Дорівнює нулю квадратне рівняння. Рівняння дискримінанта з математики

Квадратні рівняння. Дискримінант. Рішення, приклади.

Увага!
До цієї теми є додаткові
матеріали у розділі 555.
Для тих, хто сильно "не дуже..."
І для тих, хто "дуже навіть...")

Види квадратних рівнянь

Що таке квадратне рівняння? Як воно виглядає? У терміні квадратне рівнянняключовим словом є "квадратне".Воно означає, що у рівнянні обов'язковоповинен бути присутнім ікс у квадраті. Крім нього, у рівнянні можуть бути (а можуть і не бути!) просто ікс (у першому ступені) і просто число (Вільний член).І не повинно бути іксів у мірі, більше двійки.

Говорячи математичною мовою, квадратне рівняння – це рівняння виду:

Тут a, b і с- Якісь числа. b та c- Зовсім будь-які, а а- Будь-яке, крім нуля. Наприклад:

Тут а =1; b = 3; c = -4

Тут а =2; b = -0,5; c = 2,2

Тут а =-3; b = 6; c = -18

Ну ви зрозуміли…

У цих квадратних рівняннях зліва присутній повний набірчленів. Ікс у квадраті з коефіцієнтом а,ікс у першому ступені з коефіцієнтом bі вільний член с.

Такі квадратні рівняння називаються повними.

А якщо b= 0, що в нас вийде? У нас пропаде ікс у першому ступені.Від множення на нуль таке трапляється.) Виходить, наприклад:

5х 2 -25 = 0,

2х 2 -6х = 0,

-х 2 +4х = 0

І т.п. А якщо вже обидва коефіцієнти, bі cрівні нулю, то все ще простіше:

2х 2 = 0,

-0,3 х 2 = 0

Такі рівняння, де чогось не вистачає, називаються неповними квадратними рівняннями.Що цілком логічно.) Прошу помітити, що ікс у квадраті є у всіх рівняннях.

До речі, чому ане може дорівнювати нулю? А ви підставте замість анолик.) У нас зникне ікс у квадраті! Рівняння стане лінійним. І вирішується вже зовсім інакше.

Ось і всі основні види квадратних рівнянь. Повні та неповні.

Розв'язання квадратних рівнянь.

Розв'язання повних квадратних рівнянь.

Квадратні рівняння вирішуються просто. За формулами та точними нескладними правилами. У першому етапі треба задане рівняння призвести до стандартного вигляду, тобто. до вигляду:

Якщо рівняння вам дано вже в такому вигляді - перший етап робити не потрібно. Головне - правильно визначити всі коефіцієнти, а, bі c.

Формула для знаходження коріння квадратного рівняння виглядає так:

Вираз під знаком кореня називається дискримінант. Але про нього – нижче. Як бачимо, для знаходження ікса ми використовуємо тільки a, b і с. Тобто. коефіцієнти із квадратного рівняння. Просто акуратно підставляємо значення a, b і су цю формулу і рахуємо. Підставляємо зі своїми знаками! Наприклад, у рівнянні:

а =1; b = 3; c= -4. Ось і записуємо:

Приклад практично вирішено:

Це відповідь.

Все дуже просто. І що, думаєте, помилитись не можна? Ну так, як же…

Найпоширеніші помилки – плутанина зі знаками значень a, b і с. Точніше, не з їхніми знаками (де там плутатися?), а з підстановкою негативних значень у формулу для обчислення коріння. Тут рятує докладний запис формули із конкретними числами. Якщо є проблеми з обчисленнями, так і робіть!

Припустимо, треба ось такий приклад вирішити:

Тут a = -6; b = -5; c = -1

Допустимо, ви знаєте, що відповіді у вас рідко з першого разу виходять.

Ну і не лінуйтеся. Написати зайву строчку займе секунд 30. А кількість помилок різко скоротиться. Ось і пишемо докладно, з усіма дужками та знаками:

Це здається неймовірно важким, так старанно розписувати. Але це лише здається. Спробуйте. Ну, чи вибирайте. Що краще, швидко, чи правильно? Крім того, я вас порадую. Через деякий час зникне потреба так ретельно все розписувати. Саме правильно виходитиме. Особливо, якщо застосовуватимете практичні прийоми, що описані трохи нижче. Цей злий приклад з купою мінусів вирішиться просто і без помилок!

Але, часто, квадратні рівняння виглядають трохи інакше. Наприклад, ось так:

Дізналися?) Так! Це неповні квадратні рівняння.

Розв'язання неповних квадратних рівнянь.

Їх також можна вирішувати за загальною формулою. Треба тільки правильно збагнути, чого тут дорівнюють a, b і с.

Зрозуміли? У першому прикладі a = 1; b = -4;а c? Його взагалі нема! Так, правильно. У математиці це означає, що c = 0 ! От і все. Підставляємо у формулу нуль замість c,і все в нас вийде. Аналогічно і з другим прикладом. Тільки нуль у нас тут не з, а b !

Але неповні квадратні рівняння можна вирішувати набагато простіше. Без жодних формул. Розглянемо перше неповне рівняння. Що там можна зробити у лівій частині? Можна ікс винести за дужки! Давайте винесемо.

І що з цього? А те, що твір дорівнює нулю тоді, і тільки тоді, коли якийсь із множників дорівнює нулю! Не вірите? Добре, придумайте тоді два ненульові числа, які при перемноженні нуль дадуть!
Не виходить? Отож…
Отже, можна впевнено записати: х 1 = 0, х 2 = 4.

