Пошук власних чисел онлайн. Власні вектори та власні значення лінійного оператора

З матрицею А якщо знайдеться таке число l, що АХ = lХ.

У цьому число l називають власним значеннямоператора (матриці А), що відповідає вектору Х.

Інакше кажучи, власний вектор - це вектор, який під впливом лінійного оператора перетворюється на колінеарний вектор, тобто. просто множиться на кілька. На відміну від нього, невласні вектори перетворюються складніше.

Запишемо визначення власного вектора як системи рівнянь:

Перенесемо всі складові в ліву частину:

Останню систему можна записати в матричній формі таким чином:

(А - lЕ) Х = О

Отримана система завжди має нульове рішення Х = О. Такі системи, у яких усі вільні члени дорівнюють нулю, називають однорідними. Якщо матриця такої системи – квадратна, і її визначник не дорівнює нулю, то за формулами Крамера ми завжди отримаємо єдине рішення – нульове. Можна довести, що система має ненульові рішення і тоді, коли визначник цієї матриці дорівнює нулю, тобто.

|А - lЕ| = = 0

Це рівняння з невідомим l називають характеристичним рівнянням (характеристичним багаточленом) матриці А (лінійного оператора).

Можна довести, що характеристичний багаточлен лінійного оператора залежить від вибору базису.

Наприклад, знайдемо власні значення та власні вектори лінійного оператора, заданого матрицею А = .

І тому складемо характеристичне рівняння |А - lЕ| = = (1 - l) 2 - 36 = 1 - 2l + l 2 - 36 = l 2 - 2l - 35 = 0; Д = 4 + 140 = 144; власні значення l 1 = (2 - 12) / 2 = -5; l 2 = (2 + 12) / 2 = 7.

Щоб знайти власні вектори, вирішуємо дві системи рівнянь

(А + 5Е) Х = О

(А - 7Е) Х = О

Для першої з них розширена матриця набуде вигляду

,

звідки х 2 = с, х 1 + (2/3) с = 0; х 1 = -(2/3)з, тобто. Х(1) = (-(2/3)с; с).

Для другої з них розширена матриця набуде вигляду

,

звідки х 2 = з 1, х 1 - (2/3) з 1 = 0; х 1 = (2/3) з 1, тобто. Х (2) = ((2/3) з 1; з 1).

Таким чином, власними векторами цього лінійного оператора є всі вектори виду (-(2/3)з; с) з власним значенням (-5) і всі вектори виду ((2/3)з 1; з 1) з власним значенням 7 .

Можна довести, що матриця оператора А в базисі, що складається з власних векторів, є діагональною і має вигляд:

,

де l i - Власні значення цієї матриці.

Правильно і зворотне: якщо матриця А в деякому базисі є діагональною, всі вектори цього базису будуть власними векторами цієї матриці.

Також можна довести, що якщо лінійний оператор має n попарно різних власних значень, відповідні їм власні вектори лінійно незалежні, а матриця цього оператора у відповідному базисі має діагональний вигляд.


Пояснимо це на попередньому прикладі. Візьмемо довільні ненульові значення з і з 1 але такі, щоб вектори Х (1) і Х (2) були лінійно незалежними, тобто. утворили б базис. Наприклад, нехай з = з 1 = 3, тоді Х (1) = (-2; 3), Х (2) = (2; 3).

Переконаємося у лінійній незалежності цих векторів:

12 ≠ 0. У цьому новому базисі матриця А набуде вигляду А * = .

Щоб переконатися в цьому, скористаємося формулою А* = С-1АС. Спочатку знайдемо С-1.

З -1 = ;

Квадратичні форми

Квадратичною формою f(х 1 , х 2 , х n) від n змінних називають суму, кожен член якої є або квадратом однієї зі змінних, або добутком двох різних змінних, взятим з деяким коефіцієнтом: f(х 1 , х 2 , х n) = (a ij = a ji).

Матрицю А, складену з цих коефіцієнтів, називають матрицеюквадратичної форми. Це завжди симетричнаматриця (тобто матриця, симетрична щодо головної діагоналі, a ij = a ji).

У матричному записі квадратична форма має вигляд f(Х) = Х Т AX, де

Справді

Наприклад, запишемо у матричному вигляді квадратичну форму.

Для цього знайдемо матрицю квадратичної форми. Її діагональні елементи дорівнюють коефіцієнтам при квадратах змінних, інші елементи - половинам відповідних коефіцієнтів квадратичної форми. Тому

Нехай матриця-стовпець змінних X отримана невиродженим лінійним перетворенням матриці-стовпця Y, тобто. X = CY, де - невироджена матриця n-го порядку. Тоді квадратична форма f(X) = Х T АХ = (CY) T A(CY) = (Y T C T)A(CY) = Y T (C T AC)Y.

Таким чином, при невиродженому лінійному перетворенні З матриця квадратичної форми набуває вигляду: А * = C T AC.

Наприклад, знайдемо квадратичну форму f(y 1 , y 2), отриману з квадратичної форми f(х 1 , х 2) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 лінійним перетворенням.

Квадратична форма називається канонічної(має канонічний вигляд), якщо її коефіцієнти a ij = 0 при i ≠ j, тобто.
f(х 1, х 2, х n) = a 11 x 1 2 + a 22 x 2 2 + a nn x n 2 = .

Її матриця є діагональною.

Теорема(Доказ тут не наводиться). Будь-яка квадратична форма може бути приведена до канонічного виду за допомогою невиродженого лінійного перетворення.

Наприклад, наведемо до канонічного вигляду квадратичну форму
f(х 1, х 2, х 3) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 - х 2 х 3 .

Для цього спочатку виділимо повний квадрат при змінній х 1:

f(х 1 , х 2 , х 3) = 2(x 1 2 + 2х 1 х 2 + х 2 2) - 2х 2 2 - 3х 2 2 - х 2 х 3 = 2(x 1 + х 2) 2 - 5х2 2-х 2х3.

Тепер виділяємо повний квадрат при змінній х 2:

f(х 1 , х 2 , х 3) = 2(x 1 + х 2) 2 - 5(х 2 2 + 2* х 2 *(1/10)х 3 + (1/100)х 3 2) + (5/100) х 3 2 =
= 2 (x 1 + х 2) 2 - 5 (х 2 - (1/10) х 3) 2 + (1/20) х 3 2 .

Тоді невироджене лінійне перетворення y 1 = x 1 + х 2 , y 2 = х 2 + (1/10)х 3 і y 3 = x 3 наводить цю квадратичну форму до канонічного вигляду f(y 1 , y 2 , y 3) = 2y 1 2 - 5y 2 2 + (1/20)y 3 2 .

