Розкласти функції в статечний ряд онлайн. Ряд маклорену та розкладання деяких функцій

Як вставити математичні формули на сайт?

Якщо потрібно колись додавати одну-дві математичні формули на веб-сторінку, то найпростіше зробити це, як описано в статті: математичні формули легко вставляються на сайт у вигляді картинок, які автоматично генерує Вольфрам Альфа. Окрім простоти, цей універсальний спосіб допоможе покращити видимість сайту у пошукових системах. Він працює давно (і, гадаю, працюватиме вічно), але морально вже застарів.

Якщо ви постійно використовуєте математичні формули на своєму сайті, я рекомендую вам використовувати MathJax - спеціальну бібліотеку JavaScript, яка відображає математичні позначення у веб-браузерах з використанням розмітки MathML, LaTeX або ASCIIMathML.

Є два способи, як почати використовувати MathJax: (1) за допомогою простого коду можна швидко підключити до вашого сайту скрипт MathJax, який автоматично підвантажуватиметься з віддаленого сервера (список серверів); (2) завантажити скрипт MathJax з віддаленого сервера на свій сервер та підключити до всіх сторінок свого сайту. Другий спосіб – більш складний та довгий – дозволить прискорити завантаження сторінок вашого сайту, і якщо батьківський сервер MathJax з якихось причин стане тимчасово недоступним, це ніяк не вплине на ваш власний сайт. Незважаючи на ці переваги, я вибрав перший спосіб, як більш простий, швидкий і не потребує технічних навичок. Наслідуйте мій приклад, і вже через 5 хвилин ви зможете використовувати всі можливості MathJax на своєму сайті.

Підключити скрипт бібліотеки MathJax з віддаленого сервера можна за допомогою двох варіантів коду, взятого на головному сайті MathJax або на сторінці документації:

Один з цих варіантів коду потрібно скопіювати і вставити в код вашої веб-сторінки, бажано між тегами або відразу після тега . За першим варіантом MathJax підвантажується швидше і менше гальмує сторінку. Натомість другий варіант автоматично відстежує та підвантажує свіжі версії MathJax. Якщо вставити перший код, його потрібно буде періодично оновлювати. Якщо вставити другий код, то сторінки завантажуватимуться повільніше, зате вам не потрібно буде постійно стежити за оновленнями MathJax.

Підключити MathJax найпростіше в Blogger або WordPress: в панелі керування сайтом додайте віджет, призначений для вставки стороннього коду JavaScript, скопіюйте в нього перший або другий варіант завантаженого коду, представленого вище, і розмістіть віджет ближче до початку шаблону (до речі, це зовсім не обов'язково , оскільки скрипт MathJax завантажується асинхронно). От і все. Тепер вивчіть синтаксис розмітки MathML, LaTeX та ASCIIMathML, і ви готові вставляти математичні формули на веб-сторінки свого сайту.

Будь-який фрактал будується за певним правилом, яке послідовно застосовується необмежену кількість разів. Щоразу називається ітерацією.

Ітеративний алгоритм побудови губки Менгера досить простий: вихідний куб зі стороною 1 ділиться площинами, що паралельні його граням, на 27 рівних кубів. З нього видаляються один центральний куб і 6 прилеглих до нього на грані кубів. Виходить безліч, що складається з 20 менших кубів, що залишилися. Поступаючи так само з кожним із цих кубів, отримаємо безліч, що складається вже з 400 менших кубів. Продовжуючи цей процес безкінечно, отримаємо губку Менгера.

"Знайти розкладання у ряд Маклорена функції f(x) " - саме так звучить завдання з вищої математики, яке одним студентам під силу, інші ж можуть впоратися з прикладами. Є кілька способів розкладання ряду за ступенями, тут буде дано методику розкладання функцій до ряду Маклорена. При розвитку функції ряд потрібно добре вміти обчислювати похідні.

Приклад 4.7 Розкласти функцію в ряд за ступенями x

Обчислення: Виконуємо розкладання функції згідно з формулою Маклорена. Спочатку розкладемо в ряд знаменник функції

насамкінець помножимо розкладання на чисельник.
Перший доданок - значення функції в нулі f(0) = 1/3.
Знайдемо похідні функції першого та вищих порядків f(x) та значення цих похідних у точці x=0




Далі із закономірності зміни значення похідних 0 записуємо формулу для n-ї похідної

Отже, знаменник представимо у вигляді розкладання до ряду Маклорена

Помножуємо на чисельник і отримуємо розкладання функції в ряд за ступенями х

Як бачите, нічого складного тут немає.
Усі ключові моменти базуються на вмінні обчислювати похідні та швидкому узагальненні значення похідної старших порядків у нулі. Наступні приклади допоможуть вам навчитися швидко розкладати функцію в ряд.

