Відношення логарифмів з однаковою основою. Урок «Перехід до нової основи логарифму

Розглянемо приклади логарифмічних рівнянь.

Приклад 1. Розв'язати рівняння

Для вирішення використовуємо спосіб потенціювання. Нерівності >0 і >0 визначатимуть область допустимих значень рівняння. Нерівність >0 справедливо за будь-яких значеннях х, оскільки а 5х>0 лише за позитивних значеннях. Значить ОДЗ рівняння - безліч чисел від нуля до плюс нескінченності. Рівняння рівносильне квадратному рівнянню. Коріння цього рівняння — числа 2 і 3, оскільки добуток цих чисел дорівнює 6, а сума цих чисел дорівнює 5 протилежному значенню коефіцієнта b? Обидва ці числа лежать у проміжку, отже, вони є коріння цього рівняння. Зауважимо, що ми з легкістю вирішили це рівняння.

Приклад 2. Розв'язати рівняння

(логарифм виразу десять ікс мінус дев'ять на підставі три дорівнює логарифму ікс на підставі одна третя)

Це рівняння відрізняється від попереднього тим, що логарифми мають різні підстави. І розглянутий метод розв'язання рівняння тут використовувати вже не можна, хоча можна знайти область допустимих значень та спробувати вирішити рівняння функціонально-графічним методом. Нерівності >0 та x>0 визначають область допустимих значень рівняння, отже. Розглянемо графічну ілюстрацію цього рівняння. Для цього побудуємо за точками графік функції та. Ми можемо стверджувати, що у цього рівняння є єдиний корінь, він позитивний, лежить на інтервалі від 1 до 2. Точне значення кореня дати неможливо.

Звичайно, це рівняння не єдине, що містить логарифми з різними підставами. Вирішити такі рівняння можна лише за допомогою переходу до нової основи логарифму. Труднощі, пов'язані з логарифмами різних підстав, можуть зустрітися і в інших типах завдань. Наприклад, при порівнянні чисел і.

Помічником у вирішенні таких завдань є теорема

Теорема: Якщо a, b, c - позитивні числа, причому а і з відмінні від 1, то має місце рівність

Ця формула називається - формула переходу до нової основи)

Таким чином, з і більше. Оскільки за формулою переходу до нової основи дорівнює і дорівнює

Доведемо теорему про перехід до нової основи логарифму.

Для доказу введемо позначення = m, =n, =k(логарифм числа бе за основою а дорівнює ем, логарифм числа бе по основі цэ дорівнює ен, логарифм числа а з основи ц равенка). число a є з ступенем k. Так то підставимо її значення при зведенні ступеня в ступінь показники ступенів перемножуються, отримаємо, що =, але отже = якщо підстави ступеня рівні, то рівні і показники даного ступеня =. Значить = повернемося до зворотної заміни: (логарифм числа бе на підставі а дорівнює відношенню логарифму числа бе на підставі цек логарифму числа а на підставі це)

Розглянемо для цієї теореми два наслідки.

Перше слідство. Нехай у цій теоремі хочемо перейти до основи b. Тоді

(логарифм числа бе на підставі бе поділене на логарифм числа а на основу бе)

дорівнює одиниці, то дорівнює

Значить, якщо aі bпозитивні та відмінні від 1 числа, то справедлива рівність

Наслідок 2. Якщо a та b - позитивні числа, причому ане рівне одиниці число, то для будь-якого числа m, не рівного нулю, справедлива рівність

логарифм bна підставі адорівнює логарифму bу ступені mна підставі aу ступені m.

Доведемо цю рівність справа наліво. Перейдемо у виразі (логарифм числа бе в ступеню ем на підставі а в ступеню ем) до логарифму з основою а.За якістю логарифму показник ступеня підлогарифмічного виразу можна винести вперед - перед логарифмом. =1. Отримаємо. (Дроб, у чисельнику ем помножене на логарифм числа бе на підставі а в знаменнику ем) Число m не дорівнює нулю за умовою, значить, отриманий дріб можна скоротити на m. Отримаємо. Що і потрібно було довести.