Всі. Це і буде коріння нашого рівняння. Обидва підходять. При підстановці кожного з них у вихідне рівняння, ми отримаємо правильну тотожність 0 = 0. Як бачите, рішення набагато простіше, ніж за загальною формулою. Зауважу, до речі, який ікс буде першим, а яким другим абсолютно байдуже. Зручно записувати по порядку, х 1- те, що менше, а х 2- Те, що більше.

Друге рівняння також можна вирішити просто. Переносимо 9 у праву частину. Отримаємо:

Залишається корінь витягти з 9, і все. Вийде:

Теж два корені . х 1 = -3, х 2 = 3.

Так вирішуються усі неповні квадратні рівняння. Або з допомогою винесення икса за дужки, чи простим перенесенням числа вправо з наступним вилученням кореня.
Зплутати ці прийоми дуже складно. Просто тому, що в першому випадку вам доведеться корінь із іксу витягувати, що якось незрозуміло, а в другому випадку виносити за дужки нема чого…

Дискримінант. Формула дискримінанту.

Чарівне слово дискримінант ! Рідкісний старшокласник не чув цього слова! Фраза «вирішуємо через дискримінант» вселяє впевненість та обнадіює. Тому що чекати каверз від дискримінанта не доводиться! Він простий і безвідмовний у зверненні.) Нагадую найзагальнішу формулу для вирішення будь-якихквадратних рівнянь:

Вираз під знаком кореня називається дискримінантом. Зазвичай дискримінант позначається буквою D. Формула дискримінанта:

D = b 2 - 4ac

І чим же примітний цей вислів? Чому воно заслужило спеціальну назву? У чому сенс дискримінанта?Адже -b,або 2aу цій формулі спеціально ніяк не називають... Літери та літери.

Справа ось у чому. При розв'язанні квадратного рівняння за цією формулою, можливі лише три випадки.

1. Дискримінант позитивний.Це означає, що з нього можна витягти корінь. Добре корінь витягується, або погано – питання інше. Важливо, що в принципі. Тоді у вашого квадратного рівняння – два корені. Два різні рішення.

2. Дискримінант дорівнює нулю.Тоді у вас буде одне рішення. Так як від додавання-віднімання нуля в чисельнику нічого не змінюється. Строго кажучи, це не один корінь, а два однакові. Але, у спрощеному варіанті, прийнято говорити про одному рішенні.

3. Дискримінант негативний.З негативного числа квадратний корінь не витягується. Ну і добре. Це означає, що рішень немає.

Чесно кажучи, при простому розв'язанні квадратних рівнянь, поняття дискримінанта не особливо й потрібне. Підставляємо на формулу значення коефіцієнтів, і вважаємо. Там все само собою виходить, і два корені, і одне, і жодне. Однак, при вирішенні складніших завдань, без знання змісту та формули дискримінантане обійтись. Особливо – в рівняннях із параметрами. Такі рівняння - вищий пілотаж на ДІА та ЄДІ!)

Отже, як розв'язувати квадратні рівняннячерез дискримінант ви згадали. Або навчилися, що теж непогано.) Умієте правильно визначати a, b і с. Вмієте уважнопідставляти їх у формулу коренів та уважнорахувати результат. Ви зрозуміли, що ключове слово тут – уважно?

А тепер прийміть до уваги практичні прийоми, які різко знижують кількість помилок. Тих самих, що через неуважність. За які потім буває боляче і прикро.

Прийом перший . Не лінуйтеся перед вирішенням квадратного рівняння привести його до стандартного вигляду. Що це означає?
Припустимо, після будь-яких перетворень ви отримали таке рівняння:

Не кидайтеся писати формулу коріння! Майже напевно, ви переплутаєте коефіцієнти a, b та с.Побудуйте приклад правильно. Спочатку ікс у квадраті, потім без квадрата, потім вільний член. Ось так:

І знову не кидайтесь! Мінус перед іксом у квадраті може дуже вас засмутити. Забути його легко… Позбавтеся мінуса. Як? Та як навчали у попередній темі! Потрібно помножити все рівняння на -1. Отримаємо:

А ось тепер можна сміливо записувати формулу для коріння, рахувати дискримінант і дорішувати приклад. Дорішайте самостійно. У вас має вийти коріння 2 і -1.

Прийом другий. Перевіряйте коріння! За теоремою Вієта. Не лякайтеся, я все поясню! Перевіряємо останнєрівняння. Тобто. те, яким ми записували формулу коренів. Якщо (як у цьому прикладі) коефіцієнт а = 1, перевірити коріння легко. Достатньо їх перемножити. Має вийти вільний член, тобто. у разі -2. Зверніть увагу не 2, а -2! Вільний член зі своїм знаком . Якщо не вийшло – значить уже десь накосячили. Шукайте помилку.

Якщо вийшло – треба скласти коріння. Остання та остаточна перевірка. Повинен вийти коефіцієнт bз протилежним знаком. У разі -1+2 = +1. А коефіцієнт b, що перед іксом, дорівнює -1. Значить, все правильно!
Жаль, що це так просто тільки для прикладів, де ікс у квадраті чистий, з коефіцієнтом а = 1.Але хоч у таких рівняннях перевіряйте! Дедалі менше помилок буде.