Зазначимо, що канонічний вид квадратичної форми визначається неоднозначно (одна й та сама квадратична форма може бути приведена до канонічного вигляду різними способами). Однак отримані різними способами канонічні форми мають низку загальних властивостей. Зокрема, кількість доданків з позитивними (негативними) коефіцієнтами квадратичної форми не залежить від способу приведення форми до цього виду (наприклад, у розглянутому прикладі завжди буде два негативні та один позитивний коефіцієнт). Цю властивість називають законом інерції квадратичних форм.

Впевнимося в цьому, по-іншому привівши ту ж квадратичну форму до канонічного вигляду. Почнемо перетворення зі змінною х 2:

f(х 1 , х 2 , х 3) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 - х 2 х 3 = -3х 2 2 - х 2 х 3 + 4х 1 х 2 + 2x 1 2 = - 3(х 2 2 +
+ 2* х 2 ((1/6) х 3 - (2/3)х 1) + ((1/6) х 3 - (2/3)х 1) 2) + 3((1/6) х 3 - (2/3)х 1) 2 + 2x 1 2 =
= -3(х 2 + (1/6) х 3 - (2/3)х 1) 2 + 3((1/6) х 3 + (2/3)х 1) 2 + 2x 1 2 = f (y 1 , y 2 , y 3) = -3y 1 2 -
+3y 2 2 + 2y 3 2 де y 1 = - (2/3)х 1 + х 2 + (1/6) х 3 , y 2 = (2/3)х 1 + (1/6) х 3 та y 3 = x 1 . Тут негативний коефіцієнт -3 при y 1 і два позитивні коефіцієнти 3 і 2 при y 2 і y 3 (а при використанні іншого способу ми отримали негативний коефіцієнт (-5) при y 2 і два позитивних: 2 при y 1 і 1/20 за y 3).

Також слід зазначити, що ранг матриці квадратичної форми, званий рангом квадратичної форми, дорівнює числу відмінних від нуля коефіцієнтів канонічної форми і змінюється при лінійних перетвореннях.

Квадратичну форму f(X) називають позитивно (негативно) певною, якщо за всіх значеннях змінних, не рівних одночасно нулю, вона позитивна, тобто. f(X) > 0 (негативна, тобто.
f(X)< 0).

Наприклад, квадратична форма f 1 (X) = x 1 2 + х 2 2 – позитивно визначена, т.к. є сумою квадратів, а квадратична форма f 2 (X) = -x 1 2 + 2x 1 х 2 - х 2 2 - негативно визначена, т.к. представляє її можна подати у вигляді f 2 (X) = -(x 1 - х 2) 2 .

У більшості практичних ситуації встановити знаковизначеність квадратичної форми дещо складніше, тому для цього використовують одну з наступних теорем (сформулюємо їх без доказів).

Теорема. Квадратична форма є позитивно (негативно) певною тоді і лише тоді, коли всі власні значення її матриці позитивні (негативні).

Теорема(Критерій Сільвестра). Квадратична форма є позитивно визначеною тоді і лише тоді, коли головні мінори матриці цієї форми позитивні.

Головним (кутовим) мінором k-го порядку матриці А n-го порядку називають визначником матриці, що складається з перших k рядків і стовпців матриці А().

Зазначимо, що для негативно визначених квадратичних форм знаки головних мінорів чергуються, причому мінор першого порядку має бути негативним.

Наприклад, досліджуємо на знаковизначеність квадратичну форму f(х 1, х 2) = 2x 1 2 + 4х 1 х 2 + 3х 2 2 .

= (2 - l) *
* (3 - l) - 4 = (6 - 2l - 3l + l 2) - 4 = l 2 - 5l + 2 = 0; D = 25 – 8 = 17;
. Отже, квадратична форма – позитивно визначена.

Спосіб 2. Головний мінор першого порядку матриці А D 1 = a 11 = 2 > 0. Головний мінор другого порядку D 2 = = 6 – 4 = 2 > 0. Отже, за критерієм Сильвестра квадратична форма – позитивно визначена.

Досліджуємо на знаковизначеність іншу квадратичну форму, f(х 1, х 2) = -2x 1 2 + 4х 1 х 2 - 3х 2 2 .

Спосіб 1. Побудуємо матрицю квадратичної форми А = . Характеристичне рівняння матиме вигляд = (-2 - l) *
*(-3 - l) - 4 = (6 + 2l + 3l + l 2) - 4 = l 2 + 5l + 2 = 0; D = 25 – 8 = 17;
. Отже, квадратична форма – негативно визначена.

Спосіб 2. Головний мінор першого порядку матриці А D 1 = a 11 =
= -2 < 0. Главный минор второго порядка D 2 = = 6 - 4 = 2 >0. Отже, за критерієм Сильвестра квадратична форма – негативно визначена (знаки головних мінорів чергуються, починаючи з мінусу).

І як ще один приклад досліджуємо на знаковизначеність квадратичну форму f(х 1 , х 2) = 2x 1 2 + 4х 1 х 2 - 3х 2 2 .

Спосіб 1. Побудуємо матрицю квадратичної форми А = . Характеристичне рівняння матиме вигляд = (2 - l) *
*(-3 - l) - 4 = (-6 - 2l + 3l + l 2) - 4 = l 2 + l - 10 = 0; D = 1 + 40 = 41;
.

Одне із цих чисел негативно, а інше - позитивно. Знаки своїх значень різні. Отже, квадратична форма може бути ні негативно, ні позитивно певної, тобто. ця квадратична форма не є знаковизначеною (може набувати значень будь-якого знака).

Спосіб 2. Головний мінор першого порядку матриці А D 1 = a 11 = 2 > 0. Головний мінор другого порядку D 2 = = -6 - 4 = -10< 0. Следовательно, по критерию Сильвестра квадратичная форма не является знакоопределенной (знаки главных миноров разные, при этом первый из них - положителен).

Власні значення (числа) та власні вектори.
Приклади рішень

Будь собою


З обох рівнянь випливає, що .

Припустимо, тоді: .

В результаті: - Другий власний вектор.

Повторимо важливі моменти розв'язання:

- Отримана система обов'язково має загальне рішення (рівняння лінійно залежні);

- «Ігрек» підбираємо таким чином, щоб він був цілим і перша «іксова» координата - цілою, позитивною і якнайменше.

– перевіряємо, що окреме рішення задовольняє кожному рівнянню системи.

Відповідь .

Проміжних «контрольних точок» було цілком достатньо, тому перевірка рівностей у принципі справа зайва.