Отже, для переходу до нової основи логарифму використовуються три формули

Приклад 2. Розв'язати рівняння

(логарифм виразу десять ікс мінус дев'ять на підставі три дорівнює логарифму ікс на підставі одна третя)

Область допустимих значень ми виявили у цього рівняння раніше. Приведемо до нової основи 3. Для цього запишемо до цього логарифму у вигляді дробу. У чисельнику буде логарифм х з основи три, у знаменнику буде логарифм однієї третьої з основи три. дорівнює мінус одному, тоді права частина рівняння дорівнюватиме мінус

Перенесемо в ліву частину рівняння та запишемо як. За властивістю, сума логарифмів дорівнює логарифму твору, значить (логарифм виразу десять ікс мінус дев'ять на підставі три плюс логарифм ікс на основі три)можна записати як.(логарифм твору десять ікс мінус дев'ять та ікс на підставі три) частини рівняння,

а в правій частині - нуль запишемо як, тому що три в нульовому ступені є один.

Методом потенціювання отримаємо квадратне рівняння =0. За якістю коефіцієнтів а+b+c=0 коріння рівняння дорівнюють 1 і 0,1.

Але в області визначення лежить лише один корінь. Це число одне.

Приклад 3. Обчислити. (три в ступені чотири, помножене на логарифм двох на підставі три плюс логарифм кореня з двох на підставі п'ять помножене на логарифм двадцяти п'яти на підставі чотири)

Спочатку розглянемо ступінь числа три. Якщо ступеня множаться, то виконується дія зведення ступеня в ступінь, таким чином, ступінь числа три можна записати як три ступеня в четвертому ступені. Логарифми у творі з різною основою, зручніше — логарифм із основою чотири привести до основи, пов'язаної з п'ятьма. Тому замінимо на тотожно рівне йому вираз. За формулою переходу до нової основи.

За основною логарифмічною тотожністю (а в ступені логарифм числа бе на підставі а дорівнює числу бе)

замість отримаємо У виразі виділимо квадрат основи та підлогарифмічного виразу. Отримаємо. За формулою переходу до нової основи, вона записана праворуч від рішення, отримаємо замість тільки. Квадратний корінь із двох запишемо як два в ступені одна друга і за якістю логарифму винесемо показник ступеня перед логарифмом. Отримаємо вираз. Таким чином, вираз, що обчислюється, набуде вигляду…

При цьому це 16, а добуток одно одному, значить значення виразу дорівнює 16,5.

Приклад 4. Обчислити, якщо lg2 = a, lg3= b

Для обчислення скористаємося властивостями логарифму та формулами переходу до нової основи.

18 представимо у вигляді твору шести та трьох. Логарифм твору дорівнює сумі логарифмів-множників, тобто де дорівнює 1. Так як нам відомі десяткові логарифми, то перейдемо від логарифму з основою 6 до десяткового логарифму, отримаємо дріб у чисельнику якої (десятковий логарифм трьох) а в знаменнику (десятковий) ). При цьому можна вже замінити на b.Розкладемо шість на множники два та три. Отриманий твір запишемо у вигляді суми логарифмів lg2 та lg 3. Замінимо їх відповідно на aі b. Вираз набуде вигляду: . Якщо цей вислів перетворити на дріт шляхом приведення до спільного знаменника, то відповідь вийде

Для успішного виконання завдань, пов'язаних з переходом до нової основи логарифму, необхідно знати формули переходу до нової основи логарифму

  1. , де a,b,c-позитивні числа, a, c
  2. , де a,b-позитивні числа, a, b
  3. , де a,b-позитивні числа a, m

З розвитком суспільства, ускладнення виробництва розвивалася і математика. Рух від простого до складного. Від звичайного обліку шляхом складання і віднімання, за її багаторазовому повторенні, дійшли поняття множення і поділу. Скорочення операції, що багаторазово повторюється, множення стало поняттям зведення в ступінь. Перші таблиці залежності чисел від основи та числа зведення у ступінь були складені ще у VIII столітті індійським математиком Варасена. З них можна відраховувати час виникнення логарифмів.