Прийом третій . Якщо у вашому рівнянні є дробові коефіцієнти, - позбавтеся дробів! Домножте рівняння на спільний знаменник, як описано в уроці "Як розв'язувати рівняння? Тотожні перетворення". При роботі з дробами помилки чомусь так і лізуть.

До речі, я обіцяв злий приклад із купою мінусів спростити. Будь ласка! Ось він.

Щоб не плутатися в мінусах, примножуємо рівняння на -1. Отримуємо:

От і все! Вирішувати – одне задоволення!

Отже, підсумуємо тему.

Практичні поради:

1. Перед рішенням наводимо квадратне рівняння до стандартного вигляду, вибудовуємо його правильно.

2. Якщо перед іксом у квадраті стоїть негативний коефіцієнт, ліквідуємо його множенням всього рівняння на -1.

3. Якщо коефіцієнти дробові – ліквідуємо дроби множенням всього рівняння на відповідний множник.

4. Якщо ікс у квадраті – чистий, коефіцієнт при ньому дорівнює одиниці, рішення можна легко перевірити за теоремою Вієта. Робіть це!

Тепер можна і вирішити.)

Розв'язати рівняння:

8х 2 - 6x + 1 = 0

х 2 + 3x + 8 = 0

х 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1)(x+2)

Відповіді (безладно):

х 1 = 0
х 2 = 5

х 1,2 =2

х 1 = 2
х 2 = -0,5

х - будь-яке число

х 1 = -3
х 2 = 3

рішень немає

х 1 = 0,25
х 2 = 0,5

Все сходиться? Чудово! Квадратні рівняння – не ваш головний біль. Перші три вийшли, а решта – ні? Тоді проблема не у квадратних рівняннях. Проблема у тотожних перетвореннях рівнянь. Прогуляйтеся посиланням, це корисно.

Чи не зовсім виходить? Чи зовсім не виходить? Тоді вам допоможе Розділ 555. Там усі ці приклади розібрані по кісточках. Показано головніпомилки у вирішенні. Розповідається, зрозуміло, і застосування тотожних перетворень у вирішенні різних рівнянь. Дуже допомагає!

Якщо Вам подобається цей сайт...

До речі, у мене є ще кілька цікавих сайтів для Вас.)

Можна потренуватися у вирішенні прикладів та дізнатися свій рівень. Тестування з миттєвою перевіркою. Вчимося – з інтересом!)

можна познайомитися з функціями та похідними.

Найпростішим способом. Для цього винесіть z за дужки. Ви отримаєте : z(аz + b) = 0. Множники можна розписати: z = 0 і аz + b = 0, тому що обидва можуть давати в результаті нуль. У записі аz + b = 0 перенесемо другий праворуч з іншим знаком. Звідси одержуємо z1 = 0 і z2 = -b/а. Це і є коріння вихідного.

Якщо є неповне рівняння виду аz² + з = 0, у разі перебувають простим перенесенням вільного члена праву частину рівняння. Також поміняйте у своїй його знак. Вийде запис аz² = -с. Виразіть z² = -с/а. Візьміть корінь і запишіть два рішення – позитивне та негативне значення кореня квадратного.

Зверніть увагу

За наявності в рівнянні дробових коефіцієнтів помножте все рівняння на відповідний множник так, щоб позбавитися дробів.

Знання про те, як розв'язувати квадратні рівняння, потрібне і школярам, ​​і студентам, іноді це може допомогти і дорослій людині у звичайному житті. Є кілька певних методів рішень.

Розв'язання квадратних рівнянь

Квадратне рівняння виду a*x^2+b*x+c=0. Коефіцієнт х є шуканою змінною, a, b, c - числові коефіцієнти. Пам'ятайте, що знак "+" може змінюватися на знак "-".

Для того, щоб вирішити дане рівняння, необхідно скористатися теоремою Вієта або знайти дискримінант. Найпоширенішим способом є знаходження дискримінанта, тому що при деяких значеннях a, b, c скористатися теоремою Вієта неможливо.

Щоб знайти дискримінант (D) необхідно записати формулу D=b^2 - 4*a*c. Значення D може бути більшим, меншим або дорівнює нулю. Якщо D більше або менше нуля, то кореня буде два, якщо D = 0, то залишається лише один корінь, більш точно можна сказати, що D у цьому випадку має два рівнозначні корені. Підставте відомі коефіцієнти a, b, c формулу і обчисліть значення.

Після того, як ви знайшли дискримінант, для знаходження х скористайтеся формулами: x(1) = (- b+sqrt(D))/2*a; x(2) = (- b-sqrt(D))/2*a, де sqrt - це функція, що означає вилучення квадратного кореня з цього числа. Порахувавши ці вирази, ви знайдете два корені вашого рівняння, після чого рівняння вважається вирішеним.

Якщо D менше нуля, він все одно має коріння. У школі цей розділ практично не вивчається. Студенти вузів повинні знати, що з'являється негативне число під коренем. Від нього позбавляються виділяючи уявну частину, тобто -1 під коренем завжди дорівнює уявному елементу «i», який множиться на корінь з таким самим позитивним числом. Наприклад, якщо D=sqrt(-20), після перетворення виходить D=sqrt(20)*i. Після цього перетворення рішення рівняння зводиться до такого ж знаходження коренів, як було описано вище.