У різних джерелах інформації координати власних векторів часто записують над стовпці, а рядки, наприклад: (і, якщо чесно, я сам звик записувати їх рядками). Такий варіант прийнятний, але у світлі теми лінійних перетвореньтехнічно зручніше використовувати вектори-стовпці.

Можливо, рішення здалося вам дуже довгим, але це тільки тому, що я докладно прокоментував перший приклад.

Приклад 2

Матриці

Тренуємося самостійно! Зразок чистового оформлення завдання наприкінці уроку.

Іноді потрібно виконати додаткове завдання, а саме:

записати канонічне розкладання матриці

Що це таке?

Якщо власні вектори матриці утворюють базис, то вона уявна у вигляді:

Де – матриця складена з координат власних векторів, – діагональнаматриця з відповідними власними числами.

Таке розкладання матриці називають канонічнимабо діагональним.

Розглянемо матрицю першого прикладу. Її власні вектори лінійно незалежні(Неколлінеарні) і утворюють базис. Складемо матрицю з їх координат:

на головної діагоналіматриці у відповідному порядкурозташовуються власні числа, інші елементи дорівнюють нулю:
– ще раз наголошую на важливості порядку: «двійка» відповідає 1-му вектору і тому розташовується в 1-му стовпці, «трійка» – 2-му вектору.

За звичайним алгоритмом знаходження зворотної матриціабо методом Гауса-Жорданазнаходимо . Ні, це не друкарська помилка! - Перед вами рідкісна, як сонячне затемнення подія, коли зворотна збіглася з вихідною матрицею.

Залишилося записати канонічне розкладання матриці:

Систему можна вирішити за допомогою елементарних перетворень і в наступних прикладах ми вдамося до цього методу. Але тут набагато швидше спрацьовує «шкільний» спосіб. З 3-го рівняння виразимо: - Підставимо в друге рівняння:

Оскільки перша координата нульова, то отримуємо систему , з кожного рівняння якої випливає, що .

І знову зверніть увагу на обов'язкову наявність лінійної залежності. Якщо виходить лише тривіальне рішення , або неправильно знайдено власне число, або з помилкою складена / вирішена система.

Компактні координати дає значення

Власний вектор:

І ще раз – перевіряємо, що знайдене рішення задовольняє кожному рівнянню системи. У наступних пунктах та в наступних завданнях рекомендую прийняти це побажання за обов'язкове правило.

2) Для власного значення за таким же принципом отримуємо таку систему:

З 2-го рівняння системи виразимо: - Підставимо в третє рівняння:

Оскільки «зетова» координата дорівнює нулю, то отримуємо систему , з кожного рівняння якої випливає лінійна залежність .

Нехай

Перевіряємо, що рішення задовольняє кожному рівняння системи.

Отже, власний вектор: .

3) І, нарешті, власному значенню відповідає система:

Друге рівняння виглядає найпростішим, тому з нього висловимо і підставимо в 1-е та 3-е рівняння:

Все добре - виявилася лінійна залежність, яку підставляємо у вираз:

Через війну «ікс» і «игрек» виявилися виражені через «зет»: . На практиці не обов'язково домагатися саме таких взаємозв'язків, у деяких випадках зручніше висловити і через або через. Або навіть «паровозиком» – наприклад, «ікс» через «гравець», а «гравець» через «зет»

Припустимо, тоді:

Перевіряємо, що знайдене рішення задовольняє кожному рівнянню системи та записуємо третій власний вектор

Відповідь: власні вектори:

Геометрично ці вектори задають три різні просторові напрямки. ("туди назад"), за якими лінійне перетворенняпереводить ненульові вектори (власні вектори) в колінеарні вектори.

Якби за умовою потрібно було знайти канонічне розкладання , то це можливо, т.к. різним своїм числам відповідають різні лінійно незалежні власні вектори. Складаємо матрицю з їх координат, діагональну матрицю з відповіднихвласних значень та знаходимо зворотну матрицю .

Якщо ж за умовою потрібно записати матрицю лінійного перетворення в базисі із власних векторів, То відповідь даємо у вигляді . Різниця є, і різниця суттєва!Бо ця матриця – є матриця «де».

Завдання з більш простими обчисленнями для самостійного вирішення:

Приклад 5

Знайти власні вектори лінійного перетворення, заданого матрицею

При знаходженні своїх чисел постарайтеся не доводити справу до многочлена третього ступеня. Крім того, ваші рішення систем можуть відрізнятись від моїх рішень – тут немає однозначності; та вектори, які ви знайдете, можуть відрізнятись від векторів зразка з точністю до пропорційності їх відповідних координат. Наприклад, і . Естетичніше уявити відповідь у вигляді , але нічого страшного, якщо зупиніться і на другому варіанті. Однак усьому є розумні межі, версія виглядає вже не дуже добре.

Зразковий чистовий зразок оформлення завдання наприкінці уроку.

Як вирішувати завдання у разі кратних власних чисел?

Загальний алгоритм залишається незмінним, але тут є свої особливості, і деякі ділянки рішення доцільно витримати в суворішому академічному стилі:

Приклад 6

Знайти власні числа та власні вектори

Рішення

Звичайно ж, оприбуткуємо казковий перший стовпець:

І, після розкладання квадратного тричлена на множники:

В результаті отримані власні числа, два з яких є кратними.

Знайдемо власні вектори:

1) З одиноким солдатом розробимося за «спрощеною» схемою:

З останніх двох рівнянь чітко проглядається рівність, яку, очевидно, слід підставити в 1-е рівняння системи:

Кращої комбінації не знайти:
Власний вектор:

2-3) Тепер знімаємо пару вартових. В даному випадку може вийти або два, або одинВласний вектор. Незважаючи на кратність коренів, підставимо значення в визначник , який приносить нам наступну однорідну систему лінійних рівнянь:

Власні вектори – це точно вектори
фундаментальної системи рішень

Власне, протягом усього уроку ми тільки й займалися тим, що знаходили вектори фундаментальної системи. Просто до певного часу цей термін особливо не був потрібний. До речі, ті спритні студенти, які у маскхалатах проскочили тему однорідних рівнянь, будуть змушені вкурити її зараз.


Єдина дія полягала у видаленні зайвих рядків. В результаті отримана матриця "один на три" з формальною "сходинкою" посередині.
- Базова змінна, - вільні змінні. Вільних змінних дві, отже, векторів фундаментальної системи теж два.

Висловимо базову змінну через вільні змінні: . Нульовий множник перед «іксом» дозволяє приймати йому будь-які значення (що добре видно і з системи рівнянь).