Історичний нарис

Відродження Європи у XVI столітті стимулювало та розвиток механіки. Т потрібний великий обсяг обчислення, пов'язаних з множенням та розподілом багатозначних чисел. Стародавні таблиці надали велику послугу. Вони дозволяли замінювати складні операції більш прості – додавання і віднімання. Великим кроком уперед стала робота математика Міхаеля Штіфеля, опублікована в 1544, в якій він реалізував ідею багатьох математиків. Що дозволило використовувати таблиці не тільки для ступенів у вигляді простих чисел, але і для раціональних довільних.

В 1614 шотландець Джон Непер, розвиваючи ці ідеї, вперше ввів новий термін «логарифм числа». Були складені нові складні таблиці для розрахунку логарифмів синусів та косінусів, а також тангенсів. Це дуже скоротило працю астрономів.

Стали з'являтися нові таблиці, які успішно використовувалися вченими упродовж трьох століть. Пройшло чимало часу, перш ніж нова операція в алгебрі набула свого закінченого вигляду. Було дано визначення логарифму, та його властивості були вивчені.

Лише у XX столітті з появою калькулятора та комп'ютера людство відмовилося від стародавніх таблиць, які успішно працювали протягом XIII століть.

Сьогодні ми називаємо логарифмом b на основі a число x, яке є ступенем числа а, щоб вийшло число b. Як формули це записується: x = log a(b).

Наприклад, log 3(9) дорівнюватиме 2. Це очевидно, якщо дотримуватися визначення. Якщо 3 звести до ступеня 2, то отримаємо 9.

Так, сформульоване визначення ставить лише одне обмеження, числа a та b повинні бути речовими.

Різновиди логарифмів

Класичне визначення називається речовий логарифм і є рішенням рівняння a x = b. Варіант a = 1 є прикордонним і не становить інтересу. Увага: 1 у будь-якому ступені дорівнює 1.

Речове значення логарифмувизначено тільки при підставі та аргументі більше 0, при цьому основа не повинна дорівнювати 1.

Особливе місце у галузі математикиграють логарифми, які будуть називатися залежно від величини їхньої основи:

Правила та обмеження

Основною властивістю логарифмів є правило: логарифм добутку дорівнює логарифмічній сумі. log abp = log a (b) + log a (p).

Як варіант цього твердження буде: log c(b/p) = log с(b) - log c(p), функція приватного дорівнює різниці функцій.

З попередніх двох правил легко видно, що: log a (b p) = p * log a (b).

Серед інших властивостей можна виділити:

Зауваження. Не треба робити поширену помилку - логарифм суми не дорівнює сумі логарифмів.

Багато століть операція пошуку логарифму була досить трудомістким завданням. Математики користувалися відомою формулою логарифмічної теорії розкладання на багаточлен:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*(( x^n)/n), де n - натуральне число більше 1, що визначає точність обчислення.

Логарифми з іншими підставами обчислювалися, використовуючи теорему про перехід від однієї підстави до іншої та властивості логарифму твору.

Так як цей спосіб дуже трудомісткий і при вирішенні практичних завданьважкоздійсненним, то використовували заздалегідь складені таблиці логарифмів, що значно прискорювало всю роботу.

У деяких випадках використовували спеціально складені графіки логарифмів, що давало меншу точність, але прискорювало пошук потрібного значення. Крива функції y = log a (x), побудована за кількома точками, дозволяє за допомогою звичайної лінійки знаходити значення функції у будь-якій іншій точці. Інженери тривалий час для цього використовували так званий міліметровий папір.

У XVII столітті з'явилися перші допоміжні аналогові обчислювальні умови, які до XIX століття набули закінченого вигляду. Найбільш вдалий пристрій отримав назву логарифмічна лінійка. При всій простоті пристрою, її поява значно прискорило процес усіх інженерних розрахунків, і це важко переоцінити. Нині вже мало хто знайомий із цим пристроєм.

