - 4ас - дискримінант рівняння. Склавши це коріння,
отримаємо


Тепер обчислимо твір коренів х 1 та х 2 Маємо

Друге співвідношення доведено:
Зауваження. Теорема Вієта справедлива і в тому випадку, коли квадратне рівняння має один корінь (тобто коли D = 0), просто в цьому випадку вважають, що рівняння має два однакові корені, до яких і застосовують зазначені вище співвідношення.
Особливо простий вид набувають доведених співвідношення для наведеного квадратного рівняння х 2 + рх + q = 0. У цьому випадку отримуємо:

x 1 = x 2 = -p, x 1 x 2 =q
тобто. сума коренів наведеного квадратного рівняння дорівнює другому коефіцієнту, взятому з протилежним знаком, а добуток коренів дорівнює вільному члену.
За допомогою теореми Вієта можна отримати й інші співвідношення між корінням та коефіцієнтами квадратного рівняння. Нехай, наприклад, х 1 і х 2 — коріння квадратного рівняння х 2 + рх + q = 0. Тоді

Однак основне призначення теореми Вієта не в тому, що вона виражає деякі співвідношення між корінням та коефіцієнтами квадратного рівняння. Набагато важливішим є те, що за допомогою теореми Вієта виводиться формула розкладання квадратного тричлена на множники, без якої ми надалі не обійдемося.


Доведення. Маємо


Приклад 1. Розкласти на множники квадратний тричлен Зх 2 – 10x + 3.
Рішення. Розв'язавши рівняння Зх 2 – 10x + 3 = 0, знайдемо коріння квадратного тричлена Зх 2 – 10x + 3: х 1 = 3, х2 = .
Скориставшись теоремою 2, отримаємо

Є сенс замість написати Зx – 1. Тоді остаточно отримаємо Зх 2 – 10x + 3 = (х – 3) (3х – 1).
Зауважимо, що заданий квадратний тричлен можна розкласти на множники і без застосування теореми 2, використовуючи спосіб угруповання:

Зх 2 - 10x + 3 = Зх 2 - 9х - х + 3 =
= Зх (х – 3) – (х – 3) = (х – 3) (Зx – 1).

Але, як бачите, при цьому способі успіх залежить від того, чи зуміємо знайти вдале угруповання чи ні, тоді як при першому способі успіх гарантований.
Приклад 1. Скоротити дріб

Рішення. З рівняння 2х 2 + 5х + 2 = 0 знаходимо х 1 = - 2,


З рівняння х2 - 4х - 12 = 0 знаходимо х 1 = 6, х 2 = -2. Тому
х 2 - 4х - 12 = (х - 6) (х - (- 2)) = (х - 6) (х + 2).
А тепер скоротимо заданий дріб:

Приклад 3. Розкласти на множники вирази:
а) x4 + 5x 2 +6; б) 2x+-3
Розв'язання. а) Введемо нову змінну у = х 2 . Це дозволить переписати заданий вираз у вигляді квадратного тричлена щодо змінної у, а саме у вигляді у 2 + b + 6.
Розв'язавши рівняння у 2 + bу + 6 = 0, знайдемо коріння квадратного тричлена у 2 + 5у + 6: у 1 = - 2, у 2 = -3. Тепер скористаємося теоремою 2; отримаємо

у 2 + 5у + 6 = (у + 2) (у + 3).
Залишилося згадати, що у = x 2 тобто повернення до заданого виразу. Отже,
x 4 + 5х 2 + 6 = (х 2 + 2) (х 2 + 3).
б) Введемо нову змінну у = . Це дозволить переписати заданий вираз у вигляді квадратного тричлена щодо змінної у, а саме у вигляді 2у 2 + у - 3. Розв'язавши рівняння
2у 2 + у - 3 = 0, знайдемо коріння квадратного тричлена 2у 2 + у - 3:
y 1 = 1, y 2 = . Далі, використовуючи теорему 2, отримаємо:

Залишилося згадати, що у = , тобто повернутися до заданого виразу. Отже,

На закінчення параграфа — деякі міркування, знову ж таки пов'язані з теоремою Вієта, а точніше, із зворотним твердженням:
якщо числа х 1 , х 2 такі, що х 1 + х 2 = - р, x 1 x 2 = q, то ці числа корені рівняння
За допомогою цього твердження можна вирішувати багато квадратних рівнянь усно, не користуючись громіздкими формулами коренів, а також складати квадратні рівняння із заданим корінням. Наведемо приклади.

1) х 2 - 11х + 24 = 0. Тут х 1 + х 2 = 11, х 1 х 2 = 24. Неважко здогадатися, що х 1 = 8, х 2 = 3.