Приклад 4.10 Знайти розкладання ряду Маклорена функції

Обчислення: Як Ви здогадалися розкладати в ряд будемо косинус в чисельнику. Для цього можете використовувати формули для нескінченно малих величин або вивести розкладання косинуса через похідні. В результаті прийдемо до наступного ряду за ступенями x

Як бачите, маємо мінімум обчислень і компактний запис розкладання в ряд.

Приклад 4.16 Розкласти функцію в ряд за ступенями x:
7/(12-x-x^2)
Обчислення: У подібних прикладах необхідно дріб розкласти через суму найпростіших дробів.
Як це робити ми зараз не показуватимемо, але за допомогою невизначених коефіцієнтів прийдемо до суми дох дробів.
Далі записуємо знаменники у показовій формі

Залишилося розкласти доданки за допомогою формули Маклорена. Підсумовуючи доданки при однакових ступенях "ікс" складаємо формулу загального члена розкладання функції до ряду



Останню частину початку ряду на початку важко реалізувати, оскільки складно об'єднати формули для парних і непарних індексів (ступенів), але з практикою це буде виходити дедалі краще.

Приклад 4.18 Знайти розкладання ряду Маклорена функції

Обчислення: Знайдемо похідну цієї функції:

Розкладемо функцію в ряд, скориставшись однією з формул Макларена:

Ряди почленно підсумовуємо на основі того, що обидва абсолютно збігаються. Проінтегрувавши почленно весь ряд отримаємо розкладання функції в ряд за ступенями x

Між останніми двома рядками розкладання є перехід, який на початку у Вас буде забирати багато часу. Узагальнення формули ряду не всім дається легко, тому не хвилюйтеся з приводу того, що не можете дістати красивої і компактної формули.

Приклад 4.28 Знайти розкладання ряду Маклорена функції:

Запишемо логарифм в такий спосіб

За формулою Маклорена розкладаємо в ряд за ступенями x логарифм функцію

Кінцеве згортання на перший погляд складне, проте при чергуванні знаків Ви завжди отримаєте щось подібне. Вхідний урок на тему розкладу функцій у ряд завершено. Інші не менш цікаві схеми розкладання будуть детально розглянуті у таких матеріалах.

Теоретично функціональних рядів центральне місце займає розділ, присвячений розкладу функції ряд.

Таким чином, ставиться завдання: за заданою функцією потрібно знайти такий статечний ряд

який на деякому інтервалі сходився і його сума дорівнювала
, тобто.

= ..

Це завдання називається завданням розкладання функції в статечний ряд.

Необхідною умовою розкладності функції в статечний рядє її диференційованість нескінченне число разів – це випливає з властивостей статечних рядів, що сходяться. Така умова виконується, зазвичай, для елементарних функцій у сфері визначення.

Отже, припустимо, що функція
має похідні будь-якого порядку. Чи можна її розкласти в статечний ряд, якщо можна, то як знайти цей ряд? Найпростіше вирішується друга частина завдання, з неї і почнемо.

Припустимо, що функцію
можна подати у вигляді суми статечного ряду, що сходиться в інтервалі, що містить точку х 0 :

= .. (*)

де а 0 1 2 ,...,а п ,... – невизначені (поки що) коефіцієнти.

Покладемо у рівності (*) значення х = х 0 , тоді отримаємо

.

Продиференціюємо статечний ряд (*) почленно

= ..

і вважаючи тут х = х 0 , отримаємо

.

При наступному диференціюванні отримаємо ряд

= ..

вважаючи х = х 0 , отримаємо
, звідки
.

Після п-кратного диференціювання отримаємо

Вважаючи в останній рівності х = х 0 , отримаємо
, звідки

Отже, коефіцієнти знайдено

,
,
, …,
,….,

підставляючи які в ряд (*), отримаємо

Отриманий ряд називається поряд Тейлорадля функції
.

Таким чином, ми встановили, що якщо функцію можна розкласти в статечний ряд за ступенями (х - х 0 ), то це розкладання єдино і отриманий ряд обов'язково є поряд Тейлора.

Зауважимо, що ряд Тейлора можна отримати для будь-якої функції, що має похідні будь-якого порядку в точці х = х 0 . Але це ще означає, що з функцією і отриманим поруч можна поставити знак рівності, тобто. що сума ряду дорівнює вихідній функції. По-перше, така рівність може мати сенс тільки в області збіжності, а отриманий для функції ряд Тейлора може і розходитися, по-друге, якщо ряд Тейлора буде сходитися, його сума може не збігатися з вихідною функцією.

3.2. Достатні умови розкладності функції до ряду Тейлора

Сформулюємо твердження, за допомогою якого буде вирішено поставлене завдання.