Поява калькуляторів та комп'ютерів зробила безглуздим використання будь-яких інших пристроїв.

Рівняння та нерівності

Для розв'язання різних рівнянь та нерівностей з використанням логарифмів застосовуються такі формули:

  • Перехід від однієї основи до іншої: log a (b) = log c (b) / log c (a);
  • Як наслідок попереднього варіанта: log a (b) = 1 / log b (a).

Для вирішення нерівностей корисно знати:

  • Значення логарифму буде позитивним тільки в тому випадку, коли основа та аргумент одночасно більша або менша за одиницю; якщо хоча б одна умова порушена, значення логарифму буде негативним.
  • Якщо функція логарифму застосовується до правої та лівої частини нерівності, і основа логарифму більше одиниці, то знак нерівності зберігається; інакше він змінюється.

Приклади завдань

Розглянемо кілька варіантів застосування логарифмів та їх властивості. Приклади з розв'язуванням рівнянь:

Розглянемо варіант розміщення логарифму у ступені:

  • Завдання 3. Обчислити 25 log 5 (3). Рішення: в умовах задачі запис аналогічний наступній (5^2)^log5(3) або 5^(2 * log 5(3)). Запишемо по-іншому: 5^log 5(3*2), або квадрат числа як аргумент функції можна записати як квадрат самої функції (5^log 5(3))^2. Використовуючи властивості логарифмів, цей вираз дорівнює 32. Відповідь: внаслідок обчислення отримуємо 9.

Практичне застосування

Будучи виключно математичним інструментом, здається далеким від реального життя, що логарифм несподівано набув великого значення для опису об'єктів реального світу. Важко знайти науку, де її не застосовують. Це повною мірою стосується не тільки природних, а й гуманітарних областей знань.

Логарифмічні залежності

Наведемо кілька прикладів числових залежностей:

Механіка та фізика

Історично механіка та фізика завжди розвивалися з використанням математичних методів дослідження та одночасно служили стимулом для розвитку математики, у тому числі логарифмів. Теорія більшості законів фізики написана мовою математики. Наведемо лише два приклади опису фізичних законів з використанням логарифму.

Вирішувати завдання розрахунку такої складної величини як швидкість ракети можна, застосовуючи формулу Ціолковського, яка започаткувала теорію освоєння космосу:

V = I * ln (M1/M2), де

  • V – кінцева швидкість літального апарату.
  • I – питомий імпульс двигуна.
  • M 1 - Початкова маса ракети.
  • M2 – кінцева маса.

Інший важливий приклад- це використання у формулі іншого великого вченого Макса Планка, яка служить для оцінки рівноважного стану термодинаміки.

S = k * ln (Ω), де

  • S – термодинамічна властивість.
  • k - Постійна Больцмана.
  • Ω – статистична вага різних станів.

Хімія

Менш очевидним буде використання формул у хімії, що містять відношення логарифмів. Наведемо також лише два приклади:

  • Рівняння Нернста, умова окислювально-відновного потенціалу середовища щодо активності речовин та константи рівноваги.
  • Розрахунок таких констант, як показник автопролізу та кислотність розчину теж не обходяться без нашої функції.

Психологія та біологія

І вже зовсім незрозуміло, до чого тут психологія. Виявляється, сила відчуття добре описується цією функцією як зворотне відношення до значення інтенсивності подразника до нижнього значення інтенсивності.

Після вищенаведених прикладів не дивує, що у біології широко використовується тема логарифмів. Для біологічних форм, відповідні логарифмічним спіралям, можна писати цілі томи.

Інші області

Здається, неможливе існування світу без зв'язку з цією функцією, і вона править усіма законами. Особливо коли закони природи пов'язані з геометричною прогресією. Варто звернутися до сайту МатПрофі, і таких прикладів знайдеться безліч у таких сферах діяльності:

Список може бути нескінченним. Освоївши основні закономірності цієї функції, можна поринути у світ нескінченної мудрості.

основними властивостями.