2) х 2 + 11х + 30 = 0. Тут х 1 + х 2 = -11, х 1 х 2 = 30. Неважко здогадатися, що х 1 = -5, х 2 = -6.
Зверніть увагу: якщо вільний член рівняння - позитивне число, то обидва корені або позитивні, або негативні; це важливо враховувати при доборі коріння.

3) х 2 + х - 12 = 0. Тут х 1 + х 2 = -1, х 1 х 2 = -12. Легко здогадатися, що х 1 = 3, х2 = -4.
Зверніть увагу: якщо вільний член рівняння - від'ємне число, то коріння різне за знаком; це важливо враховувати при доборі коріння.

4) 5х 2 + 17x - 22 = 0. Неважко помітити, що х = 1 задовольняє рівняння, тобто. х 1 = 1 - корінь рівняння. Оскільки х 1 х 2 = -, а х 1 = 1, отримуємо, що х 2 = - .

5) х 2 - 293x + 2830 = 0. Тут х 1 + х 2 = 293, х 1 х 2 = 2830. Якщо звернути увагу, що 2830 = 283 . 10, а 293 = 283 + 10, стає ясно, що х 1 = 283, х 2 = 10 (а тепер уявіть, які обчислення довелося б виконати для вирішення цього квадратного рівняння за допомогою стандартних формул).

6) Складемо квадратне рівняння так, щоб його корінням служили числа х 1 = 8, х 2 = - 4. Зазвичай у таких випадках становлять наведене квадратне рівняння х 2 + рх + q = 0.
Маємо х 1 + х 2 = -р, тож 8 - 4 = -р, тобто р = -4. Далі, x 1 x 2 = q, тобто. 8«(-4) = q, звідки отримуємо q = -32. Отже, р = -4, q = -32, отже, квадратне рівняння, що шукається, має вигляд х 2 -4х-32 = 0.


Між корінням і коефіцієнтами квадратного рівняння, крім формул коренів, існують інші корисні співвідношення, які задаються теорема Вієта. У цій статті ми дамо формулювання та доказ теореми Вієта для квадратного рівняння. Далі розглянемо теорему, обернену до теореми Вієта. Після цього розберемо рішення найхарактерніших прикладів. Нарешті, запишемо формули Вієта, що задають зв'язок між дійсним корінням алгебраїчного рівнянняступеня n та його коефіцієнтами.

Навігація на сторінці.

Теорема Вієта, формулювання, доказ

З формул коренів квадратного рівняння a x 2 + b x + c = 0 виду , де D = b 2 -4 a c, витікають співвідношення x 1 +x 2 = b / a x 1 x 2 = c/a. Ці результати затверджуються теорема Вієта:

Теорема.

Якщо x 1 і x 2 – коріння квадратного рівняння a x 2 + b x + c = 0 то сума коренів дорівнює відношенню коефіцієнтів b і a взятому з протилежним знаком, а добуток коренів дорівнює відношенню коефіцієнтів c і a тобто, .

Доведення.

Доказ теореми Вієта проведемо за наступною схемою: складемо суму і добуток коренів квадратного рівняння, використовуючи відомі формули коренів, після цього перетворимо отримані вирази, і переконаємося, що вони рівні −b/a та c/a відповідно.

Почнемо із суми коріння, складаємо її . Тепер наводимо дроби до спільного знаменника, маємо . У чисельнику отриманого дробу, після чого: . Нарешті, після 2 , отримуємо . Цим доведено перше співвідношення теореми Вієта для суми коренів квадратного рівняння. Переходимо до другого.

Складаємо добуток коренів квадратного рівняння: . Згідно з правилом множення дробів, останній твір можна записати як . Тепер виконуємо множення дужки на дужку в чисельнику, але швидше згорнути цей твір формулі різниці квадратів, так. Далі, згадавши, виконуємо наступний перехід. Оскільки дискримінанту квадратного рівняння відповідає формула D=b 2 −4·a·c , то останній дріб замість D можна підставити b 2 −4·a·c , отримуємо . Після розкриття дужок та приведення подібних доданків приходимо до дробу, а його скорочення на 4·a дає . Цим доведено друге співвідношення теореми Вієта для коріння.

Якщо опустити пояснення, то доказ теореми Вієта набуде лаконічного вигляду:
,
.

Залишається лише помітити, що з рівному нулю дискримінанту квадратне рівняння має один корінь. Однак, якщо вважати, що рівняння в цьому випадку має два однакові корені, то рівність з теореми Вієта також має місце. Дійсно, при D=0 корінь квадратного рівняння дорівнює , тоді і , а так як D=0 , тобто b 2 −4·a·c=0 , звідки b 2 =4·a·c , то .