У контексті цього завдання загальне рішення зручніше записати не в рядок, а в стовпець:

Парі відповідає власний вектор:
Парі відповідає власний вектор:

Примітка : досвідчені читачі можуть підібрати дані вектори та усно – просто аналізуючи систему , але тут потрібні деякі знання: змінних - три, ранг матриці системи– одиниця, отже, фундаментальна система рішеньскладається із 3 – 1 = 2 векторів. Втім, знайдені вектори чудово проглядаються і без цих знань на інтуїтивному рівні. У цьому навіть «красивее» запишеться третій вектор: . Однак застерігаю, в іншому прикладі простого підбору може і не виявитися, саме тому застереження призначене для досвідчених людей. Крім того, а чому б не взяти як третій вектор, скажімо, ? Адже його координати теж задовольняють кожному рівняння системи і вектори. лінійно незалежні. Такий варіант, в принципі, придатний, але «кривуватий», оскільки «інший» вектор є лінійною комбінацією векторів фундаментальної системи.

Відповідь: власні числа: , власні вектори:

Аналогічний приклад для самостійного вирішення:

Приклад 7

Знайти власні числа та власні вектори

Зразок чистового оформлення наприкінці уроку.

Слід зазначити, що й у 6-му та 7-му прикладі виходить трійка лінійно незалежних власних векторів, і тому вихідна матриця представима в канонічному розкладанні . Але така малина буває далеко не у всіх випадках:

Приклад 8


Рішення: складемо і розв'яжемо характеристичне рівняння:

Визначник розкриємо по першому стовпцю:

Подальші спрощення проводимо згідно з розглянутою методикою, уникаючи багаточлена 3-го ступеня:

- Власні значення.

Знайдемо власні вектори:

1) З коренем труднощів немає:

Не дивуйтесь, крім комплекту в ході також змінні - різниці тут ніякої.

З 3-го рівняння виразимо - підставимо в 1-е та 2-е рівняння:

З обох рівнянь випливає:

Нехай тоді:

2-3) Для кратних значень отримуємо систему .

Запишемо матрицю системи та за допомогою елементарних перетворень наведемо її до ступінчастого вигляду:

Найбільш просто влаштовані матриці діагонального вигляду. Виникає питання, чи не можна знайти базис, у якому матриця лінійного оператора мала б діагональний вигляд. Такий базис існує.
Нехай дано лінійний простір R n і лінійний оператор A, що діє в ньому; у цьому випадку оператор A переводить R n у себе, тобто A: R n → R n .

Визначення. Ненульовий вектор називається власним вектором оператора A якщо оператор A переводить в колінеарний йому вектор, тобто . Число λ називається власним значенням або власним числом оператора A, що відповідає власному вектору.
Зазначимо деякі властивості власних чисел та власних векторів.
1. Будь-яка лінійна комбінація власних векторів оператора A, відповідальних одному й тому власному числу λ, є власним вектором з тим самим власним числом.
2. Власні вектори оператора A з попарно різними власними числами λ 1 , λ 2 , …, λ m лінійно незалежні.
3. Якщо власні числа λ 1 =λ 2 = λ m = λ, то власному числу λ відповідає не більше m лінійно незалежних власних векторів.

Отже, якщо є n лінійно незалежних власних векторів , відповідних різним власним числам λ 1 , λ 2 , …, λ n , всі вони лінійно незалежні, отже, їх можна вважати базис простору R n . Знайдемо вид матриці лінійного оператора A у базисі з його власних векторів, для чого подіємо оператором A на базисні вектори: тоді .
Таким чином, матриця лінійного оператора A в базисі його власних векторів має діагональний вигляд, причому по діагоналі стоять власні числа оператора A.
Чи існує інший базис, у якому матриця має діагональний вигляд? Відповідь на поставлене запитання дає така теорема.

Теорема. Матриця лінійного оператора A у базисі (i = 1..n) має діагональний вигляд тоді і лише тоді, коли всі вектори базису - власні вектори оператора A.

Правило відшукання власних чисел та власних векторів

Нехай дано вектор , де x 1 x 2 … x n - координати вектора щодо базису і - власний вектор лінійного оператора A, що відповідає власному числу , тобто . Це співвідношення можна записати у матричній формі

. (*)


Рівняння (*) можна як рівняння для відшукання , причому , тобто нас цікавлять нетривіальні рішення, оскільки власний вектор може бути нульовим. Відомо, що нетривіальні рішення однорідної системи лінійних рівнянь існують тоді і тільки тоді, коли det(A - λE) = 0. Таким чином, для того, щоб λ було власним числом оператора A необхідно і достатньо, щоб det(A - λE) = 0.
Якщо рівняння (*) докладно розписати в координатній формі, то отримаємо систему лінійних однорідних рівнянь:

(1)
де - матриця лінійного оператора.

Система (1) має ненульове рішення, якщо її визначник D дорівнює нулю


Здобули рівняння для знаходження власних чисел.
Це рівняння називається характеристичним рівнянням, яке ліва частина - характеристичним многочленом матриці (оператора) A. Якщо характеристичний багаточлен немає речових коренів, то матриця A немає власних векторів і її не можна призвести до діагональному виду.
Нехай λ 1 , λ 2 , …, λ n - речові корені характеристичного рівняння, причому серед них можуть бути і кратні. Підставляючи по черзі ці значення систему (1), знаходимо власні вектори.

приклад 12. Лінійний оператор A діє в R 3 згідно із законом , де x 1 , x 2 , .., x n - координати вектора в базисі , , . Знайти власні числа та власні вектори цього оператора.
Рішення. Будуємо матрицю цього оператора:
.
Складаємо систему визначення координат власних векторів:

Складаємо характеристичне рівняння та вирішуємо його:

.
λ 1,2 = -1, λ 3 = 3.
Підставляючи λ = -1 у систему, маємо:
або
Так як , то залежних змінних два, а вільне одне.
Нехай x 1 - вільне невідоме, тоді Вирішуємо цю систему будь-яким способом і знаходимо загальне рішення цієї системи: Фундаментальна система рішень складається з одного рішення, оскільки n – r = 3 – 2 = 1.
Безліч власних векторів, що відповідають своєму числу λ = -1, має вигляд: , де x 1 - будь-яке число, відмінне від нуля. Виберемо з цієї множини один вектор, наприклад, поклавши x 1 = 1: .
Розмірковуючи аналогічно, знаходимо власний вектор, що відповідає власному числу = 3: .
У просторі R 3 базис складається з трьох лінійно незалежних векторів, ми отримали тільки два лінійно незалежних власних вектора, з яких базис в R 3 скласти не можна. Отже, матрицю A лінійного оператора призвести до діагонального вигляду не можемо.