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

однакові підстави

Log6 4+log6 9.

Тепер трохи ускладнимо завдання.

Приклади вирішення логарифмів

Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x >

Завдання. Знайдіть значення виразу:

Перехід до нової основи

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Завдання. Знайдіть значення виразу:

Дивіться також:


Основні властивості логарифму

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Експонента дорівнює 2,718281828. Щоб запам'ятати експоненту, можете вивчити правило: експонента дорівнює 2,7 і двічі рік народження Льва Миколайовича Толстого.

Основні властивості логарифмів

Знаючи це правило знатимете і точне значення експоненти, і дату народження Льва Толстого.


Приклади на логарифми

Прологарифмувати вирази

приклад 1.
а). х=10ас^2 (а>0,с>0).

За властивостями 3,5 обчислюємо

2.

3.

4. де .



Приклад 2. Знайти х, якщо


Приклад 3. Нехай задано значення логарифмів

Обчислити log(x), якщо




Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: logax та logay. Тоді їх можна складати і віднімати, причому:

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Завдання. Знайдіть значення виразу: log2 48 − log2 3.

Підстави однакові, використовуємо формулу різниці:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Завдання. Знайдіть значення виразу: log3 135 − log3 5.

Знову підстави однакові, тому маємо:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті збудовано багато контрольних робіт. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x > 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму. Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log7 496.

Позбавимося ступеня в аргументі за першою формулою:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 24; 49 = 72. Маємо:

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником.

Формули логарифмів. Логарифми – приклади рішення.

Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log2 7. Оскільки log2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log5 16 · log2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log25 64 = log5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. logaa = 1 – це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. loga 1 = 0 це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a0 = 1 — це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

Дивіться також:

Логарифмом числа b на підставі a позначають вираз . Обчислити логарифм означає знайти такий ступінь x (), при якому виконується рівність

Основні властивості логарифму

Наведені властивості необхідно знати, оскільки, на їх основі вирішуються практично всі завдання та приклади пов'язані з логарифмами. Інші екзотичні властивості можна вивести шляхом математичних маніпуляцій з даними формулами

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

При обчисленнях формули суми та різниці логарифмів (3,4) зустрічаються досить часто. Інші дещо складні, але у ряді завдань є незамінними для спрощення складних виразів та обчислення їх значень.

Поширені випадки логарифмів

Одними з поширених логарифмів є такі в яких основа рівна десять, експоненті або двійці.
Логарифм на основі десять прийнято називати десятковим логарифмом і спрощено позначати lg(x).

Із запису видно, що основи запису не пишуть. Для прикладу

Натуральний логарифм – це логарифм, у якого за основу експонента (позначають ln(x)).

Експонента дорівнює 2,718281828. Щоб запам'ятати експоненту, можете вивчити правило: експонента дорівнює 2,7 і двічі рік народження Льва Миколайовича Толстого. Знаючи це правило знатимете і точне значення експоненти, і дату народження Льва Толстого.

І ще один важливий логарифм на основі два позначають

Похідна від логарифм функції дорівнює одиниці розділеної на змінну

Інтеграл чи первісна логарифма визначається залежністю

Наведеного матеріалу Вам достатньо, щоб вирішувати широкий клас завдань, пов'язаних з логарифмами та логарифмування. Для засвоєння матеріалу наведу лише кілька поширених прикладів зі шкільної програми та ВНЗ.

Приклади на логарифми

Прологарифмувати вирази

приклад 1.
а). х=10ас^2 (а>0,с>0).

За властивостями 3,5 обчислюємо

2.
За властивістю різниці логарифмів маємо

3.
Використовуючи властивості 3,5 знаходимо

4. де .

На вигляд складне вираження з використанням низки правил спрощується до вигляду

Знаходження значень логарифмів

Приклад 2. Знайти х, якщо

Рішення. Для обчислення застосуємо до останнього доданку 5 і 13 властивості

Підставляємо в запис і сумуємо

Оскільки основи рівні, то прирівнюємо вирази

Логарифми. Початковий рівень.