Теорема Вієта полягає у підборі значень x(1) та x(2). Використовується два тотожні рівняння: x(1) + x(2)=-b; x(1)*x(2)=с. Причому дуже важливим моментом є знак перед коефіцієнтом b, пам'ятайте, що цей знак протилежний тому, що стоїть у рівнянні. З першого погляду здається, що порахувати x(1) і x(2) дуже просто, але при вирішенні ви зіткнетеся з тим, що числа доведеться саме підбирати.

Елементи розв'язання квадратних рівнянь

За правилами математики деякі можна розкласти на множники: (a+x(1))*(b-x(2))=0, якщо за допомогою формул математики вдалося перетворити подібним чином це квадратне рівняння, то сміливо записуйте відповідь. x(1) і x(2) дорівнюватимуть поряд стоять коефіцієнтам у дужках, але з протилежним знаком.

Також не варто забувати про неповні квадратні рівняння. У вас може бути якийсь із доданків, якщо це так, то всі його коефіцієнти просто дорівнюють нулю. Якщо перед x^2 або x нічого не варте, то коефіцієнти а і b дорівнюють 1.

Якупова М.І. 1

Смирнова Ю.В. 1

1 Муніципальна бюджетна загальноосвітня установа середня загальноосвітня школа № 11

Текст роботи розміщено без зображень та формул.
Повна версія роботи доступна у вкладці "Файли роботи" у форматі PDF

Історія квадратних рівнянь

Вавилон

Необхідність вирішувати рівняння як першого ступеня, а й другого ще у давнину була викликана потребою вирішувати завдання, пов'язані зі знаходженням площ земельних ділянок, з недостатнім розвитком астрономії і самої математики. Квадратні рівняння вміли розв'язувати близько 2000 років до зв. е. вавилоняни. Правила розв'язання цих рівнянь, викладені у вавилонських текстах, збігаються сутнісно із сучасними, але у цих текстах відсутні поняття негативного числа і загальні методи розв'язання квадратних рівнянь.

Стародавня Греція

Розв'язанням квадратних рівнянь займалися й у Стародавню Грецію такі вчені як Діофант, Евклід і Герон. Діофант Олександрійський - давньогрецький математик, який жив приблизно в III столітті нашої ери. Основний твір Діофанта – «Арифметика» у 13 книгах. Евклід. Евклід давньогрецький математик, автор першого теоретичних трактатів з математики Герон, що дійшли до нас. Герон - грецький математик та інженер вперше у Греції у I століття н.е. дає суто алгебраїчний спосіб розв'язання квадратного рівняння

Індія

Завдання на квадратні рівняння зустрічаються вже в астрономічному трактаті «Аріабхаттіам», складеному 499 р. індійським математиком та астрономом Аріабхаттою. Інший індійський вчений, Брахмагупта (VII ст.), виклав загальне правило розв'язання квадратних рівнянь, наведених до єдиної канонічної форми: ax2 + bх = с, а>0. (1) У рівнянні (1) коефіцієнти можуть бути і негативними. Правило Брахмагупт по суті збігається з нашим. В Індії були поширені громадські змагання у вирішенні важких завдань. В одній із старовинних індійських книг говориться з приводу таких змагань наступне: «Як сонце блиском своїм затьмарює зірки, так вчена людина затьмарить славу в народних зборах, пропонуючи і вирішуючи завдання алгебри». Завдання часто вдягалися у віршовану форму.

Ось одне із завдань знаменитого індійського математика XII ст. Бхаскар.

«Мавп швидких зграя

А дванадцять по ліанах Насолоду поївши, розважалася

Стали стрибати, повисаючи

Їх у квадраті частина восьма

Скільки ж було мавп,

На галявині бавилася

Ти скажи мені, у цій зграї?

Рішення Бхаскари свідчить про те, що автор знав про двозначність коренів квадратних рівнянь. Відповідне завдання рівняння Бхаскар пише під виглядом x2 - 64x = - 768 і, щоб доповнити ліву частину цього рівняння до квадрата, додає до обох частин 322, отримуючи потім: x2 - б4х + 322 = -768 + 1022, (х = 256, x - 32 = ±16, x1 = 16, x2 = 48.

Квадратні рівняння у Європі XVII століття

Формули розв'язання квадратних рівнянь за зразком Ал - Хорезмі в Європі були вперше викладені в Книзі абака, написаної в 1202 р. італійським математиком Леонардо Фібоначчі. Ця об'ємна праця, в якій відображено вплив математики як країн ісламу, так і Стародавньої Греції, відрізняється і повнотою, і ясністю викладу. Автор розробив самостійно деякі нові приклади алгебри вирішення завдань і перший в Європі підійшов до введення негативних чисел. Його книга сприяла поширенню знань алгебри не тільки в Італії, але і в Німеччині, Франції та інших країнах Європи. Багато завдань із «Книги абака» переходили майже у всі європейські підручники XVI – XVII ст. та частково XVIII. Висновок формули розв'язання квадратного рівняння у загальному вигляді є у Вієта, проте Вієт визнавав лише позитивне коріння. Італійські математики Тарталья, Кардано, Бомбеллі серед перших у XVI ст. Враховують, крім позитивних, і негативне коріння. Лише XVII в. Завдяки праці Жірара, Декарта, Ньютона та інших вчених спосіб розв'язання квадратних рівнянь набуває сучасного вигляду.

Визначення квадратного рівняння

Рівняння виду ax 2 + bx + c = 0, де a, b, c – числа, називається квадратним.