На практиці найчастіше теорема Вієта використовується стосовно наведеного квадратного рівняння (зі старшим коефіцієнтом a, рівним 1) виду x 2 + p · x + q = 0. Іноді її і формулюють для квадратних рівнянь саме такого виду, що не обмежує спільності, тому що будь-яке квадратне рівняння можна замінити рівносильним рівнянням, виконавши розподіл його обох частин на відмінне від нуля число a. Наведемо відповідне формулювання теореми Вієта:

Теорема.

Сума коренів наведеного квадратного рівняння x 2 +p·x+q=0 дорівнює коефіцієнту при x , взятому з протилежним знаком, а добуток коренів – вільному члену, тобто x 1 +x 2 =−p , x 1 ·x 2 = q.

Теорема, зворотна теоремі Вієта

Друге формулювання теореми Вієта, наведене у попередньому пункті, вказує, що якщо x 1 і x 2 коріння наведеного квадратного рівняння x 2 +p·x+q=0 , то справедливі співвідношення x 1 +x 2 =−p , x 1 ·x 2 = q. З іншого боку, із записаних співвідношень x 1 +x 2 =−p , x 1 ·x 2 =q слід, що x 1 і x 2 є корінням квадратного рівняння x 2 +p·x+q=0 . Інакше кажучи, справедливе твердження, протилежне теоремі Вієта. Сформулюємо його як теореми, і доведемо її.

Теорема.

Якщо числа x 1 і x 2 такі, що x 1 + x 2 = -p і x 1 · x 2 = q, то x 1 і x 2 є корінням наведеного квадратного рівняння x 2 + p x + q = 0 .

Доведення.

Після заміни в рівнянні x 2 +p x + q = 0 коефіцієнтів p і q їх вираження через x 1 і x 2 воно перетворюється в рівносильне рівняння .

Підставимо в отримане рівняння замість x число x 1 маємо рівність x 1 2 −(x 1 +x 2)·x 1 +x 1 ·x 2 =0, яке за будь-яких x 1 і x 2 являє собою вірну числову рівність 0=0 , так як x 1 2 −(x 1 +x 2)·x 1 +x 1 ·x 2 = x 1 2 −x 1 2 −x 2 ·x 1 +x 1 ·x 2 =0. Отже, x 1 – корінь рівняння x 2 −(x 1 +x 2)·x+x 1 ·x 2 =0, Отже, x 1 – корінь і рівносильного йому рівняння x 2 +p·x+q=0 .

Якщо ж до рівняння x 2 −(x 1 +x 2)·x+x 1 ·x 2 =0підставити замість x число x 2 то отримаємо рівність x 2 2 −(x 1 +x 2)·x 2 +x 1 ·x 2 =0. Це вірна рівність, оскільки x 2 2 −(x 1 +x 2)·x 2 +x 1 ·x 2 = x 2 2 −x 1 ·x 2 −x 2 2 +x 1 ·x 2 =0. Отже, x 2 теж є коренем рівняння x 2 −(x 1 +x 2)·x+x 1 ·x 2 =0, Отже, і рівняння x 2 +p·x+q=0 .

У цьому завершено доказ теореми, зворотної теореме Вієта.

Приклади використання теореми Вієта

Настав час поговорити про практичне застосування теореми Вієта та оберненої їй теореми. У цьому вся пункті ми розберемо рішення кількох найбільш характерних прикладів.

Почнемо із застосування теореми, зворотної теореми Вієта. Її зручно застосовувати для перевірки, чи є дані два числа корінням заданого квадратного рівняння. При цьому обчислюється їх сума та різницю, після чого перевіряється справедливість співвідношень . Якщо виконуються обидва ці співвідношення, то з теореми, зворотної теореме Виета, робиться висновок, що ці числа є корінням рівняння. Якщо ж хоча б одне із співвідношень не виконується, то дані числа не є корінням квадратного рівняння. Такий підхід можна використовувати при вирішенні квадратних рівнянь для перевірки знайденого коріння.

приклад.

Яка з пар чисел 1) x 1 =−5 , x 2 =3 , чи 2) , чи 3) є парою коренів квадратного рівняння 4·x 2 −16·x+9=0 ?

Рішення.

Коефіцієнтами заданого квадратного рівняння 4·x 2 −16·x+9=0 є a=4 , b=−16 , c=9 . Відповідно до теореми Вієта сума коренів квадратного рівняння повинна дорівнювати −b/a , тобто, 16/4=4 , а добуток коренів має дорівнювати c/a , тобто, 9/4 .

Тепер обчислимо суму і добуток чисел у кожній із трьох заданих пар, і порівняємо їх із щойно отриманими значеннями.

У першому випадку маємо x1+x2=−5+3=−2. Отримане значення відмінно від 4 тому подальшу перевірку можна не здійснювати, а по теоремі, зворотній теоремі Вієта, відразу зробити висновок, що перша пара чисел не є парою коренів заданого квадратного рівняння.