Нехай задано значення логарифмів

Обчислити log(x), якщо

Рішення: Прологарифмуємо змінну, щоб розписати логарифм через суму доданків


На цьому знайомство з логарифмами та їх властивостями лише починається. Вправляйтеся в обчисленнях, збагачуйте практичні навички - отримані знання скоро знадобляться для вирішення логарифмічних рівнянь. Вивчивши основні методи вирішення таких рівнянь, ми розширимо Ваші знання для іншої не менш важливої ​​теми — логарифмічні нерівності.

Основні властивості логарифмів

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: logax та logay. Тоді їх можна складати і віднімати, причому:

  1. logax + logay = loga (x · y);
  2. logax – logay = loga (x: y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Завдання. Знайдіть значення виразу: log6 4 + log6 9.

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log6 4 + log6 9 = log6 (4 · 9) = log6 36 = 2.

Завдання. Знайдіть значення виразу: log2 48 − log2 3.

Підстави однакові, використовуємо формулу різниці:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Завдання. Знайдіть значення виразу: log3 135 − log3 5.

Знову підстави однакові, тому маємо:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті збудовано багато контрольних робіт. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Тепер трохи ускладнимо завдання. Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x > 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму.

Як вирішувати логарифми

Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log7 496.

Позбавимося ступеня в аргументі за першою формулою:
log7 496 = 6 · log7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 24; 49 = 72. Маємо:

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником. Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log2 7. Оскільки log2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай даний логарифм logax. Тоді для будь-якого числа c такого, що c > 0 і c ≠ 1, правильна рівність:

Зокрема, якщо покласти c = x отримаємо:

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log5 16 · log2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

А тепер «перевернемо» другий логарифм:

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число n стає показником ступеня, що стоїть у аргументі. Число n може бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона і називається: .

Справді, що буде, якщо число b звести на такий ступінь, що число b у цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

Зауважимо, що log25 64 = log5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ 🙂

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. logaa = 1 – це. Запам'ятайте раз і назавжди: логарифм з будь-якої основи a від самої цієї основи дорівнює одиниці.
  2. loga 1 = 0 це. Підстава a може бути будь-якою, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a0 = 1 — це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.

Випливають із його визначення. І так логарифм числа bна підставі авизначається як показник ступеня, в який треба звести число a, щоб отримати число b(Логарифм існує тільки у позитивних чисел).

З цього формулювання випливає, що обчислення x=log a b, рівнозначне рішенню рівняння a x = b.Наприклад, log 2 8 = 3тому що 8 = 2 3 . Формулювання логарифму дає можливість довести, що якщо b=a з, то логарифм числа bна підставі aдорівнює з. Також ясно, що тема логарифмування тісно пов'язана з темою ступеня числа .

З логарифмами, як і з будь-якими числами, можна виконувати операції складання, відніманняі всіляко трансформувати. Але через те, що логарифми - це не зовсім ординарні числа, тут застосовні свої особливі правила, які називаються основними властивостями.

Складання та віднімання логарифмів.

Візьмемо два логарифми з однаковими підставами: log a xі log a y. Тоді зними можна виконувати операції складання та віднімання:

log a x + log a y = log a (x · y);

log a x - log a y = log a (x: y).

log a(x 1 . x 2 . x 3 ... x k) = log a x 1 + log a x 2 + log a x 3 + ... + log a x k.

З теореми логарифму приватногоможна отримати ще одну властивість логарифму. Загальновідомо, що log a 1= 0, отже,

log a 1 /b= log a 1 - log a b= - log a b.

А значить має місце рівність:

log a 1 / b = - log a b.

Логарифми двох взаємно зворотних чиселпо одному й тому підставі будуть різні друг від друга виключно знаком. Так:

Log 3 9 = - log 3 1/9; log 5 1/125 = -log 5 125.

Логарифми, як і будь-які числа, можна складати, віднімати та всіляко перетворювати. Але оскільки логарифми — це не зовсім звичайні числа, тут є свої правила, які називаються основними властивостями.