Коефіцієнти квадратного рівняння

Числа а, b, с – коефіцієнти квадратного рівняння. а – перший коефіцієнт (перед х²), а ≠ 0; b – другий коефіцієнт (перед х); с – вільний член (без х).

Які з цих рівнянь не є квадратними?

1. 4х ² + 4х + 1 = 0; 5х – 7 = 0;3. - х² - 5х - 1 = 0; 2/х ² + 3х + 4 = 0; ¼ х² – 6х + 1 = 0;6. 2х ² = 0;

7. 4х ² + 1 = 0; 8. х² – 1/х = 0;9. 2х ² - х = 0; 10. х² -16 = 0; 11. 7х ² + 5х = 0; 12. -8х ² = 0; 13. 5х +6х -8 = 0.

Види квадратних рівнянь

Назва

Загальний вигляд рівняння

Особливість (які коефіцієнти)

Приклади рівнянь

ax 2 + bx + c = 0

a, b, c - числа, відмінні від 0

1/3х 2 + 5х - 1 = 0

Неповні

х 2 - 1/5х = 0

Наведені

x 2 + bx + c = 0

х 2 - 3х + 5 = 0

Наведеним називають квадратне рівняння, у якому старший коефіцієнт дорівнює одиниці. Таке рівняння може бути отримано розподілом всього виразу на старший коефіцієнт a:

x 2 + px + q = 0, p = b/a, q = c/a

Повним називають таке квадратне рівняння, всі коефіцієнти якого відмінні від нуля.

Неповним називається таке квадратне рівняння, у якому хоча один із коефіцієнтів, крім старшого (або другий коефіцієнт, або вільний член), дорівнює нулю.

Способи розв'язання квадратних рівнянь

І спосіб. Загальна формула для обчислення коренів

Для знаходження коріння квадратного рівняння ax 2 + b + c = 0у загальному випадку слід користуватися наведеним нижче алгоритмом:

Обчислити значення дискримінанта квадратного рівняння: таким йому називається вираз D = b 2 - 4ac

Виведення формули:

Примітка:очевидно, що формула для кореня кратності 2 є окремим випадком загальної формули, що виходить при підстановці в неї рівності D=0, а висновок про відсутність речових коренів при D0, а (displaystyle (sqrt (-1))=i) = i.

Викладений метод універсальний, проте далеко не єдиний. До вирішення одного рівняння можна підійти різними способами, переваги зазвичай залежать від вирішального. Крім того, часто для цього деякий із способів виявляється значно більш елегантним, простим, менш трудомістким, ніж стандартний.

ІІ метод. Коріння квадратного рівняння при парному коефіцієнті b ІІІ спосіб. Розв'язання неповних квадратних рівнянь

IV метод. Використання приватних співвідношень коефіцієнтів

Існують окремі випадки квадратних рівнянь, у яких коефіцієнти перебувають у співвідношеннях між собою, що дозволяють вирішувати їх набагато простіше.

Коріння квадратного рівняння, в якому сума старшого коефіцієнта та вільного члена дорівнює другому коефіцієнту

Якщо у квадратному рівнянні ax 2 + bx + c = 0сума першого коефіцієнта та вільного члена дорівнює другому коефіцієнту: a + b = c, то його корінням є -1 і число, протилежне відношенню вільного члена до старшого коефіцієнта ( -c/a).

Звідси, перш, ніж вирішувати якесь квадратне рівняння, слід перевірити можливість застосування до нього цієї теореми: порівняти суму старшого коефіцієнта та вільного члена з другим коефіцієнтом.

Коріння квадратного рівняння, сума всіх коефіцієнтів якого дорівнює нулю

Якщо квадратному рівнянні сума всіх його коефіцієнтів дорівнює нулю, то корінням такого рівняння є 1 і відношення вільного члена до старшого коефіцієнта ( c/a).

Звідси, як вирішувати рівняння стандартними методами, слід перевірити застосовність щодо нього цієї теореми: скласти всі коефіцієнти даного рівняння і подивитися, чи дорівнює нулю ця сума.

V метод. Розкладання квадратного тричлена на лінійні множники

Якщо тричлен виду (displaystyle ax^(2)+bx+c(anot =0))ax 2 + bx + c(a ≠ 0)вдасться якимось чином представити як добуток лінійних множників (displaystyle (kx+m)(lx+n)=0)(kx + m)(lx + n), то можна знайти коріння рівняння ax 2 + bx + c = 0- ними будуть -m/k та n/l, дійсно, адже (displaystyle (kx+m)(lx+n)=0Longleftrightarrow kx+m=0cup lx+n=0)(kx + m)(lx + n) = 0 kx + mUlx + n, а розв'язавши зазначені лінійні рівняння, отримаємо вищеописане. Зазначимо, що квадратний тричлен не завжди розкладається на лінійні множники з дійсними коефіцієнтами: це можливо, якщо відповідне рівняння має дійсне коріння.