Переходимо на другий випадок. Тут, тобто, перша умова виконана. Перевіряємо друге умова: , отримане значення від 9/4 . Отже, і друга пара чисел не є парою коренів квадратного рівняння.

Залишився останній випадок. Тут і . Обидві умови виконані, тому ці числа х 1 і х 2 є корінням заданого квадратного рівняння.

Відповідь:

Теорему, зворотну теоремі Вієта, практично можна використовуватиме підбору коренів квадратного рівняння. Зазвичай підбирають цілі коріння наведених квадратних рівнянь із цілими коефіцієнтами, оскільки в інших випадках це зробити досить складно. У цьому користуються тим фактом, що й сума двох чисел дорівнює другому коефіцієнту квадратного рівняння, взятому зі знаком мінус, а добуток цих чисел дорівнює вільному члену, ці цифри є корінням даного квадратного рівняння. Розберемося з цим на прикладі.

Візьмемо квадратне рівняння x 2 −5·x+6=0. Щоб числа x 1 і x 2 були корінням цього рівняння, повинні виконуватися дві рівності x 1 + x 2 = 5 і x 1 x 2 = 6 . Залишається підібрати такі цифри. В даному випадку це зробити досить просто: такими числами є 2 і 3, тому що 2+3=5 та 2·3=6. Таким чином, 2 та 3 – коріння даного квадратного рівняння.

Теорему, обернену до теореми Вієта, особливо зручно застосовувати для знаходження другого кореня наведеного квадратного рівняння, коли вже відомий або очевидний один з коренів. У цьому випадку другий корінь знаходиться з будь-якого із співвідношень.

Для прикладу візьмемо квадратне рівняння 512 x 2 −509 x 3=0 . Тут легко помітити, що одиниця є коренем рівняння, оскільки сума коефіцієнтів цього квадратного рівняння дорівнює нулю. Отже, х 1 =1. Другий корінь x 2 можна знайти, наприклад, із співвідношення x 1 x 2 = c/a . Маємо 1 · x 2 = -3/512, звідки x 2 = -3/512. Так ми визначили обидва корені квадратного рівняння: 1 та −3/512 .

Зрозуміло, що добір коренів доцільний лише найпростіших випадках. В інших випадках для пошуку коренів можна застосувати формули коренів квадратного рівняння через дискримінант.

Ще одне практичне застосування теореми, зворотної теоремі Вієта, полягає у складанні квадратних рівнянь за заданим корінням x 1 і x 2 . Для цього достатньо обчислити суму коренів, яка дає коефіцієнт при x з протилежним знаком наведеного квадратного рівняння, та добуток коренів, що дає вільний член.

приклад.

Напишіть квадратне рівняння, корінням якого є числа −11 та 23 .

Рішення.

Позначимо x 1 =−11 та x 2 =23 . Обчислюємо суму і добуток даних чисел: x 1 + x 2 = 12 і x 1 · x 2 = -253. Отже, зазначені числа є корінням наведеного квадратного рівняння з другим коефіцієнтом -12 і вільним членом -253. Тобто, x 2 −12·x−253=0 – шукане рівняння.

Відповідь:

x 2 −12·x−253=0 .

Теорема Вієта дуже часто використовується при вирішенні завдань, пов'язаних із знаками коренів квадратних рівнянь. Як пов'язана теорема Вієта зі знаками коренів наведеного квадратного рівняння x 2 +p·x+q=0 ? Наведемо два відповідні твердження:

  • Якщо вільний член q – позитивне число і якщо квадратне рівняння має дійсне коріння, або вони обидва позитивні, або обидва негативні.
  • Якщо ж вільний член q – негативне число і якщо квадратне рівняння має дійсне коріння, їх знаки різні, інакше кажучи, один корінь позитивний, а інший - негативний.

Ці твердження випливають із формули x 1 ·x 2 =q , і навіть правил множення позитивних, негативних чисел і з різними знаками. Розглянемо приклади їх застосування.

приклад.

R він позитивний. За формулою дискримінанта знаходимо D=(r+2) 2 −4·1·(r−1)= r 2 +4·r+4−4·r+4=r 2 +8 значення виразу r 2 +8 позитивно при будь-яких дійсних r , таким чином, D>0 при будь-яких дійсних r . Отже, вихідне квадратне рівняння має два корені за будь-яких дійсних значень параметра r .

Тепер з'ясуємо, коли коріння має різні знаки. Якщо знаки коренів різні, їх добуток негативно, а, по теореме Виета добуток коренів наведеного квадратного рівняння дорівнює вільному члену. Отже, нас цікавлять ті значення r , у яких вільний член r−1 негативний. Таким чином, щоб знайти значення r , що цікавлять нас, треба розв'язати лінійну нерівність r−1<0 , откуда находим r<1 .