Ці правила обов'язково треба знати - без них не вирішується жодне серйозне логарифмічне завдання. До того ж їх зовсім небагато — все можна вивчити за один день. Отже, почнемо.

Додавання та віднімання логарифмів

Розглянемо два логарифми з однаковими підставами: log a xта log a y. Тоді їх можна складати і віднімати, причому:

  1. log a x+ log a y= log a (x · y);
  2. log a x− log a y= log a (x : y).

Отже, сума логарифмів дорівнює логарифму твору, а різниця - приватного логарифму. Зверніть увагу: ключовий момент тут однакові підстави. Якщо підстави різні, ці правила не працюють!

Ці формули допоможуть обчислити логарифмічний вираз навіть тоді, коли окремі його частини не рахуються (див. урок «Що таке логарифм»). Погляньте на приклади і переконайтеся:

Log 6 4 + Log 6 9.

Оскільки підстави у логарифмів однакові, використовуємо формулу суми:
log 6 4 + log 6 9 = log 6 (4 · 9) = log 6 36 = 2.

Завдання. Знайдіть значення виразу: log 2 48 − log 2 3.

Підстави однакові, використовуємо формулу різниці:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Завдання. Знайдіть значення виразу: log 3 135 − log 3 5.

Знову підстави однакові, тому маємо:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Як бачите, вихідні вирази складені з поганих логарифмів, які окремо не вважаються. Але після перетворень виходять цілком нормальні числа. На цьому факті збудовано багато контрольних робіт. Так що контрольні — подібні висловлювання на повному серйозі (іноді практично без змін) пропонуються на ЄДІ.

Винесення показника ступеня з логарифму

Тепер трохи ускладнимо завдання. Що, якщо у підставі чи аргументі логарифма стоїть ступінь? Тоді показник цього ступеня можна винести за знак логарифму за такими правилами:

Неважко помітити, що останнє правило слідує їх перших двох. Але краще його все ж таки пам'ятати — у деяких випадках це значно скоротить обсяг обчислень.

Зрозуміло, всі ці правила мають сенс за дотримання ОДЗ логарифму: a > 0, a ≠ 1, x> 0. І ще: вчитеся застосовувати всі формули як зліва направо, а й навпаки, тобто. можна вносити числа, що стоять перед знаком логарифму, до самого логарифму. Саме це найчастіше й потрібне.

Завдання. Знайдіть значення виразу: log 7 49 6 .

Позбавимося ступеня в аргументі за першою формулою:
log 7 49 6 = 6 · log 7 49 = 6 · 2 = 12

Завдання. Знайдіть значення виразу:

[Підпис до малюнка]

Зауважимо, що у знаменнику стоїть логарифм, основа та аргумент якого є точними ступенями: 16 = 2 4 ; 49 = 7 2 . Маємо:

[Підпис до малюнка]

Думаю, до останнього прикладу потрібні пояснення. Куди зникли логарифми? До останнього моменту ми працюємо лише зі знаменником. Представили підставу і аргумент логарифму, що там стоїть, у вигляді ступенів і винесли показники — отримали «триповерховий» дріб.

Тепер подивимося на основний дріб. У чисельнику та знаменнику стоїть те саме число: log 2 7. Оскільки log 2 7 ≠ 0, можемо скоротити дріб — у знаменнику залишиться 2/4. За правилами арифметики, четвірку можна перенести в чисельник, що було зроблено. В результаті вийшла відповідь: 2.

Перехід до нової основи

Говорячи про правила складання та віднімання логарифмів, я спеціально підкреслював, що вони працюють лише за однакових підстав. А що, коли підстави різні? Що, якщо вони не є точними ступенями того самого числа?

На допомогу приходять формули переходу до нової основи. Сформулюємо їх як теореми:

Нехай дано логарифм log a x. Тоді для будь-якого числа cтакого, що c> 0 та c≠ 1, вірна рівність:

[Підпис до малюнка]

Зокрема, якщо покласти c = x, Отримаємо:

[Підпис до малюнка]

З другої формули випливає, що можна міняти місцями основу та аргумент логарифму, але при цьому весь вислів «перевертається», тобто. логарифм опиняється у знаменнику.