приклад 13. Дано матрицю .
1. Довести, що вектор є власним вектором матриці A. Знайти власне число, що відповідає цьому власному вектору.
2. Знайти базис, у якому матриця A має діагональний вигляд.
Рішення.
1. Якщо , то - власний вектор

.
Вектор (1, 8, -1) – власний вектор. Власне число = -1.
Діагональний вигляд матриця має в базисі, що складається зі своїх векторів. Один із них відомий. Знайдемо решту.
Власні вектори шукаємо із системи:

Характеристичне рівняння: ;
(3 + λ)[-2(2-λ)(2+λ)+3] = 0; (3+λ)(λ 2 - 1) = 0
λ 1 = -3, λ 2 = 1, λ 3 = -1.
Знайдемо власний вектор, що відповідає власному числу = -3:

Ранг матриці цієї системи дорівнює двом і дорівнює числу невідомих, тому ця система має тільки нульове рішення x 1 = x 3 = 0. x 2 тут може бути будь-яким, відмінним від нуля, наприклад, x 2 = 1. Таким чином, вектор (0 ,1,0) є власним вектором, що відповідає λ = -3. Перевіримо:
.
Якщо λ = 1, то одержуємо систему
Ранг матриці дорівнює двом. Останнє рівняння викреслюємо.
Нехай x 3 – вільне невідоме. Тоді x 1 = -3 x 3, 4 x 2 = 10 x 1 - 6 x 3 = -30 x 3 - 6 x 3, x 2 = -9 x 3.
Вважаючи x 3 = 1, маємо (-3,-9,1) - власний вектор, що відповідає власному числу λ = 1. Перевірка:

.
Так як власні числа дійсні і різні, то вектори, що їм відповідають, лінійно незалежні, тому їх можна прийняти за базис R 3 . Таким чином, у базисі , , матриця A має вигляд:
.
Не будь-яку матрицю лінійного оператора A:R n → R n можна призвести до діагонального вигляду, оскільки для деяких лінійних операторів лінійно незалежних власних векторів може бути менше n. Однак, якщо матриця симетрична, кореню характеристичного рівняння кратності m відповідає рівно m лінійно незалежних векторів.

Визначення. Симетричною матрицею називається квадратна матриця, у якій елементи, симетричні щодо головної діагоналі, рівні, тобто у якій .
Зауваження. 1. Усі власні числа симетричної матриці речові.
2. Власні вектори симетричної матриці, що відповідають попарно різним власним числам, ортогональні.
Як один з численних додатків вивченого апарату, розглянемо завдання визначення виду кривої другого порядку.

www.сайтдозволяє знайти. Сайт здійснює обчислення. За кілька секунд сервер видасть правильне рішення. Характеристичним рівнянням для матрицібуде алгебраїчне вираз, знайдений за правилом обчислення визначника матриці матриці, при цьому по головній діагоналі стоятимуть різниці значень діагональних елементів та змінної. При обчисленні характеристичного рівняння для матриці онлайн, кожен елемент матрицібуде перемножуватись з відповідними іншими елементами матриці. Знайти у режимі онлайнможна тільки для квадратної матриці. Операція знаходження характеристичного рівняння для матриці онлайнзводиться до обчислення алгебраїчної суми добутку елементів матриціяк результат від знаходження визначника матриці, тільки з метою визначення характеристичного рівняння для матриці онлайн. Ця операція займає особливе місце в теорії матриць, дозволяє знайти власні числа та вектори, використовуючи коріння . Завдання щодо знаходження характеристичного рівняння для матриці онлайнполягає у перемноженні елементів матриціз наступним підсумовуванням цих творів за певним правилом. www.сайтзнаходить характеристичне рівняння для матрицізаданої розмірності в режимі онлайн. Обчислення характеристичного рівняння для матриці онлайнпри заданій її розмірності - це знаходження багаточлена з числовими чи символьними коефіцієнтами, знайденого за правилом обчислення визначника матриці- як сума творів відповідних елементів матриці, тільки з метою визначення характеристичного рівняння для матриці онлайн. Знаходження полінома щодо змінної для квадратної матриці, як визначення характеристичного рівняння для матриці, поширене в теорії матриць. Значення коренів багаточлена характеристичного рівняння для матриці онлайнвикористовується для визначення власних векторів та власних чисел для матриці. При цьому, якщо визначник матрицідорівнюватиме нулю, то характеристичне рівняння матрицівсе одно буде існувати, на відміну від зворотної матриці. Для того, щоб обчислити характеристичне рівняння для матриціабо знайти відразу для кількох матриць характеристичні рівняння, необхідно витратити чимало часу та зусиль, тоді як наш сервер за лічені секунди знайде характеристичне рівняння для матриці онлайн. При цьому відповідь щодо знаходження характеристичного рівняння для матриці онлайнбуде правильним і з достатньою точністю, навіть якщо числа при знаходженні характеристичного рівняння для матриці онлайнбудуть ірраціональними. На сайті www.сайтдопускаються символьні записи в елементах матриць, тобто характеристичне рівняння для матриці онлайнможе бути представлено у загальному символьному вигляді при обчисленні характеристичного рівняння матриці онлайн. Корисно перевірити відповідь, отриману при вирішенні задачі знаходження характеристичного рівняння для матриці онлайн, використовуючи сайт www.сайт. При здійсненні операції обчислення полінома - характеристичного рівняння матриці, необхідно бути уважним і гранично зосередженим під час вирішення цього завдання. У свою чергу, наш сайт допоможе Вам перевірити своє рішення на тему характеристичне рівняння матриці онлайн. Якщо Ви не маєте часу на довгі перевірки вирішених завдань, то www.сайтбезумовно буде зручним інструментом для перевірки при знаходженні та обчисленні характеристичного рівняння для матриці онлайн.

У першій частині викладено положення, мінімально необхідні для розуміння хемометрики, а в другій частині - факти, які необхідно знати для більш глибокого розуміння методів багатовимірного аналізу. Виклад ілюструється прикладами, виконаними в робочій книзі Excel Matrix.xls, що супроводжує цей документ.

Посилання на приклади розміщені в тексті як об'єкти Excel. Ці приклади мають абстрактний характер, вони не прив'язані до завдань аналітичної хімії. Реальні приклади використання матричної алгебри в хемометриці розглянуті в інших текстах, присвячених різноманітним хемометричним додаткам.