Відповідь:

при r<1 .

Формули Вієта

Вище ми говорили про теорему Вієта для квадратного рівняння і розбирали затверджувані їй співвідношення. Але існують формули, що пов'язують дійсне коріння та коефіцієнти не тільки квадратних рівнянь, а й кубічних рівнянь, рівнянь четверного ступеня, і взагалі, алгебраїчних рівняньступеня n. Їх називають формулами Вієта.

Запишемо формули Вієта для рівняння алгебри ступеня n виду , при цьому вважатимемо, що воно має n дійсних коренів x 1 , x 2 , ..., x n (серед них можуть бути збігаються):

Отримати формули Вієта дозволяє теорема про розкладання багаточлена на лінійні множники, і навіть визначення рівних многочленів через рівність їх відповідних коефіцієнтів. Так многочлен та її розкладання на лінійні множники виду рівні. Розкривши дужки в останньому творі та прирівнявши відповідні коефіцієнти, отримаємо формули Вієта.

Зокрема, при n=2 маємо вже знайомі нам формули Вієта для квадратного рівняння .

Для кубічного рівняння формули Вієта мають вигляд

Залишається лише помітити, що у лівій частині формул Вієта знаходяться так звані елементарні симетричні багаточлени.

Список літератури.

  • Алгебра:навч. для 8 кл. загальноосвіт. установ/[Ю. Н. Макарічев, Н. Г. Міндюк, К. І. Нешков, С. Б. Суворова]; за ред. С. А. Теляковського. - 16-те вид. – М.: Просвітництво, 2008. – 271 с. : іл. - ISBN 978-5-09-019243-9.
  • Мордковіч А. Г.Алгебра. 8 клас. У 2 ч. ч. 1. Підручник для учнів загальноосвітніх установ / А. Г. Мордкович. - 11-те вид., стер. – К.: Мнемозіна, 2009. – 215 с.: іл. ISBN 978-5-346-01155-2.
  • Алгебрата початку математичного аналізу. 10 клас: навч. для загальноосвіт. установ: базовий та профіл. рівні/[Ю. М. Колягін, М. В. Ткачова, Н. Є. Федорова, М. І. Шабунін]; за ред. А. Б. Жижченко. - 3-тє вид. – К.: Просвітництво, 2010. – 368 с. : іл. - ISBN 978-5-09-022771-1.

У восьмому класі, учні знайомляться з квадратними рівняннями та способами їх вирішення. При цьому, як показує досвід, більшість учнів під час вирішення повних квадратних рівнянь застосовують лише один спосіб – формулу коренів квадратного рівняння. Для учнів, які добре володіють навичками усного рахунку, цей спосіб явно нераціональний. Вирішувати квадратні рівняння учням доводиться часто й у старших класах, а там витрачати час на розрахунок дискримінанта просто шкода. На мій погляд, при вивченні квадратних рівнянь, слід приділити більше часу та уваги застосуванню теореми Вієта (за програмою А.Г. Мордковича Алгебра-8, вивчення теми “Теорема Вієта. Розкладання квадратного тричлена на лінійні множники” заплановано лише дві години).

У більшості підручників алгебри ця теорема формулюється для наведеного квадратного рівняння і свідчить, що якщо рівняння має коріння і , то їм виконуються рівності , .Потім формулюється твердження, протилежне до теореми Вієта, і пропонується ряд прикладів для опрацювання цієї теми.

Візьмемо конкретні приклади та простежимо на них логіку рішення за допомогою теореми Вієта.

Приклад 1. Розв'язати рівняння.

Допустимо, це рівняння має коріння, а саме, і . Тоді за теоремою Вієта одночасно повинні виконуватись рівності

Звернімо увагу, що добуток коренів – позитивне число. Отже, коріння рівняння одного знака. Оскільки сума коренів також є позитивним числом, робимо висновок, що обидва корені рівняння – позитивні. Повернемося знову до твору коріння. Припустимо, що коріння рівняння – цілі позитивні числа. Тоді отримати правильну першу рівність можна лише двома способами (з точністю до порядку множників): або . Перевіримо для запропонованих пар чисел здійсненність другого затвердження теореми Вієта: . Таким чином, числа 2 і 3 задовольняють обом рівностям, а значить, і є корінням заданого рівняння.

Відповідь: 2; 3.

Виділимо основні етапи міркувань при вирішенні наведеного квадратного рівняння за допомогою теореми Вієта:

записати затвердження теореми Вієта (*)
  • визначити знаки коренів рівняння. різні знаки При цьому, якщо сума коренів – позитивна, то більший за модулем корінь є позитивним числом, а якщо сума коренів менша за нуль, то більший за модулем корінь – негативне число);
  • підібрати пари цілих чисел, добуток яких дає правильну першу рівність у записі (*);
  • зі знайдених пар чисел вибрати ту пару, яка при підстановці на другу рівність у записі (*) дасть правильну рівність;
  • вказати у відповіді знайдене коріння рівняння.