Розглянемо деякі окремі випадки

Використання формули квадрата суми (різниці)

Якщо квадратний тричлен має вигляд (displaystyle (ax)^(2)+2abx+b^(2))ax 2 + 2abx + b 2 то застосувавши до нього названу формулу, ми зможемо розкласти його на лінійні множники і, значить, знайти коріння:

(ax) 2 + 2abx + b 2 = (ax + b) 2

Виділення повного квадрата суми (різниці)

Також названу формулу застосовують, користуючись методом, який одержав назву «виділення повного квадрата суми (різниці)». Стосовно приведеного квадратного рівняння із введеними раніше позначеннями, це означає наступне:

Примітка:якщо ви помітили, дана формула збігається з пропонованою в розділі «Коріння наведеного квадратного рівняння», яку, у свою чергу, можна отримати із загальної формули (1) шляхом встановлення рівності a=1. Цей факт не просто збіг: описаним методом, зробивши, щоправда, деякі додаткові міркування, можна вивести і загальну формулу, а також довести властивості дискримінанта.

VI метод. Використання прямої та зворотної теореми Вієта

Пряма теорема Вієта (див. нижче в однойменному розділі) і зворотна теорема дозволяють вирішувати наведені квадратні рівняння усно, не вдаючись до досить громіздких обчислень за формулою (1).

Відповідно до зворотної теореми, будь-яка пара чисел (число) (displaystyle x_(1),x_(2))х 1 , х 2 будучи розв'язком нижченаведеної системи рівнянь, є корінням рівняння

Загалом, тобто для не наведеного квадратного рівняння ax 2 + bx + c = 0

х 1 + х 2 = -b/a, х 1 * х 2 = c/а

Підібрати усно числа, що задовольняють цим рівнянням, допоможе пряма теорема. З її допомогою можна визначити знаки коренів, не знаючи самі корені. Для цього слід керуватися правилом:

1) якщо вільний член від'ємний, то коріння має різний знак, і найбільший за модулем з коренів - знак, протилежний знаку другого коефіцієнта рівняння;

2) якщо вільний член позитивний, то обидва корені мають однаковий знак, і це - знак, протилежний знаку другого коефіцієнта.

VII метод. Метод «перекидання»

Так званий метод «перекидання» дозволяє зводити рішення ненаведених і неперетворюваних до виду наведених з цілими коефіцієнтами шляхом їхнього розподілу на старший коефіцієнт рівнянь до вирішення наведених з цілими коефіцієнтами. Він полягає в наступному:

Далі рівняння вирішують усно описаним вище способом, потім повертаються до вихідної змінної і знаходять коріння рівнянь (displaystyle y_(1)=ax_(1)) y 1 = ax 1 і y 2 = ax 2 .(displaystyle y_(2)=ax_(2))

Геометричний зміст

Графіком квадратичної функції парабола. Рішеннями (корінням) квадратного рівняння називають абсциси точок перетину параболи з віссю абсцис. Якщо парабола, що описується квадратичною функцією, не перетинається з віссю абсцис, рівняння не має речових коренів. Якщо парабола перетинається з віссю абсцис в одній точці (у вершині параболи), рівняння має один речовий корінь (також кажуть, що рівняння має два збігаються корені). Якщо парабола перетинає вісь абсцис у двох точках, рівняння має два речові корені (див. зображення справа.)

Якщо коефіцієнт (displaystyle a) aпозитивний, гілки параболи спрямовані вгору та навпаки. Якщо коефіцієнт (Displaystyle b) bпозитивний (при позитивному (displaystyle a) a, при негативному навпаки), то вершина параболи лежить у лівій напівплощині та навпаки.

Застосування квадратних рівнянь у житті

Квадратне рівняння поширене. Воно застосовується у багатьох розрахунках, спорудах, спорті, а також навколо нас.

Розглянемо та наведемо деякі приклади застосування квадратного рівняння.

Спорт. Стрибки у висоту: при розбігу стрибуна для максимально чіткого попадання на планку відштовхування та високого польоту використовують розрахунки, пов'язані з параболою.

Також такі розрахунки потрібні в метанні. Дальність польоту об'єкта залежить від квадратного рівняння.

Астрономія. Траєкторію руху планет можна знайти за допомогою квадратного рівняння.

Політ літака. Зліт літака є головною складовою польоту. Тут береться розрахунок для невеликого опору та прискорення зльоту.

Також квадратні рівняння застосовуються в різних економічних дисциплінах, програмах для обробки звуку, відео, векторної та растрової графіки.

Висновок

В результаті виконаної роботи з'ясувалося, що квадратні рівняння залучали вчених ще в давнину, вони вже стикалися з ними при вирішенні деяких завдань і намагалися їх вирішувати. Розглядаючи різні способи розв'язання квадратних рівнянь, я дійшла висновку, що вони всі прості. На мій погляд, найкращим способом розв'язання квадратних рівнянь є рішення за формулами. Формули легко запам'ятовуються, цей універсальний метод. Гіпотеза, що рівняння широко застосовуються у житті та математиці підтвердилася. Вивчивши тему, я дізналася багато цікавих фактів про квадратні рівняння, їх використання, застосування, види, рішення. І я із задоволенням продовжу їхнє вивчення. Сподіваюся, що це допоможе мені добре скласти іспити.

Список використаної літератури

Матеріали сайтів:

Вікіпедія

Відкритий урок.

Довідник з елементарної математики Вигодський М.Я.

Квадратні рівняння вивчають у 8 класі, тож нічого складного тут немає. Вміння вирішувати їх необхідно.

Квадратне рівняння - це рівняння виду ax 2 + bx + c = 0, де коефіцієнти a, b і c - довільні числа, причому a ≠ 0.