Більшість вимірів, які проводяться в аналітичній хімії, є не прямими, а непрямими. Це означає, що в експерименті замість значення шуканого аналіту C (концентрації) виходить інша величина x(Сигнал), пов'язана, але не рівна C, тобто. x(C) ≠ С. Як правило, вид залежності x(C) не відомий, однак, на щастя, в аналітичній хімії більшість вимірів пропорційні. Це означає, що при збільшенні концентрації С aраз, сигнал X збільшиться стільки ж., тобто. x(a C) = a x(C). Крім того, сигнали ще й адитивні, так що сигнал від проби, в якій присутні дві речовини з концентраціями C 1 і C 2 дорівнює сумі сигналів від кожного компонента, тобто. x(C 1 + C 2) = x(C 1)+ x(C 2). Пропорційність та адитивність разом дають лінійність. Можна навести багато прикладів, що ілюструють принцип лінійності, але досить згадати два найяскравіші приклади - хроматографію та спектроскопію. Друга особливість, властива експерименту в аналітичній хімії – це багатоканальність. Сучасне аналітичне обладнання одночасно вимірює сигнали багатьох каналів. Наприклад, вимірюється інтенсивність пропускання світла одночасно кількох довжин хвиль, тобто. Спектр. Тому в експерименті ми маємо справу з безліччю сигналів x 1 , x 2 ,...., x n , що характеризують набір концентрацій C 1 ,C 2 , ..., C m речовин, присутніх в системі, що вивчається.

Рис. 1 Спектри

Отже, аналітичний експеримент характеризується лінійністю та багатовимірністю. Тому зручно розглядати експериментальні дані як вектори та матриці та маніпулювати з ними, використовуючи апарат матричної алгебри. Плідність такого підходу ілюструє приклад, показаний на де представлені три спектри, зняті для 200 довжин хвиль від 4000 до 4796 cm -1 . Перший ( x 1) та другий ( x 2) спектри отримані для стандартних зразків, у яких концентрація двох речовин A і B відомі: у першому зразку [A] = 0.5, [B] = 0.1, а в другому зразку [A] = 0.2, [B] = 0.6. Що можна сказати про новий, невідомий зразок, спектр якого позначений x 3 ?

Розглянемо три експериментальні спектри x 1 , x 2 та x 3 як три вектори розмірності 200. Засобами лінійної алгебри можна легко показати, що x 3 = 0.1 x 1 +0.3 x 2 тому у третьому зразку очевидно присутні тільки речовини A і B в концентраціях [A] = 0.5×0.1 + 0.2×0.3 = 0.11 і [B] = 0.1×0.1 + 0.6×0.3 = 0.19.

1. Базові відомості

1.1 Матриці

Матрицеюназивається прямокутна таблиця чисел, наприклад

Рис. 2 Матриця

Матриці позначаються великими напівжирними літерами ( A), які елементи - відповідними малими літерами з індексами, тобто. a ij. Перший індекс нумерує рядки, а другий – стовпці. У хемометриці прийнято позначати максимальне значення індексу тієї ж літерою, як і сам індекс, але великої. Тому матрицю Aможна також записати як ( a ij , i = 1,..., I; j = 1,..., J). Для наведеної у прикладі матриці I = 4, J= 3 і a 23 = −7.5.

Пара чисел Iі Jназивається розмірністю матриці та знається як I× J. Прикладом матриці в хемометриці може бути набір спектрів, отриманий для Iзразків на Jдовжини хвиль.

1.2. Найпростіші операції з матрицями

Матриці можна множити на числа. У цьому кожен елемент множиться цього числа. Наприклад -

Рис. 3 Розмноження матриці на число

Дві матриці однакової розмірності можна поелементно складатиі віднімати. Наприклад,

Рис. 4 Додавання матриць

В результаті множення на число та додавання виходить матриця тієї ж розмірності.

Нульовою матрицею називається матриця, що складається з нулів. Вона позначається O. Очевидно, що A+O = A, AA = Oта 0 A = O.

Матрицю можна транспонувати. У цій операції матриця перевертається, тобто. рядки та стовпці змінюються місцями. Транспонування позначається штрихом, Aабо індексом A t. Таким чином, якщо A = {a ij , i = 1,..., I; j = 1,...,J), то A t = ( a ji , j = 1,...,J; i = 1,..., I). Наприклад

Рис. 5 Транспонування матриці

Очевидно, що ( A t) t = A, (A+B) t = A t + B t.

1.3. Розмноження матриць

Матриці можна перемножуватиале тільки в тому випадку, коли вони мають відповідні розмірності. Чому це так, буде ясно з визначення. Добутком матриці A, розмірністю I× K, та матриці B, розмірністю K× J, називається матриця C, розмірністю I× J, елементами якої є числа

Таким чином для твору ABнеобхідно, щоб число стовпців у лівій матриці Aдорівнювало числу рядків у правій матриці B. Приклад твору матриць -

Рис.6 Добуток матриць

Правило перемноження матриць можна сформулювати так. Для того, щоб знайти елемент матриці C, що стоїть на перетині i-ого рядка та j-ого стовпця ( c ij) треба поелементно перемножити i-ий рядок першої матриці Aна j-ий стовпець другої матриці Bта скласти всі результати. Так у наведеному прикладі, елемент з третього рядка і другого стовпця, виходить як сума поелементних творів третього рядка Aта другого стовпця B

Рис.7 Елемент твору матриць

Добуток матриць залежить від порядку, тобто. ABBA, хоча б з міркувань розмірності. Говорять, що воно некомутативно. Однак добуток матриць асоціативний. Це означає, що ABC = (AB)C = A(BC). З іншого боку, воно ще й дистрибутивно, тобто. A(B+C) = AB+AC. Очевидно, що AO = O.

1.4. Квадратні матриці

Якщо число стовпців матриці дорівнює числу її рядків ( I = J = N), то така матриця називається квадратною. У цьому розділі ми розглядатимемо лише такі матриці. Серед цих матриць можна виділити матриці, що мають особливі властивості.

Одиничноюматрицею (позначається I,а інколи E) називається матриця, у якої всі елементи дорівнюють нулю, за винятком діагональних, які дорівнюють 1, тобто.

Очевидно AI = IA = A.

Матриця називається діагональної, якщо всі її елементи, крім діагональних ( a ii) Дорівнюють нулю. Наприклад

Рис. 8 Діагональна матриця

Матриця Aназивається верхньою трикутної, Якщо всі її елементи, що лежать нижче діагоналі, дорівнюють нулю, тобто. a ij= 0, при i>j. Наприклад

Рис. 9 Верхня трикутна матриця

Аналогічно визначається нижня трикутна матриця.