Наведемо приклади.

Приклад 2. Розв'яжіть рівняння .

Рішення.

Нехай і – коріння заданого рівняння. Тоді за теоремою Вієта Зауважимо, що твір – позитивний, а сума – негативне число. Отже, обидва корені – негативні числа. Підбираємо пари множників, що дають добуток 10 (-1 та -10; -2 та -5). Друга пара чисел у сумі дає -7. Значить, числа -2 та -5 є корінням даного рівняння.

Відповідь: -2; -5.

Приклад 3. Розв'яжіть рівняння .

Рішення.

Нехай і – коріння заданого рівняння. Тоді за теоремою Вієта Зауважимо, що твір – негативний. Значить, коріння – різного знака. Сума коренів також негативне число. Значить, більший за модулем корінь негативний. Підбираємо пари множників, що дають добуток -10 (1 та -10; 2 та -5). Друга пара чисел у сумі дає -3. Значить, числа 2 та -5 є корінням даного рівняння.

Відповідь: 2; -5.

Зауважимо, що теорему Вієта в принципі можна сформулювати і для повного квадратного рівняння: якщо квадратне рівняння має коріння і , то їм виконуються рівності , .Однак застосування цієї теореми досить проблематичне, тому що в повному квадратному рівнянні принаймні один з коренів (за їх наявності, звичайно) є дрібним числом. А працювати з підбором дробів довго та важко. Але все ж таки вихід є.

Розглянемо повне квадратне рівняння . Помножимо обидві частини рівняння перший коефіцієнт аі запишемо рівняння у вигляді . Введемо нову змінну і отримаємо наведене квадратне рівняння , коріння якого і (за їх наявності) може бути знайдено за теоремою Вієта. Тоді коріння вихідного рівняння буде. Звернемо увагу, що скласти допоміжне наведене рівняння дуже просто: другий коефіцієнт зберігається, а третій коефіцієнт дорівнює добутку ас. При певному навичці учні одразу складають допоміжне рівняння, знаходять його коріння за теоремою Вієта та вказують коріння заданого повного рівняння. Наведемо приклади.

Приклад 4. Розв'яжіть рівняння .

Складемо допоміжне рівняння і за теоремою Вієта знайдемо його коріння. Отже, коріння вихідного рівняння .

Відповідь: .

Приклад 5. Розв'яжіть рівняння .

Допоміжне рівняння має вигляд. По теоремі Вієта його коріння. Знаходимо коріння вихідного рівняння .

Відповідь: .

І ще один випадок, коли застосування теореми Вієта дозволяє усно знайти коріння повного квадратного рівняння. Неважко довести, що число 1 є коренем рівняння тоді і тільки тоді, коли. Другий корінь рівняння знаходиться за теоремою Вієта і дорівнює. Ще одне твердження: щоб число –1 було коренем рівняння необхідно і достатньо, щоб. Тоді другий корінь рівняння за теоремою Вієта дорівнює. Аналогічні твердження можна сформулювати і наведеного квадратного рівняння.

Приклад 6. Розв'яжіть рівняння .

Зауважимо, що сума коефіцієнтів рівняння дорівнює нулю. Значить, коріння рівняння .

Відповідь: .

Приклад 7. Розв'яжіть рівняння .

Для коефіцієнтів цього рівняння виконується властивість (Дійсно, 1-(-999)+(-1000)=0). Значить, коріння рівняння .

Відповідь: ..

Приклади застосування теореми Вієта

Завдання 1. Розв'яжіть наведене квадратне рівняння за допомогою теореми Вієта.

1. 6. 11. 16.
2. 7. 12. 17.
3. 8. 13. 18.
4. 9. 14. 19.
5. 10. 15. 20.

Завдання 2. Розв'яжіть повне квадратне рівняння за допомогою переходу до допоміжного квадратного рівняння.

1. 6. 11. 16.
2. 7. 12. 17.
3. 8. 13. 18.
4. 9. 14. 19.
5. 10. 15. 20.

Завдання 3. Розв'яжіть квадратне рівняння за допомогою властивості .

Теорема Вієта часто використовується для перевірки вже знайденого коріння. Якщо ви знайшли коріння, то зможете за допомогою формул \(\begin(cases)x_1+x_2=-p \\x_1 \cdot x_2=q\end(cases)\) обчислити значення \(p\) і \(q\ ). І якщо вони вийдуть такими ж, як у вихідному рівнянні – значить коріння знайдено правильно.