Ці формули рідко зустрічається у звичайних числових виразах. Оцінити, наскільки вони зручні, можна лише при розв'язанні логарифмічних рівнянь та нерівностей.

Втім, існують завдання, які взагалі не вирішуються інакше як переходом до нової основи. Розглянемо пару таких:

Завдання. Знайдіть значення виразу: log 5 16 · log 2 25.

Зауважимо, що в аргументах обох логарифмів стоять точні ступені. Винесемо показники: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

А тепер «перевернемо» другий логарифм:

[Підпис до малюнка]

Оскільки від перестановки множників твір не змінюється, ми спокійно перемножили четвірку та двійку, а потім розібралися з логарифмами.

Завдання. Знайдіть значення виразу: log 9 100 · lg 3.

Підстава та аргумент першого логарифму — точні ступені. Запишемо це і позбудемося показників:

[Підпис до малюнка]

Тепер позбудемося десяткового логарифму, перейшовши до нової основи:

[Підпис до малюнка]

Основне логарифмічне тотожність

Часто в процесі рішення потрібно представити число як логарифм на задану основу. У цьому випадку нам допоможуть формули:

У першому випадку число nстає показником ступеня, що стоїть у аргументі. Число nможе бути абсолютно будь-яким, адже це просто значення логарифму.

Друга формула – це фактично перефразоване визначення. Вона так і називається: основна логарифмічна тотожність.

Справді, що буде, якщо число bзвести в такий ступінь, що число bу цій мірі дає число a? Правильно: вийде це саме число a. Уважно прочитайте цей абзац ще раз — багато хто на ньому «зависає».

Подібно до формул переходу до нової основи, основна логарифмічна тотожність іноді буває єдино можливим рішенням.

Завдання. Знайдіть значення виразу:

[Підпис до малюнка]

Зауважимо, що log 25 64 = log 5 8 — просто винесли квадрат із підстави та аргументу логарифму. Враховуючи правила множення ступенів з однаковою основою, отримуємо:

[Підпис до малюнка]

Якщо хтось не в курсі, це було справжнє завдання з ЄДІ:)

Логарифмічна одиниця та логарифмічний нуль

Насамкінець наведу дві тотожності, які складно назвати властивостями — швидше, це наслідки з визначення логарифму. Вони постійно зустрічаються у завданнях і, що дивно, створюють проблеми навіть для «просунутих» учнів.

  1. log a a= 1 – це логарифмічна одиниця. Запам'ятайте раз і назавжди: логарифм з будь-якої основи aвід цього підстави дорівнює одиниці.
  2. log a 1 = 0 – це логарифмічний нуль. підстава aможе бути будь-яким, але якщо в аргументі стоїть одиниця — логарифм дорівнює нулю! Тому що a 0 = 1 - це прямий наслідок визначення.

Ось і всі властивості. Обов'язково потренуйтеся застосовувати їх на практиці! Завантажте шпаргалку на початку уроку, роздрукуйте її і вирішуйте завдання.



Останні матеріали розділу:

Дати та події великої вітчизняної війни
Дати та події великої вітчизняної війни

О 4-й годині ранку 22 червня 1941 року війська фашистської Німеччини (5,5 млн осіб) перейшли кордони Радянського Союзу, німецькі літаки (5 тис) почали...

Все, що ви повинні знати про радіацію Джерела радіації та одиниці її виміру
Все, що ви повинні знати про радіацію Джерела радіації та одиниці її виміру

5. Дози випромінювання та одиниці виміру Дія іонізуючих випромінювань є складним процесом. Ефект опромінення залежить від величини...

Мізантропія, або Що робити, якщо я ненавиджу людей?
Мізантропія, або Що робити, якщо я ненавиджу людей?

Шкідливі поради: Як стати мізантропом і всіх радісно ненавидіти Ті, хто запевняє, що людей треба любити незалежно від обставин або...