Матриця Aназивається симетричною, якщо A t = A. Іншими словами a ij = a ji. Наприклад

Рис. 10 Симетрична матриця

Матриця Aназивається ортогональні, якщо

A t A = AA t = I.

Матриця називається нормальноюякщо

1.5. Слід та визначник

Слідомквадратної матриці A(позначається Tr( A) або Sp( A)) називається сума її діагональних елементів,

Наприклад,

Рис. 11 Слід матриці

Очевидно, що

Sp(α) A) = Sp( A) та

Sp( A+B) = Sp ( A)+ Sp( B).

Можна показати, що

Sp( A) = Sp ( A t), Sp( I) = N,

а також, що

Sp( AB) = Sp ( BA).

Іншою важливою характеристикою квадратної матриці є її визначник(позначається det ( A)). Визначення визначника в загальному випадку досить складне, тому ми почнемо з найпростішого варіанта – матриці Aрозмірністю (2×2). Тоді

Для матриці (3×3) визначник дорівнюватиме

У разі матриці ( N× N) визначник обчислюється як сума 1 · 2 · 3 · ... · N= N! доданків, кожен з яких дорівнює

Індекси k 1 , k 2 ,..., k Nвизначаються як всілякі впорядковані перестановки rчисел у наборі (1, 2, ... , N). Обчислення визначника матриці – це складна процедура, яку практично здійснюється за допомогою спеціальних програм. Наприклад,

Рис. 12 Визначник матриці

Відзначимо лише очевидні властивості:

det( I) = 1, det( A) = det( A t),

det( AB) = det( A)det( B).

1.6. Вектори

Якщо матриця складається лише з одного стовпця ( J= 1), то такий об'єкт називається вектором. Точніше, вектором-стовпцем. Наприклад

Можна розглядати і матриці, що складаються з одного рядка, наприклад

Цей об'єкт також є вектором, але вектор-рядок. При аналізі даних важливо розуміти, з якими векторами ми маємо справу – зі стовпцями чи рядками. Так спектр, знятий одного зразка можна як вектор-рядок. Тоді набір спектральних інтенсивностей на якійсь довжині хвилі для всіх зразків слід трактувати як вектор-стовпець.

Розмірністю вектора називається кількість його елементів.

Зрозуміло, кожен вектор-стовпець можна перетворити на вектор-рядок транспонуванням, тобто.

У тих випадках, коли форма вектора спеціально не обговорюється, а просто говориться вектор, то мають на увазі вектор-стовпець. Ми також дотримуватимемося цього правила. Вектор позначається малою прямою напівжирною літерою. Нульовим вектором називається вектор, всі елементи якого рани нулю. Він позначається 0 .

1.7. Найпростіші операції з векторами

Вектори можна складати і множити числа так само, як це робиться з матрицями. Наприклад,

Рис. 13 Операції з векторами

Два вектори xі yназиваються колінеарнимиякщо існує таке число α, що

1.8. Твори векторів

Два вектори однакової розмірності Nможна перемножити. Нехай є два вектори x = (x 1 , x 2 ,...,x N) t і y = (y 1 , y 2 ,...,y N) t. Керуючись правилом перемноження "рядок на стовпець", ми можемо скласти з них два твори: x t yі xy t. Перший твір

називається скалярнимабо внутрішнім. Його результат – це число. Для нього також використовується позначення ( x,y)= x t y. Наприклад,

Рис. 14 Внутрішній (скалярний) твір

Другий твір

називається зовнішнім. Його результат – це матриця розмірності ( N× N). Наприклад,

Рис. 15 Зовнішній твір

Вектори, скалярний добуток яких дорівнює нулю, називаються ортогональними.

1.9. Норма вектора

Скалярне твір вектора себе називається скалярним квадратом. Ця величина

визначає квадрат довжинивектора x. Для позначення довжини (названої також нормоювектора) використовується позначення

Наприклад,

Рис. 16 Норма вектора

Вектор одиничної довжини (|| x|| = 1) називається нормованим. Ненульовий вектор ( x0 ) можна нормувати, розділивши їх у довжину, тобто. x = ||x|| (x/||x||) = ||x|| e. Тут e = x/||x|| - Нормований вектор.

Вектори називаються ортонормованими, якщо всі вони нормовані та попарно ортогональні.

1.10. Кут між векторами

Скалярний твір визначає і кутφ між двома векторами xі y

Якщо вектори ортогональні, то cosφ = 0 і φ = π/2, а якщо вони колінеарні, то cosφ = 1 та φ = 0.

1.11. Векторне подання матриці

кожну матрицю Aрозміру I× Jможна подати як набір векторів

Тут кожен вектор a jє j-им стовпцем, а вектор-рядок b iє i-им рядком матриці A

1.12. Лінійно залежні вектори

Вектори однакової розмірності ( N) можна складати та множити на число, також як матриці. В результаті вийде вектор тієї ж розмірності. Нехай є кілька векторів однієї розмірності x 1 , x 2 ,...,x K і стільки ж чисел α 1 , 2 ,...,α K. Вектор

y= α 1 x 1 + α 2 x 2 +...+ α K x K

називається лінійною комбінацієювекторів x k .

Якщо є такі ненульові числа α k ≠ 0, k = 1,..., K, що y = 0 , то такий набір векторів x kназивається лінійно залежним. Інакше вектори називаються лінійно незалежними. Наприклад, вектори x 1 = (2, 2) t і x 2 = (−1, −1) t лінійно залежні, т.к. x 1 +2x 2 = 0

1.13. Ранг матриці

Розглянемо набір з Kвекторів x 1 , x 2 ,...,x Kрозмірності N. Ранг цієї системи векторів називається максимальне число лінійно-незалежних векторів. Наприклад у наборі

є тільки два лінійно незалежні вектори, наприклад x 1 та x 2 тому її ранг дорівнює 2.

Очевидно, що якщо векторів у наборі більше, ніж їх розмірність ( K>N), то вони обов'язково лінійно залежні.

Рангом матриці(позначається rank ( A)) називається ранг системи векторів, з яких вона складається. Хоча будь-яку матрицю можна уявити двома способами (вектори стовпці чи рядки), це впливає величину рангу, т.к.

1.14. зворотна матриця

Квадратна матриця Aназивається невиродженою, якщо вона має єдину зворотнуматрицю A-1 , що визначається умовами

AA −1 = A −1 A = I.

Зворотна матриця існує для всіх матриць. Необхідною та достатньою умовою невиродженості є

det( A) ≠ 0 або rank( A) = N.