Перш ніж вивчати конкретні методи розв'язання, зауважимо, що всі квадратні рівняння можна умовно поділити на три класи:

  1. Не мають коріння;
  2. Мають рівно один корінь;
  3. Мають два різні корені.

У цьому полягає важлива відмінність квадратних рівнянь від лінійних, де корінь завжди існує і єдний. Як визначити, скільки коренів має рівняння? Для цього існує чудова річ. дискримінант.

Дискримінант

Нехай дано квадратне рівняння ax 2 + bx + c = 0. Тоді дискримінант це просто число D = b 2 − 4ac .

Цю формулу треба знати напам'ять. Звідки вона береться - зараз не має значення. Важливо інше: за знаком дискримінанта можна визначити, скільки коренів має квадратне рівняння. А саме:

  1. Якщо D< 0, корней нет;
  2. Якщо D = 0, є рівно один корінь;
  3. Якщо D > 0, коріння буде два.

Зверніть увагу: дискримінант вказує на кількість коренів, а зовсім не на їхні знаки, як чомусь багато хто вважає. Погляньте на приклади - і самі все зрозумієте:

Завдання. Скільки коренів мають квадратні рівняння:

  1. x 2 − 8x + 12 = 0;
  2. 5x2+3x+7=0;
  3. x 2 - 6x + 9 = 0.

Випишемо коефіцієнти для першого рівняння та знайдемо дискримінант:
a = 1, b = -8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Отже, дискримінант позитивний, тому рівняння має два різні корені. Аналогічно розбираємо друге рівняння:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискримінант негативний, коріння немає. Залишилося останнє рівняння:
a = 1; b = -6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискримінант дорівнює нулю – корінь буде один.

Зверніть увагу, що для кожного рівняння було виписано коефіцієнти. Так, це довго, так, це нудно — зате ви не переплутаєте коефіцієнти і не припуститеся дурних помилок. Вибирайте самі: швидкість чи якість.

До речі, якщо «набити руку», через деякий час вже не потрібно виписувати всі коефіцієнти. Такі операції ви виконуватимете в голові. Більшість людей починають робити десь після 50-70 вирішених рівнянь — загалом, не так і багато.

Коріння квадратного рівняння

Тепер перейдемо власне до рішення. Якщо дискримінант D > 0, коріння можна знайти за формулами:

Основна формула коренів квадратного рівняння

Коли D = 0, можна використовувати будь-яку з цих формул — вийде те саме число, яке і буде відповіддю. Нарешті, якщо D< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x2+12x+36=0.

Перше рівняння:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = -2; c = -3;
D = (−2) 2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ рівняння має два корені. Знайдемо їх:

Друге рівняння:
15 − 2x − x 2 = 0 ⇒ a = −1; b = -2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ рівняння знову має два корені. Знайдемо їх

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(align)\]

Нарешті, третє рівняння:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ рівняння має один корінь. Можна використати будь-яку формулу. Наприклад, першу:

Як бачимо з прикладів, все дуже просто. Якщо знати формули та вміти рахувати, проблем не буде. Найчастіше помилки виникають при підстановці формулу негативних коефіцієнтів. Тут знову ж таки допоможе прийом, описаний вище: дивіться на формулу буквально, розписуйте кожен крок — і дуже скоро позбавтеся помилок.

Неповні квадратні рівняння

Буває, що квадратне рівняння дещо відрізняється від того, що дано у визначенні. Наприклад:

  1. x 2 + 9x = 0;
  2. x 2 - 16 = 0.

Неважко помітити, що у цих рівняннях відсутнє одне із доданків. Такі квадратні рівняння вирішуються навіть легше, ніж стандартні: у них навіть не потрібно вважати дискримінант. Отже, введемо нове поняття:

Рівняння ax 2 + bx + c = 0 називається неповним квадратним рівнянням, якщо b = 0 чи c = 0, тобто. коефіцієнт при змінній x чи вільний елемент дорівнює нулю.

Вочевидь, можливий дуже важкий випадок, коли обидва цих коефіцієнта дорівнюють нулю: b = c = 0. І тут рівняння набуває вигляду ax 2 = 0. Вочевидь, таке рівняння має єдиний корінь: x = 0.

Розглянемо решту випадків. Нехай b = 0, тоді отримаємо неповне квадратне рівняння виду ax 2 + c = 0. Дещо перетворимо його:

Оскільки арифметичний квадратний корінь існує тільки з невід'ємного числа, остання рівність має сенс виключно за (−c /a ) ≥ 0. Висновок:

  1. Якщо у неповному квадратному рівнянні виду ax 2 + c = 0 виконано нерівність (−c /a ) ≥ 0, коріння буде два. Формула дана вище;
  2. Якщо ж (−c /a)< 0, корней нет.

Як бачите, дискримінант не був потрібний — у неповних квадратних рівняннях взагалі немає складних обчислень. Насправді навіть необов'язково пам'ятати нерівність (−c /a ) ≥ 0. Достатньо виразити величину x 2 і подивитися, що стоїть з іншого боку знаку рівності. Якщо там позитивне число — коріння буде два. Якщо негативне — коріння взагалі не буде.

Тепер розберемося з рівняннями виду ax 2 + bx = 0, у яких вільний елемент дорівнює нулю. Тут усе просто: коріння завжди буде два. Достатньо розкласти багаточлен на множники:

Винесення загального множника за дужку

Добуток дорівнює нулю, коли хоча б один із множників дорівнює нулю. Звідси є коріння. На закінчення розберемо кілька таких рівнянь:

Завдання. Розв'язати квадратні рівняння:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Коріння немає, т.к. квадрат не може дорівнювати негативному числу.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = -1,5.