Якщо функція
в деякій околиці точки х 0 має похідні до (n+ 1)-го порядку включно, то в цій околиці має місцеформулаТейлора

деR n (х)-залишковий член формули Тейлора – має вигляд (форма Лагранжа)

де крапкаξ лежить між х і х 0 .

Зазначимо, що між Тейлора і формулою Тейлора є відмінність: формула Тейлора є кінцеву суму, тобто. п -фіксоване число.

Нагадаємо, що сума ряду S(x) може бути визначена як межа функціональної послідовності часткових сум S п (x) на деякому проміжку Х:

.

Відповідно до цього, розкласти функцію в ряд Тейлора означає знайти такий ряд, що для будь-якого хX

Запишемо формулу Тейлора у вигляді, де

Зауважимо, що
визначає ту помилку, яку ми отримуємо, замінюй функцію f(x) багаточленом S n (x).

Якщо
, то
,Тобто. функція розкладається на ряд Тейлора. Інакше, якщо
, то
.

Тим самим ми довели критерій розкладності функції до ряду Тейлора.

Для того, щоб у деякому проміжку функціяf(х) розкладалася в ряд Тейлора, необхідно і достатньо, щоб на цьому проміжку
, деR n (x) - Залишковий член ряду Тейлора.

За допомогою сформульованого критерію можна отримати достатніумови розкладності функції до ряду Тейлора.

Якщо вдеякої околиці точки х 0 абсолютні величини всіх похідних функції обмежені одним і тим самим числом М0, тобто.

, тпро цю околицю функція розкладається на ряд Тейлора.

З вищевикладеного випливає алгоритмрозкладання функціїf(x) у ряд Тейлорана околиці точки х 0 :

1. Знаходимо похідні функції f(x):

f(x), f'(x), f”(x), f”(x), f (n) (x),…

2. Обчислюємо значення функції та значення її похідних у точці х 0

f(x 0 ), f'(x 0 ), f”(x 0 ), f'”(x 0 ), f (n) (x 0 ),…

3. Формально записуємо ряд Тейлора і знаходимо область збіжності отриманого статечного ряду.

4. Перевіряємо виконання достатніх умов, тобто. встановлюємо, для яких хз області збіжності, залишковий член R n (x) прагне до нуля при
або
.

Розкладання функцій у ряд Тейлора за цим алгоритмом називають розкладанням функції до ряду Тейлора за визначеннямабо безпосереднім розкладанням.

Якщо функція f(x)має на деякому інтервалі, що містить точку а, похідні всіх порядків, то до неї може бути застосована формула Тейлора:

де r n- так званий залишковий член або залишок ряду, його можна оцінити за допомогою формули Лагранжа:

, де число x укладено між хі а.

Якщо для деякого значення х r n®0 при n®¥, то в межі формула Тейлора перетворюється для цього значення на схожий ряд Тейлора:

Таким чином, функція f(x)може бути розкладена в ряд Тейлора в точці, що розглядається х, якщо:

1) вона має похідні всіх порядків;

2) побудований ряд сходиться у цій точці.

При а=0 отримуємо ряд, званий поруч Маклорена:

Приклад 1 f(x)= 2x.

Рішення. Знайдемо значення функції та її похідних при х=0

f(x) = 2x, f( 0) = 2 0 =1;

f¢(x) = 2x ln2, f¢( 0) = 2 0 ln2 = ln2;

f¢¢(x) = 2x ln 2 2, f¢¢( 0) = 2 0 ln 2 2 = ln 2 2;

f(n) (x) = 2x ln n 2, f(n) ( 0) = 2 0 ln n 2 = ln n 2.

Підставляючи отримані значення похідних формулу ряду Тейлора, отримаємо:

Радіус збіжності цього ряду дорівнює нескінченності, тому дане розкладання справедливе для -

Останні матеріали розділу:

Прародина слов'ян Праслов'яни (предки слов'ян) жили в пору відокремлення від інших індоєвропейців на берегах верхів'я річок Одри
Прародина слов'ян Праслов'яни (предки слов'ян) жили в пору відокремлення від інших індоєвропейців на берегах верхів'я річок Одри

Попередній перегляд:Щоб користуватися попереднім переглядом презентацій, створіть собі обліковий запис Google і увійдіть до нього:...

Презентація збо загартовування організму
Презентація збо загартовування організму

Слайд 1 Слайд 2 Слайд 3 Слайд 4 Слайд 5 Слайд 6 Слайд 7 Слайд 8 Слайд 9 Слайд 10 Слайд 11 Слайд 12 Слайд 13 Презентацію на тему "Гартування...

Позакласний захід для початкової школи
Позакласний захід для початкової школи

Час має свою пам'ять – історію. Час має свою пам'ять – історію. 2 лютого ми згадуємо одну з найбільших сторінок Великої...