Наприклад, нехай ми, використовуючи , розв'язали рівняння \(x^2+x-56=0\) і отримали коріння: \(x_1=7\), \(x_2=-8\). Перевіримо, чи ми не помилилися в процесі рішення. У разі \(p=1\), а \(q=-56\). За теоремою Вієта маємо:

\(\begin(cases)x_1+x_2=-p \\x_1 \cdot x_2=q\end(cases)\) \(\Leftrightarrow\) \(\begin(cases)7+(-8)=-1 \\7\cdot(-8)=-56\end(cases)\) \(\Leftrightarrow\) \(\begin(cases)-1=-1\\-56=-56\end(cases)\ )

Обидва твердження зійшлися, отже, ми вирішили правильно рівняння.

Таку перевірку можна проводити усно. Вона займе 5 секунд та убереже вас від дурних помилок.

Зворотна теорема Вієта

Якщо \(\begin(cases)x_1+x_2=-p \\x_1 \cdot x_2=q\end(cases)\), то \(x_1\) та \(x_2\) – коріння квадратного рівняння \(x^ 2+px+q=0).

Або просто: якщо у вас є рівняння виду \(x^2+px+q=0\), то вирішивши систему \(\begin(cases)x_1+x_2=-p \\x_1 \cdot x_2=q\ end(cases)\) ви знайдете його коріння.

Завдяки цій теоремі можна швидко підібрати коріння квадратного рівняння, особливо якщо це коріння – . Це вміння важливе, оскільки економить багато часу.


приклад . Розв'язати рівняння (x^2-5x+6=0).

Рішення : Скориставшись зворотною теоремою Вієта, отримуємо, що коріння задовольняє умовам: \(\begin(cases)x_1+x_2=5 \\x_1 \cdot x_2=6\end(cases)\).
Подивіться друге рівняння системи \(x_1 \cdot x_2=6\). На які два можна розкласти число (6)? На (2) і (3), (6) і (1) або (-2) і (-3), і (-6) і (- 1). А яку пару вибрати підкаже перше рівняння системи: \(x_1+x_2=5\). Походять \(2\) і \(3\), оскільки \(2+3=5\).
Відповідь : \(x_1=2\), \(x_2=3\).


Приклади . Використовуючи теорему, обернену до теореми Вієта, знайдіть корені квадратного рівняння:
а) (x^2-15x+14=0); б) (x^2+3x-4=0); в) (x^2+9x+20=0); г) (x^2-88x+780=0).

Рішення :
а) \(x^2-15x+14=0\) – на які множники розкладається (14\)? \(2\) та \(7\), \(-2\) і \(-7\), \(-1\) та \(-14\), \(1\) та \(14\) ). Які пари чисел у сумі дадуть (15)? Відповідь: (1) і (14).

б) \(x^2+3x-4=0\) – на які множники розкладається \(-4\)? \(-2\) та \(2\), \(4\) і \(-1\), \(1\) та \(-4\). Які пари чисел у сумі дадуть (-3)? Відповідь: \(1\) та \(-4\).

в) \(x^2+9x+20=0\) – на які множники розкладається (20\)? \(4\) та \(5\), \(-4\) і \(-5\), \(2\) та \(10\), \(-2\) та \(-10\) ), \(-20\) та \(-1\), \(20\) та \(1\). Які пари чисел у сумі дадуть (-9)? Відповідь: \(-4\) та \(-5\).

г) \(x^2-88x+780=0\) - на які множники розкладається (780\)? (390) і (2). Вони в сумі дадуть (88)? Ні. Ще які множники є у (780)? \(78\) та \(10\). Вони в сумі дадуть (88)? Так. Відповідь: (78) і (10).

Необов'язково останнє доданок розкладати на всі можливі множники (як в останньому прикладі). Можна відразу перевіряти, чи дає їх сума (p).


Важливо!Теорема Вієта і зворотна теорема працюють тільки з , тобто таким, у якого коефіцієнт перед (x 2) дорівнює одиниці. Якщо ж у нас спочатку дано не наведене рівняння, ми можемо зробити його наведеним, просто розділивши на коефіцієнт, що стоїть перед \(x^2\).

Наприклад, Нехай дано рівняння \ (2x ^ 2-4x-6 = 0 \) і ми хочемо скористатися однією з теорем Вієта. Але можемо, оскільки коефіцієнт перед \(x^2\) дорівнює \(2\). Позбавимося його, розділивши все рівняння на (2).

\(2x^2-4x-6=0\) \(|:2\)
\(x^2-2x-3=0\)

Готово. Тепер можна скористатися обома теоремами.