Формули коріння квадратного рівняння. Розглянуто випадки дійсних, кратних та комплексних коренів. Розкладання на множники квадратного тричлена. Геометрична інтерпретація. Приклади визначення коренів та розкладання на множники.

Основні формули

Розглянемо квадратне рівняння:
(1) .
Коріння квадратного рівняння(1) визначаються за формулами:
; .
Ці формули можна поєднати так:
.
Коли коріння квадратного рівняння відоме, то багаточлен другого ступеня можна подати у вигляді добутку співмножників (розкласти на множники):
.

Далі вважаємо, що дійсні числа.
Розглянемо дискримінант квадратного рівняння:
.
Якщо дискримінант позитивний, то квадратне рівняння (1) має два різні дійсні корені:
; .
Тоді розкладання квадратного тричлена на множники має вигляд:
.
Якщо дискримінант дорівнює нулю, то квадратне рівняння (1) має два кратні (рівні) дійсні корені:
.
Розкладання на множники:
.
Якщо дискримінант негативний, то квадратне рівняння (1) має два комплексно пов'язані корені:
;
.
Тут - уявна одиниця, ;
і - дійсна та уявна частини коренів:
; .
Тоді

.

Графічна інтерпретація

Якщо побудувати графік функції
,
який є параболою, то точки перетину графіка з віссю будуть корінням рівняння
.
При , графік перетинає вісь абсцис (вісь ) у двох точках.
При , графік стосується осі абсцис в одній точці.
При , графік не перетинає вісь абсцис.

Нижче наведено приклади таких графіків.

Корисні формули, пов'язані з квадратним рівнянням

(f.1) ;
(f.2) ;
(f.3) .

Висновок формули для коріння квадратного рівняння

Виконуємо перетворення та застосовуємо формули (f.1) та (f.3):




,
де
; .

Отже, ми отримали формулу для багаточлена другого ступеня у вигляді:
.
Звідси видно, що рівняння

виконується при
та .
Тобто і є корінням квадратного рівняння
.

Приклади визначення коренів квадратного рівняння

Приклад 1


(1.1) .

Рішення


.
Порівнюючи з нашим рівнянням (1.1), знаходимо значення коефіцієнтів:
.
Знаходимо дискримінант:
.
Оскільки дискримінант позитивний, то рівняння має два дійсні корені:
;
;
.

Звідси отримуємо розкладання квадратного тричлена на множники:

.

Графік функції y = 2 x 2 + 7 x + 3перетинає вісь абсцис у двох точках.

Побудуємо графік функції
.
Графік цієї функції параболою. Вона пересіває вісь абсцис (вісь) у двох точках:
та .
Ці точки є корінням вихідного рівняння (1.1).

Відповідь

;
;
.

Приклад 2

Знайти коріння квадратного рівняння:
(2.1) .

Рішення

Запишемо квадратне рівняння у загальному вигляді:
.
Порівнюючи з вихідним рівнянням (2.1), знаходимо значення коефіцієнтів:
.
Знаходимо дискримінант:
.
Оскільки дискримінант дорівнює нулю, то рівняння має два кратні (рівні) корені:
;
.

Тоді розкладання тричлена на множники має вигляд:
.

Графік функції y = x 2 - 4 x + 4стосується осі абсцис в одній точці.

Побудуємо графік функції
.
Графік цієї функції параболою. Вона стосується осі абсцис (вісь ) в одній точці:
.
Ця точка є коренем вихідного рівняння (2.1). Оскільки цей корінь входить у розкладання на множники двічі:
,
то такий корінь прийнято називати кратним. Тобто вважають, що є два рівні корені:
.

Відповідь

;
.

Приклад 3

Знайти коріння квадратного рівняння:
(3.1) .

Рішення

Запишемо квадратне рівняння у загальному вигляді:
(1) .
Перепишемо вихідне рівняння (3.1):
.
Порівнюючи з (1), знаходимо значення коефіцієнтів:
.
Знаходимо дискримінант:
.
Дискримінант негативний, . Тому дійсних коренів немає.

Можна знайти комплексне коріння:
;
;
.

Тоді


.

Графік функції не перетинає вісь абсцис. Справжнього коріння немає.

Побудуємо графік функції
.
Графік цієї функції параболою. Вона не перетинає вісь абсцис (вісь). Тому дійсних коренів немає.

Відповідь

Справжнього коріння немає. Коріння комплексне:
;
;
.



Останні матеріали розділу:

Чому на Місяці немає життя?
Чому на Місяці немає життя?

Зараз, коли людина ретельно досліджувала поверхню Місяця, вона дізналася багато цікавого про неї. Але факт, що на Місяці немає життя, людина знала задовго...

Лінкор
Лінкор "Бісмарк" - залізний канцлер морів

Вважають, що багато в чому погляди Бісмарка як дипломата склалися під час його служби в Петербурзі під впливом російського віце-канцлера.

Крутиться земля обертається як обертання землі навколо сонця і своєї осі
Крутиться земля обертається як обертання землі навколо сонця і своєї осі

Земля не стоїть на місці, а перебуває у безперервному русі. Завдяки тому, що вона обертається навколо Сонця, на планеті відбувається зміна часів.