Звернення матриці – це складна процедура, для виконання якої існують спеціальні програми. Наприклад,

Рис. 17 Звернення матриці

Наведемо формули для найпростішого випадку - матриці 2×2

Якщо матриці Aі Bневироджені, то

(AB) −1 = B −1 A −1 .

1.15. Псевдозворотна матриця

Якщо матриця Aвироджена та зворотна матриця не існує, то в деяких випадках можна використовувати псевдозворотнуматрицю, яка визначається як така матриця A+ , що

AA + A = A.

Псевдобрітельна матриця - не єдина і її вид залежить від способу побудови. Наприклад, для прямокутної матриці можна використовувати метод Мура-Пенроуза .

Якщо число стовпців менше числа рядків, то

A + =(A t A) −1 A t

Наприклад,

Рис. 17a Псевдообіг матриці

Якщо ж число стовпців більше числа рядків, то

A + =A t ( AA t) −1

1.16. Розмноження вектора на матрицю

Вектор xможна множити на матрицю Aвідповідної розмірності. При цьому вектор-стовпець множиться праворуч Ax, а вектор рядок - ліворуч x t A. Якщо розмірність вектора J, а розмірність матриці I× Jто в результаті вийде вектор розмірності I. Наприклад,

Рис. 18 Розмноження вектора на матрицю

Якщо матриця A- Квадратна ( I× I), то вектор y = Axмає ту ж розмірність, що і x. Очевидно, що

A(α 1 x 1 + α 2 x 2) = α 1 Ax 1 + α 2 Ax 2 .

Тому матриці можна як лінійні перетворення векторів. Зокрема Іх = x, Ox = 0 .

2. Додаткова інформація

2.1. Системи лінійних рівнянь

Нехай A- матриця розміром I× J, а b- Вектор розмірності J. Розглянемо рівняння

Ax = b

щодо вектора x, розмірності I. По суті - це система з Iлінійних рівнянь з Jневідомими x 1 ,...,x J. Рішення існує в тому, і тільки в тому випадку, коли

rank( A) = Rank ( B) = R,

де B- це розширена матриця розмірності I×( J+1), що складається з матриці A, доповненою стовпцем b, B = (A b). Інакше рівняння несумісні.

Якщо R = I = J, то рішення єдине

x = A −1 b.

Якщо R < I, то існує безліч різних рішень, які можна виразити через лінійну комбінацію JRвекторів. Система однорідних рівнянь Ax = 0 з квадратною матрицею A (N× N) має нетривіальне рішення ( x0 ) і тоді, коли det( A) = 0. Якщо R= Rank ( A)<N, то існують NRлінійно-незалежних рішень.

2.2. Білінійні та квадратичні форми

Якщо A- це квадратна матриця, а xі y- Вектор відповідної розмірності, то скалярний добуток виду x t Ayназивається білінійноїформою, яка визначається матрицею A. При x = yвираз x t Axназивається квадратичноїформою.

2.3. Позитивно визначені матриці

Квадратна матриця Aназивається позитивно визначеноюякщо для будь-якого ненульового вектора x0 ,

x t Ax > 0.

Аналогічно визначаються негативно (x t Ax < 0), невід'ємно (x t Ax≥ 0) та позитивно (x t Ax≤ 0) певні матриці.

2.4. Розкладання Холецького

Якщо симетрична матриця Aпозитивно визначена, існує єдина трикутна матриця Uз позитивними елементами, для якої

A = U t U.

Наприклад,

Рис. 19 Розкладання Холецького

2.5. Полярне розкладання

Нехай A- це невироджена квадратна матриця розмірності N× N. Тоді існує однозначне полярнеподання

A = SR,

де S- це невід'ємна симетрична матриця, а R- це ортогональна матриця. Матриці Sі Rможуть бути визначені явно:

S 2 = AA t або S = (AA t) ½ і R = S −1 A = (AA t) −½ A.

Наприклад,

Рис. 20 Полярне розкладання

Якщо матриця Aвироджена, то розкладання не єдине - а саме: Sяк і раніше одна, а ось Rможе бути багато. Полярне розкладання представляє матрицю Aяк комбінацію стиснення/розтягування Sта повороту R.

2.6. Власні вектори та власні значення

Нехай A- Це квадратна матриця. Вектор vназивається власним векторомматриці A, якщо

Av = λ v,

де число λ називається власним значеннямматриці A. Таким чином, перетворення, яке виконує матриця Aнад вектором v, зводиться до простого розтягування або стиснення коефіцієнтом λ. Власний вектор визначається з точністю до множення константу α ≠ 0, тобто. якщо v- Власний вектор, то і α v- Власний вектор.

2.7. Власні значення

У матриці A, Розмірністю ( N× N) не може бути більше ніж Nвласних значень. Вони задовольняють характеристичного рівняння

det( A − λ I) = 0,

алгебраїчним рівнянням, що є N-го порядку. Зокрема, для матриці 2×2 характеристичне рівняння має вигляд

Наприклад,

Рис. 21 Власні значення

Набір власних значень λ 1 ,..., λ Nматриці Aназивається спектром A.

Спектр має різноманітні властивості. Зокрема

det( A) = λ 1 ×...×λ N, Sp ( A) = λ 1 +...+λ N.

Власні значення довільної матриці можуть бути комплексними числами, але якщо матриця симетрична ( A t = A), то її власні значення речові.

2.8. Власні вектори

У матриці A, Розмірністю ( N× N) не може бути більше ніж Nвласних векторів, кожен із яких відповідає своєму власному значенню. Для визначення власного вектора v nпотрібно вирішити систему однорідних рівнянь

(A − λ n I)v n = 0 .

Вона має нетривіальне рішення, оскільки det( A −λ n I) = 0.

Наприклад,

Рис. 22 Власні вектори

Власні вектори симетричної матриці ортогональні.



Останні матеріали розділу:

Отримання нітросполук нітруванням
Отримання нітросполук нітруванням

Електронна будова нітрогрупи характеризується наявність семи полярного (напівполярного) зв'язку: Нітросполуки жирного ряду – рідини, що не...

Хроміт, їх відновлювальні властивості
Хроміт, їх відновлювальні властивості

Окисно-відновні властивості сполук хрому з різним ступенем окиснення. Хром. Будова атома. Можливі ступені окислення.

Чинники, що впливають на швидкість хімічної реакції
Чинники, що впливають на швидкість хімічної реакції

Питання №3 Від яких чинників залежить константа швидкості хімічної реакції? Константа швидкості реакції (питома швидкість реакції) - коефіцієнт...