Відповіді на запитання, що часто ставляться

Запитання: По теоремі Вієта можна вирішити будь-які?
Відповідь: На жаль немає. Якщо рівняння не цілі чи рівняння взагалі немає коренів, теорема Вієта допоможе. В цьому випадку треба користуватися дискримінантом . На щастя, 80% рівнянь у шкільному курсі з математики мають цілі рішення.

Для початку сформулюємо саму теорему: Нехай ми маємо наведене квадратне рівняння виду x^2+b*x + c = 0. Припустимо, це рівняння містить коріння x1 і x2. Тоді за теоремою такі твердження допустимі:

1) Сума коренів x1 і x2 дорівнюватиме негативному значенню коефіцієнта b.

2) Твір цього самого коріння даватиме нам коефіцієнт c .

Але що таке наведене рівняння

Наведеним квадратним рівнянням називається квадратне рівняння, коефіцієнт старшого ступеня, який дорівнює одиниці, тобто. це рівняння виду x^2 + b * x + c = 0. (А рівняння a * x ^ 2 + b * x + c = 0 ненаведене). Іншими словами, щоб привести рівняння до наведеного виду, ми повинні розділити це рівняння на коефіцієнт при старшому ступені (a). Завдання привести дане рівняння до наведеного вигляду:

3*x^2 12*x + 18 = 0;

−4*x^2 + 32*x + 16 = 0;

1,5 * x ^ 2 + 7,5 * x + 3 = 0; 2*x^2 + 7*x − 11 = 0.

Поділимо кожне рівняння на коефіцієнт старшого ступеня, отримаємо:

X^2 4*x + 6 = 0; X^2 8*x − 4 = 0; X^2 + 5*x + 2 = 0;

X^2 + 3,5*x − 5,5 = 0.

Як можна побачити з прикладів, навіть рівняння, що містять дроби, можна привести до наведеного вигляду.

Використання теореми Вієта

X^2 5*x + 6 = 0 ⇒ x1 + x2 = − (−5) = 5; x1 * x2 = 6;

одержуємо коріння: x1 = 2; x2 = 3;

X^2 + 6*x + 8 = 0 ⇒ x1 + x2 = −6; x1 * x2 = 8;

в результаті одержуємо коріння: x1 = -2; x2 = -4;

X^2 + 5*x + 4 = 0 ⇒ x1 + x2 = −5; x1 * x2 = 4;

одержуємо коріння: x1 = −1; x2 = -4.

Значення теореми Вієта

Теорема Вієта дозволяє вирішити будь-яке квадратне наведене рівняння практично за секунди. На перший погляд це здається досить складним завданням, але після 5-10 рівнянь, можна навчитися бачити коріння відразу.

З наведених прикладів, і користуючись теоремою, видно як можна значно спростити розв'язання квадратних рівнянь, адже використовуючи цю теорему, можна вирішити квадратне рівняння практично без складних розрахунків і обчислення дискримінанта, а як відомо чим менше розрахунків, тим складніше припуститися помилки, що важливо.

У всіх прикладах ми використовували це правило, спираючись на два важливі припущення:

Наведене рівняння, тобто. коефіцієнт при старшому ступені дорівнює одиниці (ця умова легко уникнути. Можна використовувати ненаведений вид рівняння, тоді будуть допустимі наступні твердження x1+x2=-b/a; x1*x2=c/a, але зазвичай складніше вирішувати:))

Коли рівняння матиме два різні корені. Ми припускаємо, що нерівність вірна і дискримінант строго більше за нуль.

Тому ми можемо скласти загальний алгоритм рішення з теореми Вієта.

Загальний алгоритм рішення з теореми Вієта

Наводимо квадратне рівняння до виду, якщо рівняння дано нам у ненаведеному вигляді. Коли коефіцієнти у квадратному рівнянні, яке раніше ми представили як наведене, вийшли дробовими (не десятковими), то тут слід вирішувати наше рівняння через дискримінант.

Також трапляються випадки коли повернення до початкового рівняння дозволяє нам працювати зі “зручними” числами.



Останні матеріали розділу:

Презентація на тему уралу Презентація на тему уралу
Презентація на тему уралу Презентація на тему уралу

Слайд 2 Історія Стародавніми мешканцями Уралу були башкири, удмурти, комі-перм'яки, ханти (остяки), мансі (у минулому вогули), місцеві татари. Їх...

Презентація на тему
Презентація на тему "ми за зож" Добрі слова – це коріння

Слайд 2 Пройшла війна, пройшла жнива, Але біль волає до людей. Давайте, люди, ніколи Про це не забудемо.

Проект «Казку разом вигадуємо, уяву розвиваємо
Проект «Казку разом вигадуємо, уяву розвиваємо

учні 3 "А" класу Нілов Володимир, Сухарєв Олексій, Гревцева Аліна, Новіков АртемДіти самі складали та оформляли свої казки.